US3505845A - Hydraulic forging tool - Google Patents
Hydraulic forging tool Download PDFInfo
- Publication number
- US3505845A US3505845A US680429A US3505845DA US3505845A US 3505845 A US3505845 A US 3505845A US 680429 A US680429 A US 680429A US 3505845D A US3505845D A US 3505845DA US 3505845 A US3505845 A US 3505845A
- Authority
- US
- United States
- Prior art keywords
- tool
- forging
- coupling
- fluid
- hydraulic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005242 forging Methods 0.000 title description 56
- 230000008878 coupling Effects 0.000 description 41
- 238000010168 coupling process Methods 0.000 description 41
- 238000005859 coupling reaction Methods 0.000 description 41
- 239000012530 fluid Substances 0.000 description 34
- 230000000694 effects Effects 0.000 description 7
- 239000002184 metal Substances 0.000 description 6
- 239000004519 grease Substances 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 210000002445 nipple Anatomy 0.000 description 2
- 208000036366 Sensation of pressure Diseases 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000002311 subsequent effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D39/00—Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
- B21D39/04—Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods
- B21D39/042—Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods using explosives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49764—Method of mechanical manufacture with testing or indicating
- Y10T29/49771—Quantitative measuring or gauging
- Y10T29/49776—Pressure, force, or weight determining
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49805—Shaping by direct application of fluent pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49908—Joining by deforming
- Y10T29/49909—Securing cup or tube between axially extending concentric annuli
- Y10T29/49913—Securing cup or tube between axially extending concentric annuli by constricting outer annulus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49908—Joining by deforming
- Y10T29/49925—Inward deformation of aperture or hollow body wall
- Y10T29/49927—Hollow body is axially joined cup or tube
Definitions
- the field of art to which the invention pertains includes the art of hydraulic metal forging and in particular to hydraulic tools for the forging of metal pipe couplings into a forced set joint against pipe to be coupled.
- Hydraulic tools' for various and specific applications are widely used and are well known in various phases of industry. As such, many tools are adapted to perform specific needs in association with other products or equipment while others may have general application for a variety of uses or functions.
- the coupling is formed of a tubular shell having an annular outer ring secured arched and pressure-tight about each end portion of the shell to provide a pressure-tight chamber between the shell and the ring.
- An aperture in each ring permits application of fluid pressure within each end chamber sufficient to forgeably deform the shell inwardly thereat urging the shell or contained gasket into a uniform pressure seal engagement against receiyed pipe sections to be coupled.
- the forging pressures and degree of forging are subject to variables largely a function of the different pipe sizes for which the couplings are to be used.
- This invention relates to a portable tool for the application of hydraulic pressure to effect controlled forging of metal surfaces. More specifically, the invention relates to a tool for applying hydraulic forging pressures against a concealed metal surface such as in a pipe coupling and to effect the optimum degree of forging sufficient to achieve the required joint without overforging.
- this forging control is achieved by a tool having an axially displacable pin of rod which is in continuous follower engagement against the forging surface. The axial distance moved by the pin as' a result of the forging operation can be present to correspond to the optimum forging effect and which when reached disrupts fluid dispensing to prevent further unwanted forging thereat.
- the result of controlled optimum forging on concealed surfaces is effected, simply, inexpensively and reliably as to remove the guesswork therefrom and overcome such other difficulties as has been associated with such prior art devices.
- FIGURE 1 is an elevation view of the tool hereof in post-forging relation to a coupling of the aforementioned p Y
- FIGURE 2 is a sectional elevation similar to FIGURE '1 with the tool shown in its pre-forging relation to the coupling; f 1
- FIGURE 3 is a partial sectional elevation similar to relation to the coupling
- FIGURE 4 is a sectional view taken substantially the lines 4-4 of FIGURE 2; I v
- FIGURE 5 is a sectional view taken substantially along the lines 55 of FIGURE 2;
- FIGURE 6 is a sectional view taken substantially along the lines 6--6 of FIGURE 2; p
- FIGURE 7 is a sectional view taken substantially along the lines 77 of FIGURE 2;
- FIGURE 8 is a bottom view of the tool.
- FIGURE 9 is an enlargedfragmentary detail of th tool structure generally contained within the circledportion 99 of FIGURE 2.
- the tool hereof is adapted for, use in conjunction with a coupling of the aforementioned type shown dashed in FIGURES 1-3.
- the cou- .pling willv therefore first be briefl described to enable better understanding of the invention.
- the coupling of the aforementioned type is designated 10 and includes an inner shell wall 11 annularly encircling a gasket 12 for em- FIGURE 2 but illustrating the tool in its post-forging along bracing a pipe section 13 received thereat.
- the embrace is loose as shown in FIGURE 2 and after forging is tight as shown in FIGURES 1 and 3.
- Each end portion of the shell is annularly encircled by a pressure ring 14 to form a pressure-tight chamber 15 into which pressurized hydraulic fluid can be supplied through an aperture 16 which accommodates receipt of the forging tool and preferably is oblong shaped.
- cap 17 is retained in the aperture to prevent seepage of unwanted contaminants from reaching the chamber and during the forging operation is withdrawn and re tained as will be described.
- Application of the pressurized fluid is effective to forge the inner shell 11 radially inward against the gasket 12 until the latter firmly and compressively grips the pipe section 13 in a secured leakproof joint.
- the tool is portable and consists generally of a tubular body 26 to which is connected at its upper end a source of hydraulic pressure 27 available or provided on site. Secured to the body is a collar 33 from which depends a fork member 34 suitable for extracting the plug 17 from the coupling port and retaining it as shown in FIGURE 2 during the hydraulic forging operation.
- the upper end of the body also includes a threaded portion to receive a nipple 28 connected via a swivel connection 29 to a high pressure hose 30 through which fluid is supplied from the hydraulic source 27.
- Any appropriate fluid may be used depending on the source available, temperatures and the like to be encountered and may include water, grease, kerosene, air, etc.
- the hydraulic fluid consists of automobile grease which has been pneumatically pressurized.
- the pressurized fluid enters the body via the nipple 28 and travels in a generally axial direction as shown by the arrows.
- the fluid is ejecting at the lower outlet end at which the body necks down to a lowermost portion 31 for a connection to supply fluid into the passage 15 of the coupling.
- a bushing 38 Threadedly connected and preferably cemented in position within the lower necked-down portion of the body. Extending axially through the bushing is a bore 39 in coaxial communication with the body bore and at its lowermost portion terminates in a foot 40 of cross section capable of being received within coupling port 16 and in this instance is oblong as can be seen also with reference to FIGURE 8.
- the shank 42 of the bushing is of a diamond cross section such that after the foot-is inserted within the chamber 15, a hand rotation through about a quarter turn is applied and limited by the diamond peaks of shank 42 transversely engaging the side walls of the coupling aperture 16 as can be seen in FIGURE 7. This places the foot 40 lying interlocked generally across the underside of port 16 in the manner shown in FIGURE 8 to ensure against withdrawal and enable mounting of the tool securely onto thering 14.
- a pressure-tight mounting onto the ring is effected by means of a hand wheel 43 secured to a collar 44 threadedly mounted on the body portion 31.
- the lower annular end thereof engages and downwardly urges the upper annular end of'a tandem abutting sleeve 45.
- the sleeve terminates at its lower end in a radially inward projecting flange 46 having an annular recess 47 containing an O-ring gasket 50 to provide an encircling seal when tight about port 16. Should port 16 enlarge or expand as aresult of the forging operation, the gasket 50 ensures against loss of pressure which could otherwise result.
- the sleeve 45 is slidable axially with respect to the body portion 31 in response to handwheel operation and when tight, leakage therepast is prevented by means of annular O-ring 52 and spiral back up ring 54 secured in an annular body groove or recess 55. Consequently, as the hand wheel is rotated for downward movement, the sleeve 45 in turn forces its gasket 50 into engagement against the topside of pressure ring 14 causing foot 40 to be drawn upwardly into tight clamping engagement with the underside of the pressure ring.
- an axially movable pin or rod 58 which is generally of less cross sectional dimension than the bore to permit fluid flow axially thereabout.
- the rod is oblong and clearances between the rod and bore permit grease or other fluid being pumped to pass through the bore along the parallel opposite side surfaces of the rod.
- the pin is secured to a seat plug 59 having an upper end 67 of hexagonal cross section (see FIGURE 5) and a lower end 66 which terminates as a valve seat frusto-conical in shape.
- the plug and consequently the pin are urged downwardly by means of a spring 60 compressed thereat from between a seat nut 61 threadedly engaged within the upper end of the tube body 26.
- a bushing 62 having an upper bore 63 terminating in frusto-conical seat 65 surrounding a lower bore 64.
- bushing 62 is axially adjustable within the body. By effecting an axial movement thereof, it is possible to preset and vary the travel distance between seat 65 and plug end 66 corresponding to the required degree of forging. This is accomplished and may best be understood with reference to FIGURES 2, 4 and 9 where it can be seen that seat nut 61 includes a screw driver slot 70 and at ,its lower end terminates in a pair of opposite outwardly. projecting tabs 71 and 72 to be received in corresponding receiving slots 73 and 74 of the bushing.
- bushing seat 65 By screwing the nut 61 in or out, bushing seat 65 will consequently be moved correspondingly to effect the required spacing. Fluid leakage past bushing 62 is prevented by O-ring and spiral back'up' ring 81 in annular groove 84. Accuracy in setting the pin is assured since it normally is urged by spring 60 to its furthermost extension at which it can be conveniently measured.
- Hydraulic pressure in the tool is first removed remotely as at the hydraulic source 27 after which hand wheel:43iis"rotated to freejthesleve 45 and foot 40 from their clamping relationaAt this' stage, the entire tool can be removed from the clamp by a reverse hand rotation of the tool'to permitfoot 40 to be withdrawn through the aperture 16.
- the produced coupling joint is accurately formed to a preset forging degree which can be adjustably controlled by a simple screwdriver adjustment withiri'the toolzlt has been found that forming a joint on site by means of the tool hereof is performed in about one minute or less per nominal inch of diameter being usually less on the smaller sizes.
- the tool has been described as having principal utility in conjunction with forging of a pipe coupling, it should not be considered to be a limitation on the use of such tool since this is intended as exemplary in describing the preferred embodiment of the invention and it is apparent that this tool could find utility in many other applications for which the need is similar. Also, it is appreciated that the tool could be employed for situations in which it is unnecessary to have an automatic cutoff as afforded by the central pin. For those applications, where justified, the pin can be eliminated.
- a tool for the application of hydraulic forging pressure against a forgable wall surface contained pressuretight and comprising in combination:
- outlet means at a second end of said body through which to eject fluid received at said inlet means
- mounting means at said second end for mounting the tool secured locked in a pressure-tight spaced relation to the wall surface to be forged, said mounting means including a foot extending spaced from a terminal body portion of said second end and means axially adjust the spacing between said terminal body portion andsaid foot to receive a supporting surface therebetween against which the tool can be mounted.
- a tool for the application of hydraulic forging pres sure against a forgable wall surface contained pressuretight and comprising in combination:
- forge sensing means for sensing the degree of forging effected by the applied forging fluid, said forge sensing means being presettably responsive to disrupt fluid flow to said outlet means when a required degree of wall forging has been effected.
- valve means in said body intermediate said inlet and said outlet means and operable by said rod to permit fluidflow when said rod is in a first relatively unextended position against the wall surface to be forged and to disrupt fluid flow when further extented to the required'forged condition of the forgable wall surface.
- the tool according to claim 4 including clamping means at said outlet means for securing the tool locked pressure-tight onto a mounting wall adjacent the forgable wall surface.
- a portable tool for the hydraulic forging of a pipe coupling having an annular shell portion forgable into coupling relation with a contained pipe section and an outer ring annularly spanning the shell portion forming a pressure-tight chamber therewith in which to receive forging fluid through an access therein, said tool comprising in combination:
- outlet means at a second end of said body through which to eject fluid received at said inlet means
- mounting means to mount said outlet means pressure-tight on the outer coupling ring in fluid supply relation to the access thereof, said mounting means including a foot extending spaced from the terminal body portion of said second end and receivable through the access of said coupling ring into the chamber thereat and means operable when said foot is in the coupling chamber to axially reduce the spacing therebetween until the tool is secured onto said coupling ring.
- a portable tool for the hydraulic forging of a pipe coupling having an annular shell portion forgable into coupling relation with a contained pipe section and an outer ring annularly spanning the shell portion forming a pressure-tight chamber therewith in which to receive forging fluid through an access therein, said tool comprising in combination:
- (e) forge sensing means which penetrates through the coupling access into the chamber thereof to sense the degree of forging eflected by the ejected fluid from said outlet means and to disrupt fluid flow to said outlet means when a required degree of shell forging has been completed.
- said forge sensing means comprises an elongated rod mounted for axial movement coaxially outward through said outlet means and adapted for continuous following engagement against the shell wall surface from the unforged to the required forged condition thereof.
- valve means in said body intermediate said inlet and said outlet means and operable by said rod to permit fluid flow when said rod is in a first relatively unextended position against the shell wall surface and to disrupt fluid flow when extended outwardly further to the required forged condition of the shell wall surface.
- said outlet means includes an axial extension secured to said body terminating in a lateral oflFset receivable through said coupling access and said mounting means comprises a threaded adjustment mem ber operably movable relatively towards said lateral offset for securing the tool against the outer coupling ring.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Forging (AREA)
- Coating Apparatus (AREA)
- Earth Drilling (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Pipe Accessories (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US68042967A | 1967-11-03 | 1967-11-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3505845A true US3505845A (en) | 1970-04-14 |
Family
ID=24731070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US680429A Expired - Lifetime US3505845A (en) | 1967-11-03 | 1967-11-03 | Hydraulic forging tool |
Country Status (6)
Country | Link |
---|---|
US (1) | US3505845A (enrdf_load_stackoverflow) |
BE (1) | BE723148A (enrdf_load_stackoverflow) |
DE (1) | DE1807269C3 (enrdf_load_stackoverflow) |
FR (1) | FR1590367A (enrdf_load_stackoverflow) |
GB (2) | GB1219676A (enrdf_load_stackoverflow) |
NL (1) | NL158099B (enrdf_load_stackoverflow) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005055452A1 (de) * | 2005-11-21 | 2007-05-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und Vorrichtung zum Hochdruckumformen |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2423862A (en) * | 1944-12-30 | 1947-07-15 | Casimer E Vorobik | Binding and covering apparatus |
US2479702A (en) * | 1945-08-22 | 1949-08-23 | Weatherhead Co | Coupling |
US2956471A (en) * | 1958-05-23 | 1960-10-18 | Richard J Mcmanus | Rubber crimping device |
US2997093A (en) * | 1958-01-10 | 1961-08-22 | Keelavite Co Ltd | Pumps |
US3103068A (en) * | 1956-11-19 | 1963-09-10 | Miller And Poston Mfg Company | Method for interconnecting malleable tubing and fittings therefor |
US3429587A (en) * | 1967-03-03 | 1969-02-25 | Dresser Ind | Pipe couplings |
-
1967
- 1967-11-03 US US680429A patent/US3505845A/en not_active Expired - Lifetime
-
1968
- 1968-10-30 BE BE723148D patent/BE723148A/xx not_active IP Right Cessation
- 1968-10-30 FR FR1590367D patent/FR1590367A/fr not_active Expired
- 1968-10-31 GB GB51640/68A patent/GB1219676A/en not_active Expired
- 1968-10-31 GB GB28890/70A patent/GB1219677A/en not_active Expired
- 1968-10-31 NL NL6815527.A patent/NL158099B/xx not_active IP Right Cessation
- 1968-11-01 DE DE1807269A patent/DE1807269C3/de not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2423862A (en) * | 1944-12-30 | 1947-07-15 | Casimer E Vorobik | Binding and covering apparatus |
US2479702A (en) * | 1945-08-22 | 1949-08-23 | Weatherhead Co | Coupling |
US3103068A (en) * | 1956-11-19 | 1963-09-10 | Miller And Poston Mfg Company | Method for interconnecting malleable tubing and fittings therefor |
US2997093A (en) * | 1958-01-10 | 1961-08-22 | Keelavite Co Ltd | Pumps |
US2956471A (en) * | 1958-05-23 | 1960-10-18 | Richard J Mcmanus | Rubber crimping device |
US3429587A (en) * | 1967-03-03 | 1969-02-25 | Dresser Ind | Pipe couplings |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005055452A1 (de) * | 2005-11-21 | 2007-05-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und Vorrichtung zum Hochdruckumformen |
DE102005055452B4 (de) * | 2005-11-21 | 2008-09-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und Vorrichtung zum Hochdruckumformen |
Also Published As
Publication number | Publication date |
---|---|
GB1219677A (en) | 1971-01-20 |
DE1807269C3 (de) | 1980-02-07 |
DE1807269B2 (de) | 1979-06-07 |
DE1807269A1 (de) | 1969-06-19 |
FR1590367A (enrdf_load_stackoverflow) | 1970-04-13 |
GB1219676A (en) | 1971-01-20 |
BE723148A (enrdf_load_stackoverflow) | 1969-04-01 |
NL158099B (nl) | 1978-10-16 |
NL6815527A (enrdf_load_stackoverflow) | 1969-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2748463A (en) | Method of coupling pipes | |
US5342095A (en) | High pressure quick connector | |
US3568494A (en) | Crimp machine | |
US2021745A (en) | Threaded follower pipe joint or fitting | |
US5020590A (en) | Back pressure plug tool | |
US2463707A (en) | Pipe coupling | |
US2373253A (en) | Straight thread fitting | |
US3339883A (en) | Pressure connection assembly | |
GB1349039A (en) | Fittings for high pressure fluid lines | |
DE69508845T2 (de) | Schnellrohrkupplung mit einem Sicherheitsventil | |
US4657075A (en) | Well head isolation tool | |
US2704104A (en) | Pipe expanding tool | |
US2756486A (en) | Method of connecting service pipe to main | |
US2875777A (en) | Hermetic port valve assembly for tapping fluid conduits | |
US4669761A (en) | Tubing fitting | |
GB982004A (en) | Coupling means for connecting conduits | |
US2237476A (en) | Apparatus for fluid control | |
US4116477A (en) | Connector, reducer/adapter, flare to flareless | |
EP0270973B1 (en) | Plugging apparatus and method using a hydraulically assisted plug expander | |
US3505845A (en) | Hydraulic forging tool | |
US3151893A (en) | Tube coupling | |
US2698191A (en) | Replaceable high pressure coupling | |
US3058760A (en) | Pipe coupling having radially expansible gripping means | |
US2320813A (en) | Coupling for flanged metal tubing | |
US3034339A (en) | Tool for detecting pipe leaks |