US3504228A - Spark plug with an internal resistor - Google Patents

Spark plug with an internal resistor Download PDF

Info

Publication number
US3504228A
US3504228A US657235A US3504228DA US3504228A US 3504228 A US3504228 A US 3504228A US 657235 A US657235 A US 657235A US 3504228D A US3504228D A US 3504228DA US 3504228 A US3504228 A US 3504228A
Authority
US
United States
Prior art keywords
resistor
spring
terminal
spark plug
turns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US657235A
Inventor
Robert G Morris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Federal Mogul Ignition LLC
Original Assignee
Champion Spark Plug Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Champion Spark Plug Co filed Critical Champion Spark Plug Co
Application granted granted Critical
Publication of US3504228A publication Critical patent/US3504228A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/40Sparking plugs structurally combined with other devices
    • H01T13/41Sparking plugs structurally combined with other devices with interference suppressing or shielding means

Definitions

  • the internally mounted resistor is held within the axial bore of the insulator between a pair of resilient coil springs having a minimum effective inductance when compressed to secure the resistor in place,
  • the spring is wound from a resilient conductorpf rectangular cross-section with the major dimension of the wire crosssection parallel to the axis of the spring. Successive turns in a major portion of the spring are of reduced diameter so that these adjacent turns, when the spring is compressed, engage one another in electrically conductive contact to eifectively form a single turn or sleeve, thus reducing the effective inductance to a minimum, thereby reducing to a minimum any undesirable radio frequency emanations due to resonance of the inductance of the spring and capacitance inherent in the spark plug.
  • wire-wound resistors have been used as the internal suppressor resistor in spark plugs in the prior art, as set forth, for instance, in US, Patent 3,251,010, their adoption as internally mounted resistors has occasioned difficulty due to the fact that the physical length of the wire-wound resistor must be increased in order to accommodate end caps or terminals which must be axially spaced apart a distance sufficient to avoid flash-over at high voltages. This requires a spark plug manufacturer either to lengthen the ceramic insulator of the spark plug, or to make other design changes to accommodate the longer resistor. Secondly, wire-wound resistors must necessarily be secured with the ends of the wound resistor wire in electrical contact with the terminal and the spark plug center electrode.
  • Prior art constructions have secured wire-wound resistors within spark plug insulators using a small coil spring at one end of a capped resistor, which spring resiliently positions the resistor within the space available and also provides an electrical connection between that one end cap and the adjacent terminal or electrode.
  • These prior art springs have been unsatisfactoryfor several reasons. Firstly, the spring at the end of the resistor, being an inductor, forms a resonant circuit with the capacitance inherent in the spark plug. When shock excited by spark discharges, this circuit will oscillate and radiate strong radio-frequency signals. The values of capacitance and inductance are such that those undesirable signals will have a frequency falling within that portion of the frequency spectrum used for radio communication and other related services, thus causing undesired interference. Secondly, the prior art springs take up too much of the already diminished space available within the spark plug.
  • the improved spring terminal of this invention is a wound coil spring having an upper and lower portion.
  • the first or lower portion consists of a plurality of turns of equal diameter which are shorted together throughout their periphery, and with the elfective inside diameter of this portion being substantially equal to the outside diameter of the wire-wound resistor so that, when the end of the wire-wound resistor is inserted within the first portion, the turns of the first portion are in electrical contact with the resistor wire and mechanically grip the end of the resistor.
  • the second or upper portion of the improved spring terminal consists of a plurality of axially spaced turns with successive turns having a reduced diameter so that, when the second portion is compressed in an axial direction, each turn fits within its adjacent next larger turn such that all turns are in electrically conductive engagement with their adjacent turns throughout their periphery.
  • the turns of the second portion take up a minimum axial space and, because all of the turns throughout the first and second portions are in electrically conductive engagement throughout their periphery, the elfective inductance of the entire spring terminal is reduced to a minimum.
  • the cross-section of the conductive wire from which the spring terminal is wound is rectangular, with the major axis of the cross-section being parallel to the axis of the spring terminal.
  • the use of a conductor Wire of this cross-section further assures that the turns in the first section of the spring will grip the resistor in positive electrical engagement and that the turns in the second portion, when compressed, will engage adjacent turns throughout their periphery to reduce the effective inductance, as explained above.
  • FIG. 1 is a view in elevation, partly in cross-section, of a complete spark plug showing a wire-wound resistor positioned within the axial bore of the ceramic insulator by means of improved spring terminals of this invention;
  • FIG. 2 is a view in elevation, on a greatly enlarged scale, of the improved spring terminal of this invention, shown in its non-compressed state;
  • FIG. 3 is a greatly enlarged portion of FIG. 1, showing a wire-wound suppressor resistor positioned between the terminal and the central electrode of the spark plug, with the spring terminals of this invention positioned on each end and in their compressed state; and
  • FIG. 4 is a view taken along line 44 of FIG. 3 and showing the spring terminal of this invention in its compressed state.
  • FIG. 1 a spark plug of conventional design is shown, having a ceramic insulator with a wirewound resistor R positioned within its axial bore between a lower center electrode 11 and an upper terminal 12 by a pair of spring terminals 13.
  • the insulator 10 is secured within the spark plug shell body 14 which has a lower threaded portion 15 which engages the threads of a spark plug hole in the combustion apparatus so that the firing electrodes 16 and 17 extend a proper distance within the combustion chamber.
  • the improved spring terminal of this invention includes a first or lower portion 18 having a plurality of adjacent turns of the same diameter and a second or upper portion 19 having a plurality of turns with successive turns having a reduced diameter.
  • the successively smaller turns of the second portion 19 are wound so that each turn has an outside diameter which is substantially the same as the inside diameter of the next adjacent larger turn.
  • the turn designated by reference numeral 20 has an outside diameter d which is substantially the same as the inside diameter of the next adjacent larger turn, designated by reference numeral 21.
  • This design allows the compressed axial length of the spring terminal of this invention to be a minimum. This is important, as previously explained, because wire-wound resistors must have an axial length greater than an equivalent carbon resistor, thus requiring the spark plug manufacturer to either reduce to a minimum size the mounting means for wire-wound resistors or to increase the length of the ceramic insulator. This latter expedient, for cost and other design reasons, is undesirable.
  • Another advantage of the spring terminal of this invention is that, when the second portion 19 is compressed in an axial direction, to assume the configuration shown in FIGS.
  • the frequency of the oscillations due to the resonance of the spring inductance and spark plug capacitance is far above any frequency used in radio communication and related services.
  • the resistor R is cushioned against shock or other vibrations and is in sound electrical engagement with both the terminal 12 and the electrode 11.
  • the spring terminal of this invention while taking up a minimum of axial space, may still be compressed further, due to the unique design of the successively reduced diameter of the turns in the second portion 19.
  • the spring terminal of this invention may also be advantageously used to position resistors or other suppression devices in ignition cables, rotor or other components of an ignition system.
  • Other advantages of this invention will be apparent to those skilled in the art and various modifications of the preferred embodiment described herein may be made without departing from the scope of the attached claims.
  • an automotive ignition device having an insulator surrounding an axial electrode electrically connected to an external terminal by a resistor positioned within the bore of said insulator, the improvement comprising a pair of resilient springs, one on each end of said resistor to hold said resistor and to provide electrical contact between said terminal and said electrode, each of said springs including an inner portion receiving and electrically contacting the end of said resistor and an outer portion comprising a spirally wound coil of conductive wire having a plurality of turns of successively reduced diameter, said outer portion having a non-compressed axial length greater than the space available between said resistor end and the adjacent electrode or terminal whereby, when said resilient springs are compressed to fit within said available space, said resistor is held between said electrode and said terminal by the axial force of said resilent springs and said outer portions of said springs are compressed such that adjacent turns of reduced diameter are in electrical engagement with one another thereby to reduce the inductance of said resilient springs.
  • said inner portion of said springs comprises a plurality of turns of said conductive wire, each turn being in electrical conductive engagement with each adjacent turn and with said resistor.
  • an automotive ignition device having an insulator surrounding an axial electrode electrically connected to an external terminal by a resistor positioned within the bore of said insulator, the improvement comprising a resilient spring on one end of said resistor to hold said resistor between said terminal and said electrode and to provide electrical contact between said resistor and one of said terminal and said electrode, means on the other end of said resistor for electrically connecting said other end to the other of said terminal and said electrode, said spring including an inner portion receiving and electrically contacting said one end of said resistor and an outer portion comprising a spirally wound coil of a conductive wire having a plurality of turns of successively reduced diameter, said outer portion having a non-compressed axial length greater than the space available between said one resistor end and the adjacent electrode or terminal whereby, when said resilient spring is compressed to fit within said available space, said resistor is held between said electrode and said terminal by the axial force of said resilient spring and said outer portion of said spring is compressed such that adjacent turns of reduced diameter are in electrical engagement with one another thereby to reduce he in
  • An improved automotive ignition device as claimed 2,858,361 10/1958 Candelise 31558 X in claim 3, wherein said inner portion of said spring com- 3,267,325 8/1966 Why 315-5 8 X prises a plurality of turns of said conductive wire, each turn being in electrical conductive engagement with each FOREIGN PATENTS ad acent turn and with sard reslstor. 5 453,049 11/1926 Gfirmany References Cited UNITED STATES PATENTS ROBERT SEGAL, Primary Exammer C. R. CAMPBELL, Assistant Examiner 2,649,298 8/1953 Wulff et a1. 26762 2,751,179 6/1956 Oravec 26762 X 10 US. Cl. X.R. 2,837,679 6/1958 Schwartzwalder et a1. 333332

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

March 31, 1970 R. G. MORRIS 3,504,228
SPARK PLUG WITH AN INTERNAL RESISTOR Filed July 31. 19s? .li INVENTOR.
HUBERT EMURRIS.
AM" 1's.
United States Patent Ofice 3,504,228 Patented Mar. 31, 1970 3,504,228 SPARK PLUG WITH AN INTERNAL RESISTOR Robert G. Morris, Toledo, Ohio, assignor to Champion Spark Plug Company, Toledo, Ohio, a corporation of Delaware Filed July 31, 1967, Ser. No. 657,235 Int. Cl. H01t 13/02 US. Cl. 315-58 4 Claims ABSTRACT OF THE DISCLOSURE A spark plug including a suppressor resistor mounted within its ceramic insulator to reduce undesirable radio frequency emanations. The internally mounted resistor is held within the axial bore of the insulator between a pair of resilient coil springs having a minimum effective inductance when compressed to secure the resistor in place, The spring is wound from a resilient conductorpf rectangular cross-section with the major dimension of the wire crosssection parallel to the axis of the spring. Successive turns in a major portion of the spring are of reduced diameter so that these adjacent turns, when the spring is compressed, engage one another in electrically conductive contact to eifectively form a single turn or sleeve, thus reducing the effective inductance to a minimum, thereby reducing to a minimum any undesirable radio frequency emanations due to resonance of the inductance of the spring and capacitance inherent in the spark plug.
The use of internally mounted resistors in automotive ignition devices or spark plugs to suppress undesirable radio frequency emanations is well known in the art. While early constructions, such as that shown in US. Patent 2,173,766, place the resistor within an ignition cable terminal, it has become common practice to include a resistor for suppression of such undesired radio frequency emanations within the ceramic insulator of the spark plug itself.
While carbon resistors are now commonly used with resistor type spark plugs, it is known that, at higher frequencies, wire-wound resistors have a higher efficiency in suppressing the undesirable emanations, due to the fact that carbon resistors decrease in impedance with increasing frequency. While the decreasing impedance characteristic of a carbon resistor may be overcome to some extent by using a very high D.C. resistance value, operational shortcomings due to the initial high resistance of a carbon resistor may be avoided by the use of a wire-wound resistor which inherently has a higher impedance, and thus higher efficiency in reducing unwanted high frequency radio wave emanations.
While wire-wound resistors have been used as the internal suppressor resistor in spark plugs in the prior art, as set forth, for instance, in US, Patent 3,251,010, their adoption as internally mounted resistors has occasioned difficulty due to the fact that the physical length of the wire-wound resistor must be increased in order to accommodate end caps or terminals which must be axially spaced apart a distance sufficient to avoid flash-over at high voltages. This requires a spark plug manufacturer either to lengthen the ceramic insulator of the spark plug, or to make other design changes to accommodate the longer resistor. Secondly, wire-wound resistors must necessarily be secured with the ends of the wound resistor wire in electrical contact with the terminal and the spark plug center electrode.
Prior art constructions have secured wire-wound resistors within spark plug insulators using a small coil spring at one end of a capped resistor, which spring resiliently positions the resistor within the space available and also provides an electrical connection between that one end cap and the adjacent terminal or electrode. These prior art springs have been unsatisfactoryfor several reasons. Firstly, the spring at the end of the resistor, being an inductor, forms a resonant circuit with the capacitance inherent in the spark plug. When shock excited by spark discharges, this circuit will oscillate and radiate strong radio-frequency signals. The values of capacitance and inductance are such that those undesirable signals will have a frequency falling within that portion of the frequency spectrum used for radio communication and other related services, thus causing undesired interference. Secondly, the prior art springs take up too much of the already diminished space available within the spark plug.
SUMMARY OF THE INVENTION It is an object of this invention to provide an improved spring terminal for use in securing spark plug resistors which is capable of performing its mechanical mounting functions within a minimum axial space and which also, when in its compressed state, has a minimum inductance so as to not be effective to create undesired interference, as previously explained.
' The improved spring terminal of this invention is a wound coil spring having an upper and lower portion. The first or lower portion consists of a plurality of turns of equal diameter which are shorted together throughout their periphery, and with the elfective inside diameter of this portion being substantially equal to the outside diameter of the wire-wound resistor so that, whenthe end of the wire-wound resistor is inserted within the first portion, the turns of the first portion are in electrical contact with the resistor wire and mechanically grip the end of the resistor. The second or upper portion of the improved spring terminal consists of a plurality of axially spaced turns with successive turns having a reduced diameter so that, when the second portion is compressed in an axial direction, each turn fits within its adjacent next larger turn such that all turns are in electrically conductive engagement with their adjacent turns throughout their periphery. When so compressed, the turns of the second portion take up a minimum axial space and, because all of the turns throughout the first and second portions are in electrically conductive engagement throughout their periphery, the elfective inductance of the entire spring terminal is reduced to a minimum. In the preferred embodiment of this invention, the cross-section of the conductive wire from which the spring terminal is wound is rectangular, with the major axis of the cross-section being parallel to the axis of the spring terminal. As will be clearly seen from the detailed description below, the use of a conductor Wire of this cross-section further assures that the turns in the first section of the spring will grip the resistor in positive electrical engagement and that the turns in the second portion, when compressed, will engage adjacent turns throughout their periphery to reduce the effective inductance, as explained above.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a view in elevation, partly in cross-section, of a complete spark plug showing a wire-wound resistor positioned within the axial bore of the ceramic insulator by means of improved spring terminals of this invention;
FIG. 2 is a view in elevation, on a greatly enlarged scale, of the improved spring terminal of this invention, shown in its non-compressed state;
FIG. 3 is a greatly enlarged portion of FIG. 1, showing a wire-wound suppressor resistor positioned between the terminal and the central electrode of the spark plug, with the spring terminals of this invention positioned on each end and in their compressed state; and
3 FIG. 4 is a view taken along line 44 of FIG. 3 and showing the spring terminal of this invention in its compressed state.
DESCRIPTION OF A PREFERRED EMBODIMENT Referring to FIG. 1, a spark plug of conventional design is shown, having a ceramic insulator with a wirewound resistor R positioned within its axial bore between a lower center electrode 11 and an upper terminal 12 by a pair of spring terminals 13. The insulator 10 is secured within the spark plug shell body 14 which has a lower threaded portion 15 which engages the threads of a spark plug hole in the combustion apparatus so that the firing electrodes 16 and 17 extend a proper distance within the combustion chamber.
Referring to FIG. 2, the improved spring terminal of this invention includes a first or lower portion 18 having a plurality of adjacent turns of the same diameter and a second or upper portion 19 having a plurality of turns with successive turns having a reduced diameter. In this preferred embodiment, with the spring terminal wound from a rectangular conductive wire with the major axis of the cross-section of the Wire parallel to the axis of the spring, the successively smaller turns of the second portion 19 are wound so that each turn has an outside diameter which is substantially the same as the inside diameter of the next adjacent larger turn. For example, in FIG. 2, the turn designated by reference numeral 20 has an outside diameter d which is substantially the same as the inside diameter of the next adjacent larger turn, designated by reference numeral 21. Thus, as the second portion 19 of the spring 13 is compressed in an axial direction, adjacent turns will fit within their next adjacent larger turn, as shown on the spring 13 illustrated in FIG. 3, so that the axial length of the second portion of the spring 13 may be compressed a substantial distance towards the first portion 18 of the spring 13.
This design allows the compressed axial length of the spring terminal of this invention to be a minimum. This is important, as previously explained, because wire-wound resistors must have an axial length greater than an equivalent carbon resistor, thus requiring the spark plug manufacturer to either reduce to a minimum size the mounting means for wire-wound resistors or to increase the length of the ceramic insulator. This latter expedient, for cost and other design reasons, is undesirable. Another advantage of the spring terminal of this invention is that, when the second portion 19 is compressed in an axial direction, to assume the configuration shown in FIGS. 3 and 4, each of the adjacent turns, 20 and 21, for instance, lie within the next adjacent larger turn with the entire periphery of the outer diameter of one turn (20) being in electrical contact with the entire periphery of the inner diameter of the next larger turn (21). Accordingly, the entire second portion 19 of the spring, when in compressed position, presents one complete turn or sleeve, thus reducing the inductance of the spring to an absolute minimum. By reducing the inductance of the spring to an absolute minimum, the frequency of the oscillations due to the resonance of the spring inductance and spark plug capacitance is far above any frequency used in radio communication and related services.
Referring to FIG. 3, with the wire-wound resistor R held in place between the terminal 12 and the upper-most surface of the lower electrode 11 by means of a pair of the spring terminals 13 of this invention, the resistor R is cushioned against shock or other vibrations and is in sound electrical engagement with both the terminal 12 and the electrode 11. As is apparent from FIG. 3, the spring terminal of this invention, while taking up a minimum of axial space, may still be compressed further, due to the unique design of the successively reduced diameter of the turns in the second portion 19. Thus, substantial dimensional variations in the ax al distance available fo the wire-wound resistor R and its spring terminals 13 may be accommodated by the use of spring terminals of this designrAdditionally, because of the rectangular cross-section of the wire of the preferred embodiment of this spring, it will be seen, from inspection of FIG. 3, that the engagement between the turns of the resistor R and the inside diameter of the turns making up the first portion 18 is over a relatively large area so that good electrical conductance is assured. Finally, because of the rectangular cross-section of the wire used in the preferred embodiment, the engagement between the top or smallest turn of the spring terminals 13 and the adjacent surface of the terminal 12 or the electrode 11, at the positions designated by reference numerals 22 and 23 in FIG. 3, is over a relatively large area, thus assuring good electrical contact.
It will be apparent that the spring terminal of this invention may also be advantageously used to position resistors or other suppression devices in ignition cables, rotor or other components of an ignition system. Other advantages of this invention will be apparent to those skilled in the art and various modifications of the preferred embodiment described herein may be made without departing from the scope of the attached claims.
'I claim:
1. In an automotive ignition device having an insulator surrounding an axial electrode electrically connected to an external terminal by a resistor positioned within the bore of said insulator, the improvement comprising a pair of resilient springs, one on each end of said resistor to hold said resistor and to provide electrical contact between said terminal and said electrode, each of said springs including an inner portion receiving and electrically contacting the end of said resistor and an outer portion comprising a spirally wound coil of conductive wire having a plurality of turns of successively reduced diameter, said outer portion having a non-compressed axial length greater than the space available between said resistor end and the adjacent electrode or terminal whereby, when said resilient springs are compressed to fit within said available space, said resistor is held between said electrode and said terminal by the axial force of said resilent springs and said outer portions of said springs are compressed such that adjacent turns of reduced diameter are in electrical engagement with one another thereby to reduce the inductance of said resilient springs.
2. An improved automotive ignition device, as claimed in claim 1, wherein said inner portion of said springs comprises a plurality of turns of said conductive wire, each turn being in electrical conductive engagement with each adjacent turn and with said resistor.
3. In an automotive ignition device having an insulator surrounding an axial electrode electrically connected to an external terminal by a resistor positioned within the bore of said insulator, the improvement comprising a resilient spring on one end of said resistor to hold said resistor between said terminal and said electrode and to provide electrical contact between said resistor and one of said terminal and said electrode, means on the other end of said resistor for electrically connecting said other end to the other of said terminal and said electrode, said spring including an inner portion receiving and electrically contacting said one end of said resistor and an outer portion comprising a spirally wound coil of a conductive wire having a plurality of turns of successively reduced diameter, said outer portion having a non-compressed axial length greater than the space available between said one resistor end and the adjacent electrode or terminal whereby, when said resilient spring is compressed to fit within said available space, said resistor is held between said electrode and said terminal by the axial force of said resilient spring and said outer portion of said spring is compressed such that adjacent turns of reduced diameter are in electrical engagement with one another thereby to reduce he inductance of said resilient spring- 5 6 4. An improved automotive ignition device as claimed 2,858,361 10/1958 Candelise 31558 X in claim 3, wherein said inner portion of said spring com- 3,267,325 8/1966 Why 315-5 8 X prises a plurality of turns of said conductive wire, each turn being in electrical conductive engagement with each FOREIGN PATENTS ad acent turn and with sard reslstor. 5 453,049 11/1926 Gfirmany References Cited UNITED STATES PATENTS ROBERT SEGAL, Primary Exammer C. R. CAMPBELL, Assistant Examiner 2,649,298 8/1953 Wulff et a1. 26762 2,751,179 6/1956 Oravec 26762 X 10 US. Cl. X.R. 2,837,679 6/1958 Schwartzwalder et a1. 333332
US657235A 1967-07-31 1967-07-31 Spark plug with an internal resistor Expired - Lifetime US3504228A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US65723567A 1967-07-31 1967-07-31

Publications (1)

Publication Number Publication Date
US3504228A true US3504228A (en) 1970-03-31

Family

ID=24636380

Family Applications (1)

Application Number Title Priority Date Filing Date
US657235A Expired - Lifetime US3504228A (en) 1967-07-31 1967-07-31 Spark plug with an internal resistor

Country Status (1)

Country Link
US (1) US3504228A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771006A (en) * 1972-02-14 1973-11-06 N Berry Ignition circuit radiation suppression structure
US3882341A (en) * 1974-01-24 1975-05-06 Champion Spark Plug Co Spark plug with inductive suppressor
US4199706A (en) * 1977-09-02 1980-04-22 Zenith Radio Corporation Spring-loaded resistor terminal
US4204302A (en) * 1977-09-02 1980-05-27 Zenith Radio Corporation Method for terminating an electrical resistor for a television CRT
EP2940811A1 (en) * 2014-05-02 2015-11-04 NGK Spark Plug Co., Ltd. Spark plug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE453049C (en) * 1927-11-26 Fried Krupp Akt Ges Conical spring for railway buffer u. like
US2649298A (en) * 1950-05-12 1953-08-18 Holland Co Volute spring
US2751179A (en) * 1953-02-09 1956-06-19 Textron American Inc Vibration isolator
US2837679A (en) * 1952-08-22 1958-06-03 Gen Motors Corp Glass sealed centerwire structure
US2858361A (en) * 1956-06-11 1958-10-28 Gen Motors Corp Spark plug center electrode to insulator connection
US3267325A (en) * 1962-12-06 1966-08-16 Gen Motors Corp Combined spark plugs and oscillatory circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE453049C (en) * 1927-11-26 Fried Krupp Akt Ges Conical spring for railway buffer u. like
US2649298A (en) * 1950-05-12 1953-08-18 Holland Co Volute spring
US2837679A (en) * 1952-08-22 1958-06-03 Gen Motors Corp Glass sealed centerwire structure
US2751179A (en) * 1953-02-09 1956-06-19 Textron American Inc Vibration isolator
US2858361A (en) * 1956-06-11 1958-10-28 Gen Motors Corp Spark plug center electrode to insulator connection
US3267325A (en) * 1962-12-06 1966-08-16 Gen Motors Corp Combined spark plugs and oscillatory circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771006A (en) * 1972-02-14 1973-11-06 N Berry Ignition circuit radiation suppression structure
US3882341A (en) * 1974-01-24 1975-05-06 Champion Spark Plug Co Spark plug with inductive suppressor
US4199706A (en) * 1977-09-02 1980-04-22 Zenith Radio Corporation Spring-loaded resistor terminal
US4204302A (en) * 1977-09-02 1980-05-27 Zenith Radio Corporation Method for terminating an electrical resistor for a television CRT
EP2940811A1 (en) * 2014-05-02 2015-11-04 NGK Spark Plug Co., Ltd. Spark plug

Similar Documents

Publication Publication Date Title
US6754060B2 (en) Protective device
US5371436A (en) Combustion ignitor
US3504228A (en) Spark plug with an internal resistor
US2173766A (en) Electrical ignition apparatus for internal combustion engines
US3603835A (en) Spark plug with an internal resistor
US1984526A (en) Filter for suppression of high frequency current
US4105007A (en) Device for suppressing ignition noise
US20060089024A1 (en) Spark plug connector
US1657249A (en) Capacitance transformer
US3529273A (en) Wound resistor
US4590536A (en) Resistive-capacitive igniter and cable
US3212044A (en) Spark plug boot having high frequency electrical discharge suppression means therein
US2467531A (en) Ignition system and spark plug
US2467534A (en) Ignition unit
US2459856A (en) Transformer spark plug
US2296054A (en) Shield for spark plugs
US1982950A (en) Spark intensifying device
US2621252A (en) Interference-suppression network
US2323628A (en) Art of mounting electron discharge devices
JP4590699B2 (en) Ignition coil device
US3219864A (en) Spark plug connection
US2189913A (en) Ignition system
US2575140A (en) Ignition device and parts thereof
US2503406A (en) Ignition harness assembly
US2520705A (en) Shielded ignition cable