US3502677A - Nitrogen-containing and phosphorus-containing succinic derivatives - Google Patents
Nitrogen-containing and phosphorus-containing succinic derivatives Download PDFInfo
- Publication number
- US3502677A US3502677A US288481A US3502677DA US3502677A US 3502677 A US3502677 A US 3502677A US 288481 A US288481 A US 288481A US 3502677D A US3502677D A US 3502677DA US 3502677 A US3502677 A US 3502677A
- Authority
- US
- United States
- Prior art keywords
- acid
- phosphorus
- mole
- grams
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052698 phosphorus Inorganic materials 0.000 title claims description 129
- 239000011574 phosphorus Substances 0.000 title claims description 126
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims description 123
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 title description 14
- -1 AMINO GROUPS Chemical group 0.000 claims description 138
- 239000002253 acid Substances 0.000 claims description 138
- 239000000203 mixture Substances 0.000 claims description 136
- 229920000768 polyamine Polymers 0.000 claims description 129
- 238000006243 chemical reaction Methods 0.000 claims description 84
- 238000000034 method Methods 0.000 claims description 57
- 150000001875 compounds Chemical class 0.000 claims description 38
- 150000008064 anhydrides Chemical class 0.000 claims description 25
- 150000002430 hydrocarbons Chemical class 0.000 claims description 23
- 150000007513 acids Chemical class 0.000 claims description 20
- 229930195733 hydrocarbon Natural products 0.000 claims description 20
- 239000004215 Carbon black (E152) Substances 0.000 claims description 19
- 150000004820 halides Chemical class 0.000 claims description 19
- 238000000354 decomposition reaction Methods 0.000 claims description 8
- 150000003016 phosphoric acids Chemical class 0.000 claims description 7
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical class [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims description 3
- 241001502050 Acis Species 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 238000000627 alternating current impedance spectroscopy Methods 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 146
- 239000000047 product Substances 0.000 description 125
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 88
- 150000002148 esters Chemical class 0.000 description 84
- 229910052757 nitrogen Inorganic materials 0.000 description 73
- 239000002480 mineral oil Substances 0.000 description 59
- 235000010446 mineral oil Nutrition 0.000 description 58
- 239000000376 reactant Substances 0.000 description 52
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical class OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 52
- 235000011007 phosphoric acid Nutrition 0.000 description 51
- 239000003921 oil Substances 0.000 description 48
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 45
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 41
- 229940014800 succinic anhydride Drugs 0.000 description 41
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 39
- 229910052717 sulfur Inorganic materials 0.000 description 33
- 239000000314 lubricant Substances 0.000 description 31
- 239000011593 sulfur Substances 0.000 description 31
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 30
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical compound OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 29
- 239000010688 mineral lubricating oil Substances 0.000 description 29
- 235000011044 succinic acid Nutrition 0.000 description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 28
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 27
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 26
- 239000001384 succinic acid Substances 0.000 description 26
- 229920002367 Polyisobutene Polymers 0.000 description 25
- 150000001412 amines Chemical class 0.000 description 25
- 239000000706 filtrate Substances 0.000 description 25
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 21
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 21
- 239000000654 additive Substances 0.000 description 21
- 239000003795 chemical substances by application Substances 0.000 description 21
- 230000001050 lubricating effect Effects 0.000 description 21
- 150000003839 salts Chemical class 0.000 description 21
- 125000003277 amino group Chemical group 0.000 description 20
- 239000003599 detergent Substances 0.000 description 20
- YWEUIGNSBFLMFL-UHFFFAOYSA-N diphosphonate Chemical compound O=P(=O)OP(=O)=O YWEUIGNSBFLMFL-UHFFFAOYSA-N 0.000 description 17
- DLYUQMMRRRQYAE-UHFFFAOYSA-N phosphorus pentoxide Inorganic materials O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 17
- 239000005977 Ethylene Substances 0.000 description 16
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical compound NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 229920000098 polyolefin Polymers 0.000 description 16
- 125000001424 substituent group Chemical group 0.000 description 16
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 14
- 239000010802 sludge Substances 0.000 description 13
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 12
- 150000001336 alkenes Chemical class 0.000 description 12
- 125000004432 carbon atom Chemical group C* 0.000 description 12
- 150000001408 amides Chemical class 0.000 description 11
- 150000003017 phosphorus Chemical class 0.000 description 11
- 150000003254 radicals Chemical class 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 10
- 125000002947 alkylene group Chemical group 0.000 description 10
- 229910052788 barium Inorganic materials 0.000 description 10
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 10
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 10
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 10
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 239000011541 reaction mixture Substances 0.000 description 9
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 9
- HFVMEOPYDLEHBR-UHFFFAOYSA-N (2-fluorophenyl)-phenylmethanol Chemical class C=1C=CC=C(F)C=1C(O)C1=CC=CC=C1 HFVMEOPYDLEHBR-UHFFFAOYSA-N 0.000 description 8
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical compound OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 8
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 8
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 8
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 8
- 239000000460 chlorine Substances 0.000 description 7
- 150000002924 oxiranes Chemical class 0.000 description 7
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 7
- ITRFOBBKTCNNFN-UHFFFAOYSA-N tris(sulfanyl)-sulfanylidene-$l^{5}-phosphane Chemical compound SP(S)(S)=S ITRFOBBKTCNNFN-UHFFFAOYSA-N 0.000 description 7
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 6
- 239000002518 antifoaming agent Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 229930003836 cresol Natural products 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical class OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical class CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 6
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical group O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 6
- 229960002317 succinimide Drugs 0.000 description 6
- 150000003751 zinc Chemical class 0.000 description 6
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 5
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 5
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 5
- 150000001447 alkali salts Chemical class 0.000 description 5
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 5
- 229910001863 barium hydroxide Inorganic materials 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 5
- 125000005328 phosphinyl group Chemical group [PH2](=O)* 0.000 description 5
- RWQFRHVDPXXRQN-UHFFFAOYSA-N phosphorus sesquisulfide Chemical compound P12SP3SP1P2S3 RWQFRHVDPXXRQN-UHFFFAOYSA-N 0.000 description 5
- 229960001124 trientine Drugs 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- UAHZTKVCYHJBJQ-UHFFFAOYSA-N [P].S=O Chemical compound [P].S=O UAHZTKVCYHJBJQ-UHFFFAOYSA-N 0.000 description 4
- CETAGCPEESRQJY-UHFFFAOYSA-M [Zn+].CCCCCCCCOP([S-])(=S)OCCCCCCCC Chemical compound [Zn+].CCCCCCCCOP([S-])(=S)OCCCCCCCC CETAGCPEESRQJY-UHFFFAOYSA-M 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 159000000009 barium salts Chemical class 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 239000004305 biphenyl Substances 0.000 description 4
- SNCZNSNPXMPCGN-UHFFFAOYSA-N butanediamide Chemical group NC(=O)CCC(N)=O SNCZNSNPXMPCGN-UHFFFAOYSA-N 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 150000004985 diamines Chemical class 0.000 description 4
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 4
- 150000003949 imides Chemical class 0.000 description 4
- 239000013067 intermediate product Substances 0.000 description 4
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 4
- 239000010687 lubricating oil Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 150000002989 phenols Chemical class 0.000 description 4
- 125000005499 phosphonyl group Chemical group 0.000 description 4
- 150000004885 piperazines Chemical class 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 4
- 229920001897 terpolymer Polymers 0.000 description 4
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 4
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 241000158728 Meliaceae Species 0.000 description 3
- PHSPJQZRQAJPPF-UHFFFAOYSA-N N-alpha-Methylhistamine Chemical compound CNCCC1=CN=CN1 PHSPJQZRQAJPPF-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- WIKSRXFQIZQFEH-UHFFFAOYSA-N [Cu].[Pb] Chemical group [Cu].[Pb] WIKSRXFQIZQFEH-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 235000010290 biphenyl Nutrition 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- CLUOCCWZZAGLPM-UHFFFAOYSA-N diphenyl-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound C=1C=CC=CC=1P(=S)(S)C1=CC=CC=C1 CLUOCCWZZAGLPM-UHFFFAOYSA-N 0.000 description 3
- BEQVQKJCLJBTKZ-UHFFFAOYSA-N diphenylphosphinic acid Chemical compound C=1C=CC=CC=1P(=O)(O)C1=CC=CC=C1 BEQVQKJCLJBTKZ-UHFFFAOYSA-N 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical class NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 3
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 150000004702 methyl esters Chemical class 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 3
- XRBCRPZXSCBRTK-UHFFFAOYSA-N phosphonous acid Chemical class OPO XRBCRPZXSCBRTK-UHFFFAOYSA-N 0.000 description 3
- 125000004437 phosphorous atom Chemical group 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000004434 sulfur atom Chemical group 0.000 description 3
- 230000000153 supplemental effect Effects 0.000 description 3
- WQYSXVGEZYESBR-UHFFFAOYSA-N thiophosphoryl chloride Chemical compound ClP(Cl)(Cl)=S WQYSXVGEZYESBR-UHFFFAOYSA-N 0.000 description 3
- 150000005691 triesters Chemical class 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical group C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 2
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 2
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- UWNADWZGEHDQAB-UHFFFAOYSA-N 2,5-dimethylhexane Chemical group CC(C)CCC(C)C UWNADWZGEHDQAB-UHFFFAOYSA-N 0.000 description 2
- WHNBDXQTMPYBAT-UHFFFAOYSA-N 2-butyloxirane Chemical compound CCCCC1CO1 WHNBDXQTMPYBAT-UHFFFAOYSA-N 0.000 description 2
- FIWYWGLEPWBBQU-UHFFFAOYSA-N 2-heptylphenol Chemical compound CCCCCCCC1=CC=CC=C1O FIWYWGLEPWBBQU-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- 239000004129 EU approved improving agent Substances 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000001409 amidines Chemical class 0.000 description 2
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000010533 azeotropic distillation Methods 0.000 description 2
- 125000002511 behenyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- GEAZMUUOWXIYES-UHFFFAOYSA-N bis(2-heptylphenyl)phosphinous acid Chemical compound CCCCCCCC1=CC=CC=C1P(O)C1=CC=CC=C1CCCCCCC GEAZMUUOWXIYES-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical compound CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 2
- 239000007859 condensation product Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N cycloheptane Chemical group C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 2
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 230000000881 depressing effect Effects 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 125000004188 dichlorophenyl group Chemical group 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- HTDKEJXHILZNPP-UHFFFAOYSA-N dioctyl hydrogen phosphate Chemical compound CCCCCCCCOP(O)(=O)OCCCCCCCC HTDKEJXHILZNPP-UHFFFAOYSA-N 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 125000004494 ethyl ester group Chemical group 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 150000002194 fatty esters Chemical class 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- VDTIMXCBOXBHER-UHFFFAOYSA-N hydroxy-bis(sulfanyl)-sulfanylidene-$l^{5}-phosphane Chemical compound OP(S)(S)=S VDTIMXCBOXBHER-UHFFFAOYSA-N 0.000 description 2
- 239000012442 inert solvent Substances 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- CAAULPUQFIIOTL-UHFFFAOYSA-M methyl hydrogen phosphate Chemical compound COP(O)([O-])=O CAAULPUQFIIOTL-UHFFFAOYSA-M 0.000 description 2
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N methylene hexane Natural products CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 150000005673 monoalkenes Chemical class 0.000 description 2
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 125000006501 nitrophenyl group Chemical group 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- CGNKSELPNJJTSM-UHFFFAOYSA-N phenylphosphonous acid Chemical compound OP(O)C1=CC=CC=C1 CGNKSELPNJJTSM-UHFFFAOYSA-N 0.000 description 2
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 2
- 150000003009 phosphonic acids Chemical class 0.000 description 2
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 2
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 150000003444 succinic acids Chemical class 0.000 description 2
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 2
- 125000001302 tertiary amino group Chemical group 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical class [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- GRWFGVWFFZKLTI-UHFFFAOYSA-N α-pinene Chemical compound CC1=CCC2C(C)(C)C1C2 GRWFGVWFFZKLTI-UHFFFAOYSA-N 0.000 description 2
- XJRIDJAGAYGJCK-UHFFFAOYSA-N (1-acetyl-5-bromoindol-3-yl) acetate Chemical compound C1=C(Br)C=C2C(OC(=O)C)=CN(C(C)=O)C2=C1 XJRIDJAGAYGJCK-UHFFFAOYSA-N 0.000 description 1
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 description 1
- PWGJDPKCLMLPJW-UHFFFAOYSA-N 1,8-diaminooctane Chemical compound NCCCCCCCCN PWGJDPKCLMLPJW-UHFFFAOYSA-N 0.000 description 1
- KZEVSDGEBAJOTK-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[5-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CC=1OC(=NN=1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O KZEVSDGEBAJOTK-UHFFFAOYSA-N 0.000 description 1
- FOYNJLJYIULEBV-UHFFFAOYSA-N 1-(3-heptylimidazolidin-1-yl)propan-2-amine Chemical compound C(CCCCCC)N1CN(CC1)CC(C)N FOYNJLJYIULEBV-UHFFFAOYSA-N 0.000 description 1
- PTYXPKUPXPWHSH-UHFFFAOYSA-N 1-(butyltetrasulfanyl)butane Chemical compound CCCCSSSSCCCC PTYXPKUPXPWHSH-UHFFFAOYSA-N 0.000 description 1
- RMSGQZDGSZOJMU-UHFFFAOYSA-N 1-butyl-2-phenylbenzene Chemical group CCCCC1=CC=CC=C1C1=CC=CC=C1 RMSGQZDGSZOJMU-UHFFFAOYSA-N 0.000 description 1
- ANFXTILBDGTSEG-UHFFFAOYSA-N 1-methyl-4,5-dihydroimidazole Chemical compound CN1CCN=C1 ANFXTILBDGTSEG-UHFFFAOYSA-N 0.000 description 1
- XWHKJSDRWVTJCH-UHFFFAOYSA-N 1-n,4-n-dibutylbenzene-1,4-diamine Chemical class CCCCNC1=CC=C(NCCCC)C=C1 XWHKJSDRWVTJCH-UHFFFAOYSA-N 0.000 description 1
- NJEGACMQQWBZTP-UHFFFAOYSA-N 1-piperazin-1-ylpropan-2-amine Chemical compound CC(N)CN1CCNCC1 NJEGACMQQWBZTP-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- GRWFGVWFFZKLTI-IUCAKERBSA-N 1S,5S-(-)-alpha-Pinene Natural products CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- OZYRJSLDVFWANY-UHFFFAOYSA-N 2-(3-dodecylphenyl)oxirane Chemical compound CCCCCCCCCCCCC1=CC=CC(C2OC2)=C1 OZYRJSLDVFWANY-UHFFFAOYSA-N 0.000 description 1
- IBWLXNDOMYKTAD-UHFFFAOYSA-N 2-(4-chlorophenyl)oxirane Chemical compound C1=CC(Cl)=CC=C1C1OC1 IBWLXNDOMYKTAD-UHFFFAOYSA-N 0.000 description 1
- QHVBLSNVXDSMEB-UHFFFAOYSA-N 2-(diethylamino)ethyl prop-2-enoate Chemical compound CCN(CC)CCOC(=O)C=C QHVBLSNVXDSMEB-UHFFFAOYSA-N 0.000 description 1
- WQPNKIPGEAGJNG-UHFFFAOYSA-N 2-[(2-carboxyphenyl)-hydroxyphosphoryl]benzoic acid Chemical compound OC(=O)C1=CC=CC=C1P(O)(=O)C1=CC=CC=C1C(O)=O WQPNKIPGEAGJNG-UHFFFAOYSA-N 0.000 description 1
- UUWNVZDCQGUMGB-UHFFFAOYSA-N 2-[3-(2-aminoethyl)imidazolidin-1-yl]ethanamine Chemical compound NCCN1CCN(CCN)C1 UUWNVZDCQGUMGB-UHFFFAOYSA-N 0.000 description 1
- PAOXFRSJRCGJLV-UHFFFAOYSA-N 2-[4-(2-aminoethyl)piperazin-1-yl]ethanamine Chemical compound NCCN1CCN(CCN)CC1 PAOXFRSJRCGJLV-UHFFFAOYSA-N 0.000 description 1
- XXZCIYUJYUESMD-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-(morpholin-4-ylmethyl)pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)CN1CCOCC1 XXZCIYUJYUESMD-UHFFFAOYSA-N 0.000 description 1
- JVKRKMWZYMKVTQ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C=NN(C=1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JVKRKMWZYMKVTQ-UHFFFAOYSA-N 0.000 description 1
- 125000004182 2-chlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(*)C([H])=C1[H] 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- AMGIIMBFJUUVJQ-UHFFFAOYSA-N 2-methyl-2-naphthalen-2-yloxetane Chemical compound C=1C=C2C=CC=CC2=CC=1C1(C)CCO1 AMGIIMBFJUUVJQ-UHFFFAOYSA-N 0.000 description 1
- MRXPNWXSFCODDY-UHFFFAOYSA-N 2-methyl-2-phenyloxirane Chemical compound C=1C=CC=CC=1C1(C)CO1 MRXPNWXSFCODDY-UHFFFAOYSA-N 0.000 description 1
- RCBGGJURENJHKV-UHFFFAOYSA-N 2-methylhept-1-ene Chemical compound CCCCCC(C)=C RCBGGJURENJHKV-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- ZAXCZCOUDLENMH-UHFFFAOYSA-N 3,3,3-tetramine Chemical compound NCCCNCCCNCCCN ZAXCZCOUDLENMH-UHFFFAOYSA-N 0.000 description 1
- TXBZITDWMURSEF-UHFFFAOYSA-N 3,3-dimethylpent-1-ene Chemical compound CCC(C)(C)C=C TXBZITDWMURSEF-UHFFFAOYSA-N 0.000 description 1
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- KOGSPLLRMRSADR-UHFFFAOYSA-N 4-(2-aminopropan-2-yl)-1-methylcyclohexan-1-amine Chemical compound CC(C)(N)C1CCC(C)(N)CC1 KOGSPLLRMRSADR-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- 125000004800 4-bromophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Br 0.000 description 1
- WVYWICLMDOOCFB-UHFFFAOYSA-N 4-methyl-2-pentanol Chemical compound CC(C)CC(C)O WVYWICLMDOOCFB-UHFFFAOYSA-N 0.000 description 1
- 125000004920 4-methyl-2-pentyl group Chemical group CC(CC(C)*)C 0.000 description 1
- CYYZDBDROVLTJU-UHFFFAOYSA-N 4-n-Butylphenol Chemical compound CCCCC1=CC=C(O)C=C1 CYYZDBDROVLTJU-UHFFFAOYSA-N 0.000 description 1
- FZXZNIDUTACSLM-UHFFFAOYSA-N 4-nonylbenzenethiol Chemical compound CCCCCCCCCC1=CC=C(S)C=C1 FZXZNIDUTACSLM-UHFFFAOYSA-N 0.000 description 1
- WTFUTSCZYYCBAY-SXBRIOAWSA-N 6-[(E)-C-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-N-hydroxycarbonimidoyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C/C(=N/O)/C1=CC2=C(NC(O2)=O)C=C1 WTFUTSCZYYCBAY-SXBRIOAWSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- HKKMQJBMGBURAB-UHFFFAOYSA-M C(C(C)C)C1=C(C=CC=C1)OP(OC1=C(C=CC=C1)CC(C)C)(=S)[S-].[Zn+] Chemical compound C(C(C)C)C1=C(C=CC=C1)OP(OC1=C(C=CC=C1)CC(C)C)(=S)[S-].[Zn+] HKKMQJBMGBURAB-UHFFFAOYSA-M 0.000 description 1
- XSRHZBURGWEGHH-UHFFFAOYSA-M C(CCCCCCCC)OP(OCCCCCCCCC)(=S)[S-].[Zn+] Chemical compound C(CCCCCCCC)OP(OCCCCCCCCC)(=S)[S-].[Zn+] XSRHZBURGWEGHH-UHFFFAOYSA-M 0.000 description 1
- AZHVHQBLKBATAX-UHFFFAOYSA-M C1(CCCCC1)OP(OC1CCCCC1)(=S)[S-].[Zn+] Chemical compound C1(CCCCC1)OP(OC1CCCCC1)(=S)[S-].[Zn+] AZHVHQBLKBATAX-UHFFFAOYSA-M 0.000 description 1
- VVYHQBHOFCSIRB-UHFFFAOYSA-N C1CCCCC1S(C1CCCCC1)=P(S)(O)OCCC1=CC=CC=C1 Chemical compound C1CCCCC1S(C1CCCCC1)=P(S)(O)OCCC1=CC=CC=C1 VVYHQBHOFCSIRB-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- KKUKTXOBAWVSHC-UHFFFAOYSA-N Dimethylphosphate Chemical compound COP(O)(=O)OC KKUKTXOBAWVSHC-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- GXBYFVGCMPJVJX-UHFFFAOYSA-N Epoxybutene Chemical compound C=CC1CO1 GXBYFVGCMPJVJX-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- VHOQXEIFYTTXJU-UHFFFAOYSA-N Isobutylene-isoprene copolymer Chemical compound CC(C)=C.CC(=C)C=C VHOQXEIFYTTXJU-UHFFFAOYSA-N 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930045534 Me ester-Cyclohexaneundecanoic acid Natural products 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical group CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- KEQFTVQCIQJIQW-UHFFFAOYSA-N N-Phenyl-2-naphthylamine Chemical compound C=1C=C2C=CC=CC2=CC=1NC1=CC=CC=C1 KEQFTVQCIQJIQW-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- QLZHNIAADXEJJP-UHFFFAOYSA-N Phenylphosphonic acid Chemical compound OP(O)(=O)C1=CC=CC=C1 QLZHNIAADXEJJP-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- 241000779819 Syncarpia glomulifera Species 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- YUWBVKYVJWNVLE-UHFFFAOYSA-N [N].[P] Chemical group [N].[P] YUWBVKYVJWNVLE-UHFFFAOYSA-N 0.000 description 1
- QPQGTZMAQRXCJW-UHFFFAOYSA-N [chloro(phenyl)phosphoryl]benzene Chemical compound C=1C=CC=CC=1P(=O)(Cl)C1=CC=CC=C1 QPQGTZMAQRXCJW-UHFFFAOYSA-N 0.000 description 1
- LFSIFLOTUNKQED-UHFFFAOYSA-N [hydroxy(sulfino)phosphoryl]oxyethane Chemical compound C(C)OP(=O)(O)S(=O)O LFSIFLOTUNKQED-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- MVNCAPSFBDBCGF-UHFFFAOYSA-N alpha-pinene Natural products CC1=CCC23C1CC2C3(C)C MVNCAPSFBDBCGF-UHFFFAOYSA-N 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical group NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical class NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- ZRIUUUJAJJNDSS-UHFFFAOYSA-N ammonium phosphates Chemical compound [NH4+].[NH4+].[NH4+].[O-]P([O-])([O-])=O ZRIUUUJAJJNDSS-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000013556 antirust agent Substances 0.000 description 1
- XKPXIMKPDMUIDN-UHFFFAOYSA-L barium(2+);2,3-didodecylbenzenesulfonate Chemical compound [Ba+2].CCCCCCCCCCCCC1=CC=CC(S([O-])(=O)=O)=C1CCCCCCCCCCCC.CCCCCCCCCCCCC1=CC=CC(S([O-])(=O)=O)=C1CCCCCCCCCCCC XKPXIMKPDMUIDN-UHFFFAOYSA-L 0.000 description 1
- 239000002199 base oil Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- ASGQZCTXGZUDPZ-UHFFFAOYSA-N bis(10-chlorodecyl)phosphinic acid Chemical compound ClCCCCCCCCCCP(=O)(O)CCCCCCCCCCCl ASGQZCTXGZUDPZ-UHFFFAOYSA-N 0.000 description 1
- SYFIMIPHNTZHIN-UHFFFAOYSA-N bis(2-methylpropoxy)-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CC(C)COP(S)(=S)OCC(C)C SYFIMIPHNTZHIN-UHFFFAOYSA-N 0.000 description 1
- OTBHHUPVCYLGQO-UHFFFAOYSA-N bis(3-aminopropyl)amine Chemical compound NCCCNCCCN OTBHHUPVCYLGQO-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- VAEYYBHMZVCMFO-UHFFFAOYSA-N bromo-diphenyl-sulfanylidene-$l^{5}-phosphane Chemical compound C=1C=CC=CC=1P(=S)(Br)C1=CC=CC=C1 VAEYYBHMZVCMFO-UHFFFAOYSA-N 0.000 description 1
- FEXXLIKDYGCVGJ-UHFFFAOYSA-N butyl 8-(3-octyloxiran-2-yl)octanoate Chemical compound CCCCCCCCC1OC1CCCCCCCC(=O)OCCCC FEXXLIKDYGCVGJ-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 125000004803 chlorobenzyl group Chemical group 0.000 description 1
- XGRJZXREYAXTGV-UHFFFAOYSA-N chlorodiphenylphosphine Chemical compound C=1C=CC=CC=1P(Cl)C1=CC=CC=C1 XGRJZXREYAXTGV-UHFFFAOYSA-N 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 125000000068 chlorophenyl group Chemical group 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- GCFAUZGWPDYAJN-UHFFFAOYSA-N cyclohexyl 3-phenylprop-2-enoate Chemical compound C=1C=CC=CC=1C=CC(=O)OC1CCCCC1 GCFAUZGWPDYAJN-UHFFFAOYSA-N 0.000 description 1
- FBSFTJQYCLLGKH-UHFFFAOYSA-N cyclohexylphosphonic acid Chemical compound OP(O)(=O)C1CCCCC1 FBSFTJQYCLLGKH-UHFFFAOYSA-N 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- YQLZOAVZWJBZSY-UHFFFAOYSA-N decane-1,10-diamine Chemical compound NCCCCCCCCCCN YQLZOAVZWJBZSY-UHFFFAOYSA-N 0.000 description 1
- GTBGXKPAKVYEKJ-UHFFFAOYSA-N decyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C(C)=C GTBGXKPAKVYEKJ-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- XFAYHOVTJNPDJW-UHFFFAOYSA-N di(nonoxy)-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCCCCOP(S)(=S)OCCCCCCCCC XFAYHOVTJNPDJW-UHFFFAOYSA-N 0.000 description 1
- SZXCCXFNQHQRGF-UHFFFAOYSA-N di(propan-2-yloxy)-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CC(C)OP(S)(=S)OC(C)C SZXCCXFNQHQRGF-UHFFFAOYSA-N 0.000 description 1
- IBDMRHDXAQZJAP-UHFFFAOYSA-N dichlorophosphorylbenzene Chemical compound ClP(Cl)(=O)C1=CC=CC=C1 IBDMRHDXAQZJAP-UHFFFAOYSA-N 0.000 description 1
- YQHVEGTZGGQQMV-UHFFFAOYSA-N dicyclohexyl hydrogen phosphate Chemical compound C1CCCCC1OP(=O)(O)OC1CCCCC1 YQHVEGTZGGQQMV-UHFFFAOYSA-N 0.000 description 1
- AUOSUXJDDXGLDC-UHFFFAOYSA-N dicyclohexyl-hydroxy-sulfanylidene-$l^{5}-phosphane Chemical compound C1CCCCC1P(=S)(O)C1CCCCC1 AUOSUXJDDXGLDC-UHFFFAOYSA-N 0.000 description 1
- TYWAKIKWTGMYJY-UHFFFAOYSA-N dicyclohexyl-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound C1CCCCC1P(=S)(S)C1CCCCC1 TYWAKIKWTGMYJY-UHFFFAOYSA-N 0.000 description 1
- IWHTZOQGVGHYQT-UHFFFAOYSA-N dicyclohexyloxy-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound C1CCCCC1OP(=S)(S)OC1CCCCC1 IWHTZOQGVGHYQT-UHFFFAOYSA-N 0.000 description 1
- GQCQJECYDYZWHI-UHFFFAOYSA-N didecoxy-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCCCCCOP(S)(=S)OCCCCCCCCCC GQCQJECYDYZWHI-UHFFFAOYSA-N 0.000 description 1
- GHKVUVOPHDYRJC-UHFFFAOYSA-N didodecyl hexanedioate Chemical compound CCCCCCCCCCCCOC(=O)CCCCC(=O)OCCCCCCCCCCCC GHKVUVOPHDYRJC-UHFFFAOYSA-N 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- GLUUGHFHXGJENI-UHFFFAOYSA-N diethylenediamine Natural products C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 1
- KXKYPMWKQXTEEX-UHFFFAOYSA-N diheptoxy-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCCOP(S)(=S)OCCCCCCC KXKYPMWKQXTEEX-UHFFFAOYSA-N 0.000 description 1
- XGVCGGYVDCBIQH-UHFFFAOYSA-N diheptylphosphinic acid Chemical compound CCCCCCCP(O)(=O)CCCCCCC XGVCGGYVDCBIQH-UHFFFAOYSA-N 0.000 description 1
- VFXJDWTUUZBKKT-UHFFFAOYSA-N dihexoxy-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCCCOP(S)(=S)OCCCCCC VFXJDWTUUZBKKT-UHFFFAOYSA-N 0.000 description 1
- NAKDJXIEBCHXIZ-UHFFFAOYSA-N dihydroxy-phenyl-sulfanylidene-$l^{5}-phosphane Chemical compound OP(O)(=S)C1=CC=CC=C1 NAKDJXIEBCHXIZ-UHFFFAOYSA-N 0.000 description 1
- VONWDASPFIQPDY-UHFFFAOYSA-N dimethyl methylphosphonate Chemical compound COP(C)(=O)OC VONWDASPFIQPDY-UHFFFAOYSA-N 0.000 description 1
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 1
- FRXGWNKDEMTFPL-UHFFFAOYSA-N dioctadecyl hydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCCCOP(O)(=O)OCCCCCCCCCCCCCCCCCC FRXGWNKDEMTFPL-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 150000004659 dithiocarbamates Chemical class 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000012433 hydrogen halide Substances 0.000 description 1
- 229910000039 hydrogen halide Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WSFJFIDCQBAQQZ-UHFFFAOYSA-N hydroxy(sulfido)phosphanium Chemical class S[PH2]=O WSFJFIDCQBAQQZ-UHFFFAOYSA-N 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- 229960004592 isopropanol Drugs 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000003879 lubricant additive Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 235000010746 mayonnaise Nutrition 0.000 description 1
- 239000008268 mayonnaise Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical group NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- XPOXIRBXYPGDNE-UHFFFAOYSA-N methanediamine Chemical compound N[CH]N XPOXIRBXYPGDNE-UHFFFAOYSA-N 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- RWIVICVCHVMHMU-UHFFFAOYSA-N n-aminoethylmorpholine Chemical group NCCN1CCOCC1 RWIVICVCHVMHMU-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- IRUCBBFNLDIMIK-UHFFFAOYSA-N oct-4-ene Chemical compound CCCC=CCCC IRUCBBFNLDIMIK-UHFFFAOYSA-N 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- CMPQUABWPXYYSH-UHFFFAOYSA-N phenyl phosphate Chemical compound OP(O)(=O)OC1=CC=CC=C1 CMPQUABWPXYYSH-UHFFFAOYSA-N 0.000 description 1
- LIZZZTMUFLGGSZ-UHFFFAOYSA-N phenyl-bis(sulfanyl)-sulfanylidene-$l^{5}-phosphane Chemical compound SP(S)(=S)C1=CC=CC=C1 LIZZZTMUFLGGSZ-UHFFFAOYSA-N 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- RYIOLWQRQXDECZ-UHFFFAOYSA-N phosphinous acid Chemical class PO RYIOLWQRQXDECZ-UHFFFAOYSA-N 0.000 description 1
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 1
- 239000001739 pinus spp. Substances 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- DCKVNWZUADLDEH-UHFFFAOYSA-N sec-butyl acetate Chemical compound CCC(C)OC(C)=O DCKVNWZUADLDEH-UHFFFAOYSA-N 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008347 soybean phospholipid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- IGMNNGMXLPTFPE-UHFFFAOYSA-N sulfanyl(sulfido)phosphanium Chemical group S[PH2]=S IGMNNGMXLPTFPE-UHFFFAOYSA-N 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 150000003582 thiophosphoric acids Chemical class 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- RQIITWKDTBNDJW-UHFFFAOYSA-N trichloro(diphenyl)-$l^{5}-phosphane Chemical compound C=1C=CC=CC=1P(Cl)(Cl)(Cl)C1=CC=CC=C1 RQIITWKDTBNDJW-UHFFFAOYSA-N 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- FEVFLQDDNUQKRY-UHFFFAOYSA-N tris(4-methylphenyl) phosphite Chemical compound C1=CC(C)=CC=C1OP(OC=1C=CC(C)=CC=1)OC1=CC=C(C)C=C1 FEVFLQDDNUQKRY-UHFFFAOYSA-N 0.000 description 1
- 239000002383 tung oil Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229940036248 turpentine Drugs 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000012991 xanthate Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M137/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/22—Amides of acids of phosphorus
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/40—Introducing phosphorus atoms or phosphorus-containing groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/26—Organic compounds containing phosphorus
- C10L1/2691—Compounds of uncertain formula; reaction of organic compounds (hydrocarbons acids, esters) with Px Sy, Px Sy Halz or sulfur and phosphorus containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
- C10M133/56—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/102—Aliphatic fractions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/026—Butene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/024—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings having at least two phenol groups but no condensed ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/027—Neutral salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/028—Overbased salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/129—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/16—Naphthenic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/282—Esters of (cyclo)aliphatic oolycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/34—Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
- C10M2207/404—Fatty vegetable or animal oils obtained from genetically modified species
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/084—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/08—Halogenated waxes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/08—Amides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/08—Amides
- C10M2215/082—Amides containing hydroxyl groups; Alkoxylated derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/086—Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/221—Six-membered rings containing nitrogen and carbon only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/223—Five-membered rings containing nitrogen and carbon only
- C10M2215/224—Imidazoles
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/225—Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/225—Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
- C10M2215/226—Morpholines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/26—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/30—Heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/02—Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/022—Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/046—Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/06—Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/022—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/024—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/044—Sulfonic acids, Derivatives thereof, e.g. neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/046—Overbasedsulfonic acid salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/066—Thiocarbamic type compounds
- C10M2219/068—Thiocarbamate metal salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
- C10M2219/088—Neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
- C10M2219/089—Overbased salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/041—Triaryl phosphates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/042—Metal salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/043—Ammonium or amine salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/047—Thioderivatives not containing metallic elements
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
- C10M2223/063—Ammonium or amine salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
- C10M2223/065—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/12—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2225/00—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2225/00—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2225/02—Macromolecular compounds from phosphorus-containg monomers, obtained by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2225/00—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2225/04—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2225/00—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2225/04—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
- C10M2225/041—Hydrocarbon polymers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2227/00—Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
- C10M2227/06—Organic compounds derived from inorganic acids or metal salts
- C10M2227/061—Esters derived from boron
- C10M2227/062—Cyclic esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/041—Siloxanes with specific structure containing aliphatic substituents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/02—Groups 1 or 11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/14—Group 7
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/08—Resistance to extreme temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/12—Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/08—Hydraulic fluids, e.g. brake-fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/12—Gas-turbines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/12—Gas-turbines
- C10N2040/13—Aircraft turbines
Definitions
- compositions which are adapted for use as additives in hydrocarbon oils.
- compositions which are effective as detergents in lubricating compositions are also an object of this invention to provide compositions which are effective as detergents in lubricating compositions.
- a process for preparing substituted polyamines comprising the reaction of 1 mole of an alkylene amine with at least about 0.25 mole of a substantially hydrocarbon-substituted succinic acid-producing compound having at least about 50 aliphatic carbon atoms in the substantially hydrocarbon substituent and at least about 0.001 mole of a phosphorus acid-producing compound selected from the class consisting of phosphoric acids, phosphorous acids, phosphonyl acids, phosphinyl acids, and the esters, the halides, and the anhydrides thereof.
- the polyamines from which the products of this invention are derived include principally alkylene amines conforming for the most part to the formula wherein n is an integer preferably less than about 10, A is a hydrogen radical or a substantially hydrocarbon preferably having up to about 30 carbon atoms, and the alkylene radical is preferably a lower alkylene radical having less than about 8 carbon atoms.
- the alkylene amines include principally methylene amines, ethylene amines, butylene amines, propylene amines, pentylene amines, hexylene amines, heptylene amines, octylene amines, other polymethylene amines, and also the cyclic and the higher homologues of such amines such as piperazines and amino-alkyl-substituted piperazines.
- ethylene diamine triethylene tetramine, propylene diamine, decamethylene diamine, octamethylene diamine, di(heptamethylene) triamine, tripropylene tetramine, tetraethylene pentamine, trimethylene diamine, pentaethylene hexamine, di(trimethylene)triamine, 2 heptyl- 3 (2 aminopropyl)imidazoline, 4 methyl imidazoline, 1,3 bis(2 aminoethyl)imidazoline, pyrimidine, 1- (2 aminopropyl)piperazine, 1,4 bis(2 aminoethyl)- piperazine, and 2 methyl 1 (2 aminobutyl)piperazine.
- Higher homologues such as are obtained by condensing two or more of the above-illustrated alkylene amines likewise are useful.
- the ethylene amines are especially useful. They are described in some detail under the heading Ethylene Amines in Encyclopedia of Chemical Technology, Kirk and Othmer, volume 5, pages 898-905, Interscience Publishers, New York (1950). Such compounds are prepared most conveniently by the reaction of an alkylene chloride with ammonia. The reaction results in the production of somewhat complex mixtures of alkylene amines, including cyclic condensation products such as piperazines. These mixtures find use in the process of this invention. On the other hand, quite satisfactory products may be obtained also by the use of pure alkylene amines.
- alkylene amine for reasons of economy as well as effectiveness of the products derived therefrom is a mixture of ethylene amines prepared by the reaction of ethylene chloride and ammonia and having a composition which corresponds to that of tetraethylene pentamine.
- HydroXyalkyl-substituted alkylene amines i.e., alkylene amines having one or more hydroxyalkyl substituents on Higher homplogues such as are obtained by condensation of the above illustfated alkylene amines or hydroxy alkyl-substituted alkylene amines through amino radicals or through hydroxy radicals are likewise useful. It will,
- condensation through amino radicals results in a higher amine accompanied with removal of ammonia arid that..condensation through the hydroxy radicals results in products containing ether linkages accompanied with removal of water.
- the substantially hydrocarbon-substituted succinic acidproducing compounds used in the above process include the succinic acids, anhydrides, halides, and esters.
- An important aspect of this invention is the size of the substantially hydrocarbon substituent on the succinic acid-producing compound.
- the substituted succinic acid-producing compounds having at least about 50 aliphatic carbon atoms in' the substantiallyhydrocarbon substituent are contemplated as being within the scope of this invention. This lower limit is based not onlyupon a consideration .of the oil-solubility of the substituted polyamines but also upcgn the effectiveness of such compounds in application contemplated by this invention.
- the substantially hydrocarbon substituent of the succinic compound may contain polar groups provided, however, that the polar groups are not present in proportions sufiiciently large to alter signifiiantly the hydrocarbon character of the substituent.
- the polar groups are exemplified by the chloro, bromo, keto, ether, aldehyde, nitro, etc.
- the upper limit with respect to the portion of such polar groups in the substituent is approximately 10% based on the weight of the hydrocarbon portion of the substituent.
- the sources of the substantially hydrocarbon substituent include principally the high molecular weight substantiallyi saturated petroleum fractions and substantially saturated olefin polymers, particularly polymers of monoolefins having from 2 to 'carbon atoms.
- the especially useful polymers are the polymers of l-mono-olefins such as ethylene, propene, l-biitene, isobutene, l-hexene, 1- octene, 2-methyl-l-heptene, 3-cyclohexyl-l-hutene, and 2- methyl-S-propyl-l-hexenefPolymers of medial olefins, i.e., olefins in which the olefinic linkage is not at the terminal position, likewise are useful. They are illustrated by 2- butene '3-penterfe, and 4-octene.
- interpolymers of the olefins such as those illustrated above with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins.
- Such interpolymers include, for example, those prepared by polymerizing isobutene with styrene; isobutene with butadiene; propene with isoprene; ethylene with piperylene; isobutene with chloroprene; isobutene witlr p-methyl styrene; l-hexene with 1 3-hexadiene; l-octene with l-hexene; l-heptene; with l-pentene; 3-methyll-hutene with l-octene; 3,3-dimethyl-1-pentene with ihexene; isobutene with styrene and piperylenef etc.
- the relative proportions :of the mono-olefins to the other monbmers in the interpolymers influence the stability andoil-solubjlity of the final products derived from such interpolymers.
- the interpolymers contemplated for use in this invention should be substantially aliphatic and substantially saturated, i.e., they should contain at least about 80%, preferably.;at least about 95%, on a Weight basis of units derived from the aliphatic monoolefins and no 4 more than about;5% of olefinic linkages based on the total number of carbon-to-carbon covalent linkages. In most instances, the percentage of oiefinic linkages should be less than about 2% of the total nu-mber of carbon-tocarbon covalent linkages.
- interpolymers include copolymer of 95% (by weight) of isobutene with 5% of styrene; terpolymer of 98% of isobutene with 1% of piperylene and 1% of chloroprene; terpolymer of 95% of isobutene with 2% of l-butene and 3% of l-hexehe; terpolymer of of isobutene with 20% of l-pentene and V 20% of l-octene; copolymer of 80% of l-hexene and 20% of l-heptene; terpolymer o-f of isobutene with 2% of cyclohexene and 8% of propene; and copolymer of 80% of ethylene and 20% of propene.
- Another source ofathe substantially hydrocarbon radical comprises saturated aliphatic hydrocarbons such as highly refined high molecular weight white oils or synthetic alkanes such as are obtained by hydrogenation of high molecular weight olefin polymers illustrated above or high molecular weight olefinic substances.
- olefin polymers having molecular weightof about 750-500 is preferred.
- Higher molecular weight olefin polymers having molecular weights from about 10,000 to about 100,000 or higher have been found to impart also viscosity index improving properties to the final products of this invention.
- the use of such higher molecular weight olefin polymers often is desirable.
- the succinic acid-producing compounds useful in the above process are preferably substantially hydrocarbonsubstituted succinic acid and anhydrides. These succinic compounds are readily. available from .the reaction of maleic anhydride with a high molecular weight olefin or a chlorinated hydrocarbon such as the olefin polymer de- I scribed hereinabove. The reaction involves merely heating the two reactants at temperature about 100-200 C.. Theproduct from such a reaction is an alkenylgsuccinic' anhydride. The alkenyl group may be hydrogenated to an alkyl group. :The anhydride may be hydrolyzed by treat.- ment with water or steam to the corresponding acid. Either the anhydridezor the acid may be converted to the corresponding acid halide or ester by reaction with, e.g., phosphorus halide, phenols, ;or alcohols.
- hydrocarbons containing an activating polar substituent i.e., a substituent which is capable of activating the hydrocarbon molecule in respect to reaction? with maleic acid or anhydride, may be used in the above-illustrated reactiongfor preparing the succinic compounds.
- polar "substituents may be illustrated by sulfide, disulfide, nitro,
- hydrocarbon at a temperatureiusually within the range from about 100 C. to about 200 C.
- the acid halides of the succinic acids can be prepared by the reaction of the acids or their anhydrides with a halogenation agent such as phosphorus tri-brornide, phosphorus pentachloride or thionyl chloride.
- the esters of such acids can be prepared simply by the reaction of the acids or their anhydrides with an alcohol or a phenolic compound such as methanol, ethanol, octadecanol, cyclohexanol, phenol, naphthol, octylphenol, etc.
- the ester'ification is usually promoted by the use of an alkaline catalyst such as sodium hydroxide or sodium alkoxide or an acidic catalyst such as sulfuric acid.
- the nature of the alcoholic or phenolic portion of the ester radical appears to haveilittle influence on the utility of such ester as reactant in the process described hereinabove.
- the phosphorus acid-producing reactants useful in the above process for forming the substituted polyamines of this invention may be phosphorus acids, anhydrides, esters, or halides.
- The. phosphorus acids as indicated previously, may be phosphoric acids, phosphorous acids, phosphinyl acids (including phosphinic acids and phosphinous acids), and phosphonyl acids (including phosphonic acids and phosphonous acids).
- the phosphorus acids include the Oxyphosphorus acids, the thiophosphorus acids, as well as the mixed oxythiophosphorus acids (i.e., those containing both oxygen and sulfur).
- a phosphoric acid is used in a generic sense to denote the class consisting of phosphoric acid (H PO phosphorotetrathioic acid (H PS phosphoromonothioic acid (H PO S), phosphorodithioic acid (H PO S and phosphorotrithioic acid (H POS)
- H PO S phosphoric acid
- H PO S phosphorodithioic acid
- H POS phosphorotrithioic acid
- a phosphorornonothioic acid in which the sulfur atom is attached only to the phosphorus atom is a phosphorothionic acid whereas its isomer in which the sulfur atom is attached to both the phosphorus atom and a hydrogen atom (i.e., -P(O)(SH)) is a phosphorothiolic acid.
- dialkylphosphoric acids i.e., dialkyl esters of phosphoric acids, include.
- dialkylphosphoric acid ((AlkyI--O) P(O)(OH)); dialkylphosphorotetrathioic acid ((AlkylS) P(S) (SH) O,S-dialkylphosphorodithionic acid O,S-dialkylphosphorodithiolic acid ((AlkylO) (AlkylS) P (0) (SH) O,S-dialkylphosphorotrithioic acid ((AlkylO) (Alky1-S)P (S) (SH) etc.
- diarylphosphinic acids include: diarylphosphinic acid ((Aryl P(O)(OH)); diarylphosphinodithioic acid (Aryl P(S)'(SH)); diarylphosphinothionic acid (Aryl P(S)(OH)); and diarylphosphinothiolic acid y 2
- organic phosphonyl and phosphinyl acids include: diphenylphosphinic acid, dinaphthylphosphinodithioic acid, diheptylphosphinic acid, di- (heptylphenyl)phosphinous acid, di(chlorodecyl)phosphinic acid, phenylphosphonic acid, phenylphosphonous acid, phenylphosphonomonothioic acid, the acid obtained by the reaction of alpha-pinene with phosphorus pentasulfide, the acid obtained by the reaction of polyisobutene having a molecular weight
- the phosphorus acids, anhydrides, esters, and halides likewise are useful for preparing the substituted polyamines.
- the anhydrides of inorganic phosphorus acids are especially desirable. They are illustarted by phosphorus pentoxide, phosphorus pentasulfide, phosphorus heptasulfide, phosphorus sesquisulfide, and phosphorus oxysulfide.
- the anhydrides of organic phosphorus acids are exemplified by the anhydrides of diphenylphosphinic acid, 0,0'-dioctylphosphorodithioic acid, dinaphthylphosphinodithioic acid, etc.
- the halides of the phosphorus acids include, for instance, phosphorus trichloride, phosphorus pentachloride, phosphorothioic trichloride, phosphorus tribromide, diphenylphosphinic chloride, di(chlorophenyl) phosphinoihioic chloride, 0,0'-diphenylphosphorothioic chloride, phenylphosphonic dichloride, diphenylphosphinous chloride, diphenylphosphorus trichloride, and diphenylphosphinothioic bromide.
- the esters of the phosphorus acids may be the completely esterified acids or partially esterified acids.
- the latter are also known as acidic esters, i.e., at least a portion of the acid is not esterified; they are illustrated by the monoor the di-esterified phosphoric or phosphorous acids and the mono-esterified phosphonic or phosphonous acids.
- the ester potion may be derived from a substantially hydrocarbon radical usually one having less than about 30 and preferably from about 1 to about 24 aliphatic carbon atoms.
- the substantially hydrocarbon radicals are exemplified by methyl, ethyl, chloromethyl, o-chlorophenyl, p-bromophenyl, alpha-chloronaphthyl, beta-heptylnaphthyl, o,p-din1ethoxyphenyl, tolyl, isobutyl, octadecyl, 4-chloro-2-heptadecyl, eicosyl, naphthyl, ben- -zyl, chlorobenzyl, 2-phenylethyl, cyclohexyl, cyclopentyl, 2-methylcyclohexyl, the hydrocarbon radical derived from polypropene having a molecular weight of 1,500, the hydrocarbon radical derived from polyisobutene having a molecular weight of 5000, behenyl, stearyl, oleyl, allyl, propargyl, o-hept
- esters are, for example, methyl ester of phosphoric acid, dimethyl ester of phosphoric acid, trirnethyl ester of phosphoric acid, methyl ester of phosphorothionic acid, O-methyl ester of phosphorothiolic acid, dicyclohexyl ester of phisphoric acid, 0,0-dicyclehexyl ester of phosphorodithioic acid, dicyclohexyl ester of phosphorotetrathioic acid, O-cyclohexyl-S-decyl ester of phosphoromonothioic acid, 0,0-diphenyl ester of phosphoromonothiolic acid, triphenyl ester of phosphoric acid, triphenyl ester of phosphorous acid, tritolyl ester of phosphoric acid, dioctadecyl ester of phosphorus acid, trinaphthyl ester of phosphorous acid, trinaphthyl ester of
- ester of phosphoric acid di(methyl(OC H ester of phosphoric acid, decyl octadecyl ester of phosphoric acid, di(4-keto-1-decyl) ester of phosphoric acid, methyl ester of diphenylphosphinic acid, ethyl ester of diphenylphosphinodithioic acid, cyclohexyl ester of dinaphthylphosphinomonothiolic acid, octyl ester of dicyclohexylphosphinomonothioic acid, dimethyl ester of methylphosphonic acid, dimethyl ester of ethylphosphonomono thionic acid, dodecyl ester of cyclohexylphosphonic acid, tertiary-butyl ester of di(heptylphenyl)phosphinous acid, diphenyl ester of phenylphosphonotrithioic acid, diphen
- the esters of phosphoric acid and phosphorothioic acids are obtained 'by the reaction of phenol or an alcohol with phosphoric acid or a phosphorothioic acid, or an anhydride of the acid such as phosphorus pentoxide, phosphorus pentasulfide, or phosphorus oxysulfide.
- the reaction is usually carried out simply by mixing the reactants at a temperature above about 50 C., preferably between about 80 C. and 150 C.
- the esters of phosphoric acids tend to decom pose at high temperatures. Thus it is often desirable to avoid prolonged exposure of the reaction mixture to temperatures above about 150 C.
- a solvent may be used in the reaction to facilitate mixing of the reactants and control of the reaction temperature.
- the solvent may be benzene, naphtha, chlorobenzene, mineral oil, kerosene, cyclohexane, or carbon tetrachloride,
- a solvent capable of forming a relatively low boiling azeotrope with water further aids the removal of Water in the esterification of an alcohol or phenol with the phosphorus acid reactant.
- the relative amounts of the alcohol or phenol reactant and the acid reactant influence the nature of the ester obtained. For instance, equimolar amounts of an alcohol and phosphoric acid tend to result in the formation of a monoester of phosphoric acid whereas the use of a molar excess of the alcohol reactant in the reaction mixture tends to increase the proportion of the diester or triester in the product. In most instances the product will be a mixture of the mono-, di-, and tri-esters of the acid and such a mixture is desirable for use in this invention for reasons of economy.
- the reaction of an alcohol or phenol with phosphorus pentasulfide ordinarily results in 0,0-diester of phosphorodithioic acid.
- Such a reaction involves four moles of the alcohol or phenol per mole of phosphorus pentasulfide and may be carried out within the temperature range from about 50 C. to about 250 C.
- the preparation of 0,0'-di-n-hexylphosphorodithioic acid involves the reaction of phosphorus pentasulfide with four moles of n-hexyl alcohol at about 100 C. for about 2 hours. Hydrogen sulfide is liberated and the residue is the defined acid.
- Treatment of the phosphorodithioic acid with water or steam removes one or both sulfur atoms and converts the product to the corresponding phosphoromonothioic acid or phosphoric acid.
- the esters of phosphorotetrathioic acid can be prepared by first the reaction of a mercaptan or thiophenol with PSCl or PSBr to produce an intermediate which is either a phosphorotrithioic halide or triester of phosphorotetrathioic acid and the subsequent reaction of the intermediate with hydrogen sulfide or sodium hydrosulfide.
- the esters of phosphorotrithioic acids are obtained by the treatment of the esters of the phosphorotetrathioic acids with water or steam.
- esters of phosphorous acids are obtained by the reaction of an alcohol or phenol with phosphorous acid or a phosphorus trihalide such as phosphorus tribromide or phosphorus trichloride and the above noted reaction usually requires carefully controlled conditions such as low temperature in order to give a substantial yield of the esters of phosphorous acids. Under other conditions the reaction of an alcohol or phenol with a phosphorus trihalide may result in a phosphonic acid or ester. Such esters are readily susceptible to rearrangement to phosphonic acids and esters.
- esters of phosphinic, phosphinous, phosphonic, and. phosphonous acids obtained by either direct esterification of the acid or an anhydride with an alcohol or phenol or the reaction of an acid halide with an alcohol or phenol. They are also obtained by the reaction of a salt of the acid such as sodium or ammonium salt of the acid with a suitable halogenated hydrocarbon.
- a salt of the acid such as sodium or ammonium salt of the acid with a suitable halogenated hydrocarbon.
- the reaction by which the products of this invention are obtained can be effected simply by mixing a polyamine reactant with the succinic acid-producing and the phosphorus acid-producing reactants at the desired temperature.
- the use of an inert solvent in the reaction is not necessary but often desirable, especially when a highly viscous or solid reactant is present in the reaction mixture.
- the inert solvent useful in the reaction may be a hydrocarbon such as benzene, toluene, naphtha, cyclohexane, n-hexane, or mineral oil.
- a polyamine containing primaryamino groups is capable of forming salts or amides as well as imides or amidines with a succinic acid or anhydride.
- a polyamine containing secondary-amino groups is capable of forming salts and amides and a polyamine containing tertiary-amino groups is capable of forming only salts with a succinic acid or anhydride
- a polyamine having tertiary-amino groups forms salts with a phosphorus acid whereas one having primaryor secondary-amino groups may form either salts or amides with a phosphorus acid.
- an ester of a succinic acid or phosphorus acid is used as the reactant with a polyamine, the reaction proceeds by replacing the ester radical with the amino group of the polyamine to form an amide or imide.
- a by-product of such a reaction is a hydroxyor thio-compound (e.g., alcohol or phenol) derived from the ester radical.
- the reaction of a polyamine with an acid halide may result in forming a salt, amide, or imide accompanied by the byproduct of hydrogen halide.
- reaction temperature below about C. results in products having predominantly salt linkages, whereas at a higher temperature, the product usually contains predominantly amide, imide, amidine linkages or a mixture of such linkages.
- the maximum temperature for the reaction is limited by the decomposition point of the reaction mixture. It usually does not exceed about 250 C.
- a convenient method of carrying out the process of this invention involves first reacting a polyamine with either one of the two acid-producing reactants (i.e., the succinic acid-producing reactant or the phosphorus acidproducing reactant) to form an intermediate and then reacting the intermediate with the other acid-producing reactant.
- an alkylene amine may be first partially acylated by reaction at 80 C., preferably at C. or a higher temperature, with a substantially hydrocarbon-substituted succinic acid or anhydride to form an intermediate having at least some nitrogen-succinic groups (such as succinamides or succinimide groups) and the intermediate is then reacted at 25 C. preferably at 50 C.
- the alkylene amine may be first combined with phosphoric acid at 25 C., preferably at 50 C. or a higher temperature to form an intermediate and the intermediate is then acylated at 80 C., preferably at 120 C. or a higher temperature with a substituted succinic acid or anhydride to form the final product.
- Still another method may be used which involves mixing the alkylene amine, the substituted succinic acid or anhyhydride, and phosphoric acid and maintaining the reaction mixture at the desired temperature such as about 10 C. or higher.
- the relative proportions of the reactants to be used in the process of this invention are based on the utility of the products resulting therefrom for the purposes of this invention.
- the amount of the phosphorus acid-producing reactant should be at least about 0.001 mole per mole of the alkylene amine used and the amount of the succinic acid-producing reactant should be at least about 0.25 mole per mole of the alkylene amine used.
- the preferred amounts of these reactants are such that there be from about 1 to 3 moles of the succinic reactant and from about 0.5 to 3 moles of the phosphorus reactant for each mole of the alkylene amine used.
- the practical upper limit for the amounts of the succinic reactant and the phosphorus reactant is based on the stoichiometry for the reaction in which all of the amino groups of the alkylene amine reactant are combined with the succinic and the phosphorus reactants.
- such practical upper limit may be as many moles of the combined succinic and phosphorus reactants as the number of amino groups in the alkylene amine. For instance, where an alkylene amine having n number of amino groups, the practical upper limit for the total amounts of the succinic and the phosphorous reactants will be 11 moles per mole of the alkylene amine used.
- the un-used reactant may be separated from the desired product by distillation, extraction, precipitation, filtration or such ordinary means; or it may be allowed to remain in the product.
- the process may result in partially substituted alkylene amines, i.e., products in which some of the amino groups of the alkylene amine reactant are not combined with a succinic or phosphorus reactant.
- the partially substituted polyamines are contemplated within the scope of this invention.
- the molecular weight of a succinic compound is taken to be twice the equivalent weight based on its acid number as determined by an ASTM method.
- the molecular Weights of the alkylene amine and the phosphorus reactants likewise may be computed from the nitrogen content and the phosphorus content of such reactants, respectively.
- Example 1 A mineral oil solution of a partially acylated polyamine having a nitrogen content of 2.1% is prepared by adding 553 parts of a commercial ethylene amine mixture (having an average composition corresponding to that of tetra-ethylene pentamine and a nitrogen content of 34.3%) to a mixture of 5000 parts (1.67 moles per mole of the amine) of a polyisobutene-substituted succinic anhydride, having an acid number of 100 (prepared by the reaction of maleic anhydride and a chlorinated polyisobutene having a molecular weight of 1000 and a chlorine content of 4.3% at 200 C.) and 3650 parts of mineral oil and heating the mixture at 155160 C.
- a commercial ethylene amine mixture having an average composition corresponding to that of tetra-ethylene pentamine and a nitrogen content of 34.36%
- a polyisobutene-substituted succinic anhydride having an acid number of 100 (prepared by the reaction of maleic an
- An ester of phosphoric acid is prepared by heating a mixture of 119 parts (0.84 mole) of phosphorus pentoxide, 1332 parts (3.34 moles) of octylphenyl and 485 parts of toluene (solvent) at the reflux temperature (125 -130 C.) azeotropically distilling off the water formed during the reaction within a period of 6 hours, and then removing the solvent from the product by heating the reaction mixture to 140 C./30 mm.
- the ester is a mixture of the esters of phosphoric acid having a phosphorus content of 3.7% and an acid number of 65 (bromphenol blue indicator).
- a mixture of this ester (430 parts, 1.67 moles per mole of the amine) and the above partially acylated polyamine (1000 parts) is prepared at 6065 C. and then heated at 105 l10 C. for 3 hours.
- the product is a substituted polyamine and has a phosphorus content of 1.1% and a nitrogen con tent of 1.5%.
- Example 2 A decyl ester of phosphoric acid is prepared by adding one mole of phosphorus pentoxide to 3 moles of decyl alcohol at a temperature within the range from 32 C. to 55 C. and then heating the mixture at 6063 C. until reaction is complete.
- the product is a mixture of the decyl esters of phosphoric acid having a phosphorus content of 9.9% and an acid number of 250 (phenolphthalein indicator).
- a mineral oil solution of a partially acylated polyamine prepared by the heating of 1021 parts of the polyisobutene-substituted succinic anhydride of Example 1, parts of the commercial ethylene amine described in Example 1, and 684 parts of mineral oil at 150 C.
- Example 3 A mineral oil solution of a partially acylated polyamine (1075 grams) having a nitrogen content of 1.9% and prepared according to the procedure described in Exampie 2 is mixed with 204 grams (1.4 moles per mole of the ethylene amine used) of the octadecyl ester of phosphoric acid prepared by the reaction of 3 moles of octadecyl alcohol with 1 mole of phosphorus pentoxide at a temperature of 80-l00 C. and having a phosphorus content of 6.4% and an acid number of 116. The mixture is heated at 6085 C. for 1 hour.
- the product is a 60% oil solution of a substituted polyamine having nitrogen groups attached to succinic radicals and phosphorus acid salt radicals and has a nitrogen content of 1.6% and a phosphorus content of 0.97%.
- Example 4 An ester of phosphoric acid is prepared by heating 1 mole of nonyl-phenyl-polyoxyethylene-ethanol having a molecular weight of 386, 0.25 mole of phosphorus pentoxide, and 140 grams of toluene at the reflux temperature while water is removed by azeotropic distillation. Toluene is distilled off by heating the residue to C./ 30 mm. and the product is a mixture of the esters of phosphoric acid having a phosphorus content of 3.9% and an acid number of 68 (bromophenol blue indicator).
- a mixture of 360 grams (1.85 moles per mole of the ethylene amine used) of the ester and 840 grams of the oil solution of the partially acylated polyamine of Example 1 is prepared at 6065 C. and then heated at 1051l0 C. for 3 hours.
- the residue is an oil-soluble substituted polyamine having a phosphorus content of 1.1% and a nitrogen content of 1.2%.
- Example 5 An ester of phosphoric acid having a phosphorus content of 0.77% is obtained by reacting a polyisobutenesubstituted propyl alcohol with phosphorus pentoxide in a molar ratio of 4 to 1, respectively, at 130140 C. and filtering the product obtained.
- the polyisobutene-substituted propyl alcohol is prepared by reacting a chlorinated polyisobutene having a chlorine content of 4.7% and a molecular weight of 750 with methyl acrylate at 190200 C.
- the polyisobutene-substituted propyl alcohol has a hydroxyl content of 0.9%.
- An oil-soluble product is obtained by heating the oil solution of the par tially acylated polyamine of Example 1 (385 parts), the above ester of phosphoric acid (729 parts, 1.6 moles per mole of the amine reactant), and 743 parts of mineral oil at 6070 C. for 4 hours. The resulting oil solution of the substituted polyamine has a nitrogen content of 0.4% and a phosphorus content of 0.3%.
- Example 6 A mixture of 190 grams (.9 mole) of a commercial ethylene amine having a nitrogen content of 33% and an average composition corresponding to that of tetraethylene pentamine and grams (0.5 mole) of tritolyl ester 1 l of phosphorous; acid having a phosphorus content of 8.9% is prepared at 25'38 C., heated to 200 *C. in 2.5 hours, and then heated at 200225 C. for 5 hours to distill off volatile components of the reaction mixture. The residue is an intermediate product having phosphorus acid amide linkages. 'Fnis intermediate is added to 1632 grams (1.5 moles) of a polyisobutene (molecular weight of 1000) substituted succinic anhydride having an acid number of 103 in 1000 cc.
- Example 7 An oil-soluble substituted polyamine is obtained by reacting 1005 grams of a 60% oil solution of a partially acylated polyarnine having a nitrogen content of 2.8%
- Example 8 2 mole per 0.15 mole of the amine reactant) of the above mixed ester at 5578.C.
- the mixture is heated at 85 C. fora3 hours and filtered.
- the filtrate is the oil soluble product having a phosphorus content of 2.6%, a sulfur content of 3.3%, and a nitrogen content of 1.4%
- Example 9 Example 9 'A mixture of 755 grams of soya lecithin having a phosphorus content of 2.1%, 491 grams of the oil solution of the partially acylated polyamine of Example '1, and 235 grams of mineral oil is heated at 165 C. for 4 hours. The residue is an oil-soluble product having a phosphorus content of 1% and a nitrogen content of 1.2%.
- Example 10 A mixture of 207 grams of the dee'yl ester of phosphoric acid (prepared by' 'the procedure described in Example 2) and 1270 grams of an oil solution containing 40% of mineral oil and 60% of the partially acylated polyamine (prepared according to the procedure of Example 7) is heated at 5565 C. for 1 hour. The product has an acid number of 27 (phenolphthalein indicator). It is then 1 neutralized by treatment by barium oxide in excess of the stoichiometric amount) and water at 90100 C. The neutralized product'is dried and filtered. Thej'filtrate is the oil-soluble product having a phosphorus content of 0.8%, a nitrogen content of 1.6%, a barium sulfate ash content of 7.5%, and an acid number of 5 (phenolphthalein indicator). l
- Example 1 1 A mixture of; 164 grams of the oil solution of the partially acylated polyamine (having a nitrogen content of 3.4% and prepared by the procedure of Example 3 from 1.5 moles of the polyisobutene substituted succinic anhydride and 0.8 mole of the commrecialethylene"amine) and 36 grams of a mixture of esters of phosphoric acid prepared by the reaction of 4 moles of tertiary-pentylphenol with 1 mole of phosphorus pentoxide at 150- 160 C. is heated at 95 C. for 1.5 hours. The residue is an oil-soluble product having a nitrogen content of 2.7% and a phoshorus content of 1.5%
- a hexyl alcohol ester of phosphoric acid is prepared as follows: phosphorus pentoxide is added in small increments to 4-methyl-2-pentyl alcohol (3 moles per mole of phosphrus pentoxide) within a period of 1 hour at 1628 C. The mixture is maintained at 2853 C.
- a homogeneous solution is obtained. It is heatedto 5055 C., mixed with a filter acid, and filtered. The filtrate is a mixture of .the hexyl esters of phosphoric acid having a phosphorus content of 14% and an acid number of 293 (phenolphthalein indicator).
- a mixture of 67 grams of the above ester (0.3 mole), grams of mineral oil, and 1000 grams (0.3 mole of..the amine reactant) of a 60% oil solution of the partially acylated polyamine prepared as is described in Example 2 is heated at 90100 C. for 0.5 hour.
- the resulting homogeneous product has a nitrogen content of 1.8% and a phosphorus content of 0.8%.
- Example 14 A butyl ester'of phosphoric acid is prepared bya procedure similar to that described in Example 13 except that butyl alcohol is used in place of the hexyl alcohol.
- the ester is a mixture of the butyl esters of phosphoric acid having a phosphorus content of 16.4% and an acid number of 420 (phenolphthalein indicator).
- This ester (413 grams, 2.2 moles) is added to a mixture of 275 grams of mineral oil and a 60% oil solution of a partial 1y acylated polyamine (1170 grams, 0.7 mole of the amine reactant); prepared by' reacting 1 equivalent of the polyisobutene substituted succinic anhydride of Example 1 With 4 equivalents of a cornmercial ethylene amine mixture having a nitrogen content of 34% and an average composition corresponding to that of tetraethylene pentamine at 145 f -165 C? for 6 hours and diluting the product with mineral oil. The mixture is stirred at C. for 1 hour to give a product having a nitrogen content of 3% and a' phosphorus content of 2.7%.
- Example 16 861 grams (0.33 mole of the amine reactant) of a'60% mineral oil solution of the partially acylated polyamine 13
- Example 16 A mixture of 134 grams (0.35 mole) of 0,0'-di-isooctylphosphorodithioic acid having an acid number of 1-46 and 1000 grams (0.3 mole of the amine reactant) of a 60% mineral oil solution of the partially acylated polyamine prepared as described in Example 2 is maintained at 6080 C. for 0.5 hour, diluted with mineral oil to a solution having an oil content of 40% and filtered.
- the filtrate has a nitrogen content of 1.6%, a sulfur content of 2%, and a phosphorus content of 0.9%.
- Example 17 A mixture of 18.2 grams (0.17 mole) of ethyl ester of metaphosphoric acid having the empirical formula of C H OPO and 421 grams (0.14 mole of the amine reactant) of a 60% oil solution (having a nitrogen content of 2.3%) of the partially acylated polyamine prepared as described in Example 1 is prepared at 5060 C. and heated at 7090 C. for 6 hours. The resulting product is a brown viscous liquid having a phosphorus content of 1.2% and a nitrogen content of 2.2%.
- Example 18 A partially acylated polyamine is prepared by the reaction of 107 grams (0.5 mole) of a commercial ethylene amine mixture having a nitrogen content of 33% and an average composition corresponding to that of tetraethylene pent-amine and 1000 grams (1 mole) of a polyisobutene substituted succinic anhydride of Example 1 in 5 00 grams of mineral oil at 135-160 C. To this intermediate product there is added 212 grams of 0,0-di(4-methyl-2- pentyl) phosphorodithioic acid at 6980 C. The mixture is heated at 90100 C. for 1 hour, diluted with 367 grams of mineral oil and filtered at 100 C. The filtrate has a nitrogen content of 1.6%, a sulfur content 2.1%, and a phosphorus content of 1%.
- Example 19 An ester of thiophosphoric acid is prepared by reacting 4 moles of a commercial mixture of alcohols consisting of about 50% of cetyl alcohol and 40% of stearyl alcohol having an average molecular weight of about 260 with 1 mole of phosphorus pentasulfide at 7087 C. and filtering the product.
- the product consists essentially of the 0,0-diesterified phosphorodithioic acid having a sulfur content of 9.2, a phosphorus content of 4.8%, and an acid number of 68 (bromphenol blue indicator).
- the filtrate has a sulfur content of 1.9%, a phosphorus content of 0.9%, and a nitrogen content of 1.4%.
- Example 20 A mixture of 1057 grams of a 60% mineral oil solution (having a nitrogen content of 2.7%) of the partially acylated polyamine prepared as described in Example 7 and 394 grams (0.44 mole) of a 70% toluene solution of 0,0-di (heptylphenyl phosphorothiothyl succinic anhydride having a phosphorus content of 3.5% (obtained by the reaction of 0,0di(heptylphenyl)phosphorodithioic acid and maleic anhydride) is heated at 150l60 C. for 4 hours. The mixture is heated to 150 C./4 mm. to remove toluene and diluted with mineral oil to a solution containing 40% of oil. The oil solution has a sulfur content of 0.99%, a phosphorus content of 0.9%, and a nitrogen content of 1.9%.
- Example 21 An oil-soluble composition is prepared by a procedure similar to that described in Example except that the maximum temperature at which the partially acylated polyamine and the 0,0'-di(heptylphenyl)phosphorodithioic acid are reacted is 60 C.
- the product consists essen- 14 tially of a salt of the phosphorodithioic acid with the polyamine.
- the product is diluted with mineral oil to a solution containing 40% of the oil and the solution has a nitrogen content of 1.6%, a sulfur content of 3.2%, and a phosphorus content of 1.1%.
- Example 22 A partially acylated polyamine is prepared by the reaction of 160 grams (0.7 mole) of a commercial ethylene amine having a nitrogen content of 33% and an average composition corresponding to that of tetraethylene pentamine and 1000 grams (1 mole) of the polyisobutenesubstituted succinic anhydride of Example 1 in 500 grams of mineral oil at 148 l80 C. and removing all of the water formed from the reaction.
- the product is diluted with 565 grams of mineral oil to a solution having an oil content of 40% To this solution there is added 635 grams of 0,0-di(4-methyl-2-pentyl)phosphorodithioic acid at 70-85 C. An exothermic reaction occurs.
- the mixture is heated at 100 C. for 1 hour and filtered at 150l60 C.
- the filtrate has a phosphorus content of 2.1%, a sulfur content of 4.5%, and a nitrogen content of 1.6%.
- Example 23 A 60% mineral oil solution (1286 grams) of the partially acylated polyamine prepared as described in Example 2 is mixed with 300 grams of mineral oil and heated to 170 C. To this solution there is added 176 grams (0.5 mole) of tritolyl ester of phosphorus acid at 75 C. The mixture is heated at 150l62 C./611 mm. for 11 hours whereupon 73 grams of a distillate is collected, which contains 67% of cresol. The residue is diluted with 373 grams of mineral oil and filtered at 160 C. The filtrate has a phosphorus content of 1.2% and a nitrogen content of 1.3%.
- Example 24 A 60% mineral oil solution (1286 grams) of the partially acylated polyamine prepared as described in Example 2 is diluted with 300 grams of mineral oil and mixed with 59 grams (0.17 mole) of tritolyl ester of phosphorous acid at 154170 C./2-4 mm. for 3 hours. A total of 56 grams of distillate is collected which consists substantially of cresol. The residue is diluted with 300 grams of mineral oil and the oil solution is found to have a phosphorus content of 0.3% and a nitrogen content of 1.6%.
- Example 25 A polyamine having a nitrogen content of 32% is obtained by the reaction of acrylonitrile with 216 grams of a mixture consisting of 75% (by weight) of triethylene tetramine and 25% of diethylene triamine at -130 C. for 5 hours. To 713 grams of polyisobutene substituted succinic anhydride of Example 1 there is added grams of the above polyamine at 80100 C. within a period of 1 hour. The mixture is heated at 100 C. for 5 hours and then mixed with 76 grams of tritolyl ester of phosphorous acid at C. within a period of 1 hour. The resulting mixture is heated at -200 C. for 7 hours and then to 190100 C./15 mm. A total of 71 grams of cresol is collected as the distillate. The residue is filtered. The filtrate has a nitrogen content of 2.4% and a phosphorus content of 0.4%.
- Example 26 A mixture of 138 grams of tritolyl ester of phosphorus acid and 250 grams of the polyamine prepared from acrylonitrile and a mixture of triethylene tetramine and diethylene triamine by the procedure described in Example 25 is prepared at 2832 C. and then heated at 140150 C./4 mm. for 3.5 hours. A total of 99 grams of distillate is collected which consists substantially of cresol. The residue is then heated to C./9 mm. and is found to have a nitrogen content of 24.5% and a phosphorus content of 4.8%.
- the polyisobutene substituted succinic anhydride of Example 1 (740 grams) is then mixed With 153 grams of the above product of the polyamine with tritolyl ester of phosphorous acid and 355 grams of mineral oil at 160190 C. for 8.5 hours. A total of 11 grams of Water is collected as the distillate. The product is diluted with 214 grams of mineral oil and filtered at 160 C. The filtrate has a nitrogen content of 2.6% and a phosphorus content of 0.5%
- Example 27 An imidazoline is prepared by mixing 1164 grams (5.8 moles) of lauric acid, 836 grams of an amine mixture consisting of 75% (by weight) of triethylene tetramine and of diethylene triamine, and 200 grams of toluene at 2573 C.; refluxing the mixture at l33208 C. for 22.3 hours while toluene and the water formed from the reaction is gradually removed by distillation and heating and residual product to 155 C./5 mm. A total of 1641 grams of the imidazoline is obtained, having a nitrogen content of 17%. A portion (378 grams) of the imidazoline is added at 80 C.
- Example 28 A partially acylated polyamine is prepared by the reaction of 1 equivalent of the polyisobutene substituted succinic anhydride of Example 1 with one equivalent of a commercial ethylene amine having a nitrogen content of 33% and an average composition corersponding to that of tetraethylene pentamine at 150-160 C.
- a mixture of 933 grams of a 60% mineral oil solution (having a nitrogen content of 1.5%) of the partially acylated polyamine and 250 grams (0.77 mole) of the decyl ester of phosphoric acid having a phosphorus content of 9.5% and prepared as described in Example 2 is heated at 50- 70 C. for 1 hour. The residue is found to have a nitrogen content of 1.2% and a phosphorus content of 2.3%.
- Example 29 A mixture of 2330 grams of a 60% mineral oil solution of the partially acylated polyamine prepared as is described in Example 28 and 89 grams (0.625 mole) is heated at from 30 C. to 160 C. in 2 hours, blown with nitrogen at 160 C. for 3 hours, and filtered.
- the product has a nitrogen content of 1.4%, a phosphorus content of 0.8%, and an acid number of 45 (phenolphthalein indicator).
- Example 30 A mixture of 825 grams (0.25 mole of the amine reactant) of the oil solution of the partially acylated polyamine of Example 1 and 26 grams (0.08 mole) of a crude di(carboxyphenyl)phosphinic acid having a phosphorus content of 9.9% is heated at 150-160 C. for 13 hours and at 160 C./ 20 mm. for 3 hours whereupon 7 grams of water is distilled off from the reaction mixture. The residue is filtered and the filtrate has a nitrogen content of 2% and a phosphorus content of 0.3%.
- Example 3 1 A mixture of 55 grams of phosphorus sesquisulfide and 1040 grams of a 60% mineral oil solution of the partially acylated polyamine of Example 7 is blown with nitrogen at 180 C. for 4 hours mixed with 272 grams of mineral 16 oil and blown with steam at 150-160 C. for 4 hours to remove unstably bound sulfur and then dried at'150 C. for 1 hour. The product is filtered. The filtrate has a sulfur content of 0.3%, a nitrogen content of 2%, and a phosphorus content of 1.4%.
- Example 32 A 60% oil solution of a partially acylated polyamine having a nitrogen content of 1.14% is obtained by reacting at 160 C. 2 moles of the polyisobutene-substituted succinic anhydride of Example 1 and 0.6 mole of a commercial tetraethylene pentamine having a nitrogen content of 34% and diluting the product with mineral oil.
- a mixture of the solution 1230 grams) and phosphorus sesquisulfide (55 grams) is blown with nitrogen at 150 C. for 4 hours, diluted with 313 grams of mineral oil, filtered, blown with steam at 150 C. for 4 hours, dried at 150 C. for 1 hours and filtered.
- the filtrate has a nitrogen content of 0.9%, a sulfur content of 0.53%, and a phosphorus content of 1.4%
- Example 33 A mixture of 570 grams of a 60% mineral oil solution of the partially acylated polyamine of Example 7 and 44 grams of phosphorus oxysulfide is heated at 180 C. for 4 hours and filtered at 150 C. The filtrate has a nitrogen content of 2.4%, a sulfur content of 1.2%, and a phosphorus content of 1.6%
- Example 34 A mixture of 1130 grams of the 60% oil solution of the partially acylated polyamine of Example 7 and 24 grams of phosphorus pentoxide is heated at 110 C. for 1 hour, at 150-155 C. for 6 hours, and filtered. The filtrate has a phosphorus content of 0.7% and a nitrogen content of 2.1%
- Example 35 A substituted polyamine by the procedure described in Example 31 except that 87 grams of phosphorus heptasulfide is used in place of the phosphorus sesquisulfide.
- the product has a nitrogen content of 1.6%, a sulfur content of 0.9%, and a phosphorus content of 2.1%.
- Example 36 A mixture is prepared from 352 grams of the oil solution of the partially acylated polyamine of Example 1 and 85 grams of a nonylphenyl ester of phosphorotetrathioic acid having a phosphorus content of 5.8% and obtained by the reatcion of 135 C. for 4 moles of p-nonylthiophenol with 1 mole of phosphorus pentasulfide. The mixture is heated at 7285 C. for 4.5 hours and filtered. The filtrate has a nitrogen content of 1.6%, a phosphorus content of 1.4%, and a sulfur content of 5%.
- Example 37 A mixture of 1140 grams of the 60% oil solution of the partially acylated polyamines of Example 7, 111 grams of phosphorus pentasulfide, and 324 grams of mineral oil is heated at 160-170 C. for 6 hours and filtered at 160 C. The filtrate has a nitrogen content of 1.9%, a phosphorus content of 1.6% and a sulfur content of 3.7%
- Example 38 A 50% mineral oil solution of a substituted polyamine is prepared by the procedure of Example 37 except that the amount of phosphorus pentasulfide used is equal to 0.2 equivalent of phosphorus per equivalent of nitrogen of the partially acylated polyamine used.
- Example 39 A mixture of 1040 grams (0.3 mole of the amine reactant) of the 60% oil solution of the partially acylated polyamine of Example 1, grams (0.53 mole) of crude diphenylphosphinodithioic acid having a phosphorus con- 17 tent of 12.1%, and 90 grams of mineral oil is heated at 90% C. for 7 hours and blown with nitrogen for 6 hours whereupon grams of water is distilled off. The residue is filtered and the filtrate has a phosphorus content of 1.2%, a nitrogen content of 1.8%, and a sulfur content of 2.7%.
- Example 40 A phosphorus acid is prepared by reacting 200210 C. 2 moles of a commercial hexadecene with 1 mole of phosphorus pentasulfide and hydrolyzing the product by blowing it with steam at 160 C. and diluted with an equal weight of mineral oil.
- the acid is a mixture of phosphonothioic and phosphinothioic acids and has a phosphorus content of 5.4%, a sulfur content of 5% and and acid number of 146.
- a mixture of 384 grams (0.67 mole) and 0.4 mole of the amine as the partially acylated polyamine of Example 7 is heated at 100 C.120 C. for 1.5 hours, dissolved in 243 grams of mineral oil and filtered.
- the filtrate has a sulfur content of 1.2%, a phosphorus content of 1.3%, and a nitrogen content of 1.4%.
- Example 41 The oil solution of the partially acylated polyamine of Example 28 is mixed with 1% of its Weight (0.006 mole) per mole of the amine as the partially acylated polyamine intermediate of phosphorus pentoxide and the mitxure is heated at 158-160 C. for 1 hour.
- the resulting product has a phosphorus content of 0.0045 and a nitrogen content of 1.4%
- Example 42 A phosphorus acid is obtained by heating a polyisobutene having a molecular weight of 1000 with of its weight of phosphorus pentasulfide at 260 C., and then blowing the product with steam at 160 C. The acid has a phosphorus content of 2.3% and an acid number of 41 (phenolphthalein indicator). A mixture of 1550 grams of a 60% oil solution of the partially acylated polyamine prepared as is described in Example 1 and 1220 grams is heated at 140 C. for 4 hours and filtered. The filtrate has a nitrogen content of 1%, a phosphorus content of 1%, and a sulfur content of 1%.
- Example 43 A substituted polyamine is prepared by the procedure of Example 2 except that the commercial ethylene amine mixture is replaced on an equivalent nitrogen basis with ethylene diamine.
- Example 44 A substituted polyamine is prepared by the procedure of Example 1 except that the commercial ethylene amine mixture is replaced on an equivalent nitrogen basis with triethylene tetramine.
- Example 45 The process of Example 2 is repeated except that the polyisobutene-substituted succinic anhydride used in preparing the partially acylated polyamine intermediate is replaced on a chemical equivalent basis with polypropene (molecular Weight of 5000)-substituted succinic acid.
- Example 46 The process of Example 2 is repeated except that the polyisobutene-substituted succinic anhydride and in preparing the partially acylated polyamine intermediate is replaced on a chemical equivalent basis with a di-methyl ester of the anhydride.
- Example 47 A substituted polyamine is obtained by first partially acylating ethylene diamine with the polyisobutene-substituted succinic anhydride of Example 1 to form a monosuccinimide of the diamine and then reacting the monosuccinimide with dioctylphosphoric acid at room temperature to form a salt between the free amino group of the mono-succinimide and the acid.
- Example 48 A mixture is prepared from 1 mole of nitrogen as N- piperazinylethyl alkenylsuccinimide in which the alkenyl radical is derived from a polyisobutene having a molecular weight of 1000 and 1 mole of phosphorus as dicyclohexylphosphoric acid. The mixture is maintained at 50- 70 C. for 4 hours to form a substituted N-aminoethyl piperazine in which a nitrogen group is attached to the succinic radical by a succinimide linkage and a nitrogen group is attached to dicyclohexylphosphoric radical by ammonium-phosphoric acid salt linkage.
- Example 49 A partially acylated hexamethylene diamine having a nitrogen group attached to a polyisobutene (molecular weight of 60,000)'-substituted succinic radical by an amide linkage is treated at 50-80 C. with phenylphosphoric acid (1 mole per mole of the amine as the partially acylated diamine).
- the product is a substituted hexamethylene diamine containing both the above-noted succinic radical and a phosphoric acid radical attached to a nitrogen group of the diamine by a salt linkage.
- Example 50 A succinic anhydride is obtained by reacting at 200- 220 C. for 20 hours one mole of maleic anhydride with one mole of a copolymer having a molecular weight of 1200 and prepared by copolymerizing parts (by weight) of isobutene with 5 parts of styrene at 2S0 C. in the presence of n-hexane as the solvent and aluminum chloride as the polymerization initiator.
- the succinic anhydride so obtained (0.5 mole) is mixed at 200 C. with diethylene triamine (0.3 mole) for 6 hours while the Water formed by the reaction is distilled off.
- the product consists substantially of the mono-succinimide of the triamine.
- a mixture of the mono-succinimide (2 moles of the amine) and tri-tolyl ester of phosphoric acid (1 mole) dissolved in twice its weight of mineral oil is heated at -200 C./2 mm. While cresol is distilled oil from the reaction mixture. The residue is a substituted polyamine having above-described succinimide linkage and a nitrogen group attached to a ditolyphosphoric radical by an amide linkage.
- Example 51 A partially acylated polyamine is obtained by heating at 7080 C. methane diamine (1 mole) and an isobutene-isoprene copolymer-substaituted succinic acid (0.5 mole, the copolymer has a molecular Weight of 2000 and is obtained by copolymerizing a mixture of 99 parts (by Weight) of isobutene and 1 part of isoprene).
- the product is a salt of the acid and menthane diamine having an average of one free amino group per menthane diamine radical.
- This product is then heated with dicyclohexylphosphinodithioic acid (1 mole per mole of the diamine reactant as the partially acylated amine) at 50 -80 C.
- the product is a substituted polyamine having salt linkages between the nitrogen groups with both the succinic acid and the phosphinodithioic acid groups.
- Example 52 A polyisobutene (molecular weight of 6,000)-substituted N,N'-dibutyl p-phenylenediamine is obtained by the reaction of two moles of the phenylene-diamine with a suitably substituted succinic anhydride.
- the product comprices principally the amide derived by the amidation of one of the amino groups of the phenylenediamine.
- the succinamide is mixed With di-tridecyl ester of phosphoric acid (1 mole per 0.1 mole of the amine reactant) at 50-80 C. for 5 hours so that a salt is formed between the two free amino groups in the succinam-ide and the phosphoric acid.
- the product thus is a substituted polyamine having a nitrogen group attached to the succinoyl radicals (i.e succinic radicalthrough a succinamide lint:- age) and a nitrogen group attached to a phosphoric acid through a salt linkage).
- Example 3 1 The procedure of Example 2 is repeated except that the commercial ethylene amine used in preparing the partially acylated polyamine is replaced with N-hydroxyethyl ethylene diamine.
- Example 5 4' The procedure of Example 2 is repeatedzexcept that the commercial ethylene amine used in preparing the. partially acylated polyamine is replaced with N-aminoethyl morpholine. i
- Example 55 The procedure of Example 2 is repeated except that the commercial ethylene amine used in preparing the partially acylated polyamine is replaced with melamine.
- Example 56 The procedure of Example 2 is repeated except that the commercial ethylene amine used in preparing the paetially acylated polyamine is replaced with N,N,N',N- tetramethyl hexamethylene diamine.
- Example 57 N Example 59 The procedure of Example'58 is repeated except that phehyl ester'of diphenylphosphinodithioic acid and that the reaction temperature is 180 200 C./ mm.
- the by-product is thiophenol.
- The'substituted polyafmine contains both succinic radicals and phosphinic radicals (amide) attached to nitrogen groups.
- Example 60 A mixture of N-octadeeyl trimethylene diamine (1 mole), the polyisobutene substituted succinic anhydride of Example 1 0.5 mole) and bis(di(heptylphenyl) phosphorothioic)sulfide (i.e., the anhydride of di(heptyl)- phosphorodithioic acid obtained by heating the acid to split off hydrogen sulfide ⁇ : (1 mole) is heated at 150 200 C. for 10 hours.
- the product is a substituted polyamine having nitrogen groups attached to the succinic and phosphorothioic radicals through amide linkages.”
- substituted polyamines of this invention are useful for a wide variety of purposes including pesticides, plasticizers, rust inhibiting agents for'treatment of metals, corrosion-inhibiting agents, extreme pressure agents, antiwear 'agents, and detergents.
- a principal utility ,of such products is as additives in lubricants. It has been discovered in accordance with this invention that when used for such purpose their effectiveness to inpart a specific property to a lubricant is closely related to the size of the substantially hydrocarbon substituent in the succinic radical attached to the nitrogen groups of the substitued polyamines. More particularly it has been found that products in which the substantially hydrocarbon substituent contains more than about aliphatic carbon atoms are effective to impart oxidationinhibiting, and detergent properties to a lubricant. It has "internal combustion engines may contain from about 0.5
- the detergent properties of the products diminish sharply with a decrease in the size of the substantially hydrocarbon substituent having less than about 50 aliphatic carbon atoms so that products having less tharr about 35 aliphatic carbon atoms in this substituent are ineffective as detergent additives in lubricants.
- the presence of the phosphorus radicals in the substituted polyamines further enhance the effectiveness of the products even though such radicals are attached to only a portiorr of the nitrogen groups of the substituted polyamines. 7
- the lubricating oils in which the substituted polyamines of this invention are useful as additives may be of synthetic, animal, vegetable, or mineral origin. Ordinarily mineral lubricating oils are preferred by reason of their availability, general excellence, and low cost. For certain applications, oils belonging to one of the other three groups may be preferred. For instance, synthetic poly esters oil such as didodecyl adipate and di-Z-ethylhexyl sebacate are often preferred as jet engine lubricants ⁇ Normally the lubricating oils preferred will be fluid oils, ranging in viscosity from about 40 Saybolt Universal Seconds at F. to about 200 Saybolt Universal Seconds at 210 -F. e V
- the concentration of the substituted polyamines as additives in lubricants usually ranges from about 0.01% to about 10% by weight.
- the optimum concentrations for a particular application depend to ,a large measure upon the type of service to which the lubricants is to be subjected.
- lubricants for use in gaseline to about 5% of the additive
- lubricating compositions for use in gears and diesel engines may contain as much as 10% or even more of the additive.
- additives include, for example, supplemental detergents of the ashcontaining type, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents, rust-inhibiting agents, and supplemental oxi-' dation and corrosion-inhibiting agents;
- olefin polymer e.g., polyisobutene having a molecular weight of 10009
- a::phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pent
- the term basic salt is used to designate the 'metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical.
- the commonly' employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or
- a promoter in the neutralization step to aid the incorporation of a large excess of metal likewise is known.
- compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alky-lphenol, and condensation products of formaldehyde with a phenolic substance; alcohols such as methanol, 2- propanol, ectyl alcohol, Cellosolve, carbotol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenyl-betanaphthylamine, and dodecylamine.
- a particularly eiTective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal 21 neutralizing agent, a phenolic promoter compound, and a small amount of water and carbonating the mixture at an elevated temperature such as 60-200 C.
- the preparation of a basic sulfonate detergent is illustrated as follows: A mixture of 490 parts (by weight) of a mineral oil, 110 parts of water, 61 parts of heptylphenol, 340 parts of barium mahogany sulfonate, and 227 parts of barium oxide is heated at 100 C. for 0.5 hour and then to 150 C. Carbon dioxide is then bubbled into the mixture until the mixture is substantially neutral. The mixture is filtered and the filtrate found to have a sulfate ash content of 25%.
- the preparation of a basic barium salt of a phosphorus acid is illustrated as follows: A polyisobutene having a molecular weight of 50,000 is mixed with by weight of phosphorus pentasulfide at 200 C. for 6 hours.
- the resulting product is hydrolyzed by treatment with steam at 160 C. to produce an acidic intermediate.
- the acidic intermediate is then converted to a basic salt by mixing twice its volume of mineral oil, 2 moles of barium hydroxide and 0.7 mole of phenol and carbonating the mixture at 150 C. to produce a fluid product.
- the substituted polyamines are especially adapted for use in combination with extreme pressure and corrosioninhibiting additives such as metal dithiocarbamates, xanthates, the Group II metal phosphorodithioates and their epoxide adducts, hindered phenols, sulfurized cycloalkanes, di-alkyl polysulfides, sulfurized fatty esters, phosphosulfurized fatty esters, alkaline earth metal salts of alkylated phenols, dialkyl phosphites, triaryl phosphites, and esters of phosphorodithioic acids.
- Combinations of the substituted polyamines of this invention with any of the above-mentioned additives are especially desirable for use in lubricants which must have superior extreme pressure and oxidation-inhibiting characteristics.
- the Group II metal phosphorodithioates are the salts of acids having the formula in which R and R are substantially hydrocarbon radicals.
- the metals for forming such salts are exemplified by barium, calcium, strontium, zinc, and cadmium.
- the barium and zinc phosphorodithioates are especially preferred.
- the substantially hydrocarbon radicals in the phosphorodithioic acid are preferably low or medium molecular weight alkyl radicals and alkylphenylradicals, i.e., those having from about 1 to about 30 carbon atoms in the alkyl group.
- Illustrative alkyl radicals include methyl, ethyl, isopropyl, isobutyl, n-butyl, sec-butyl, the various amyl alcohols, n-hexyl, methylisobutyl carbinyl, heptyl, 2-ethylhexyl, diisobutyl, isooctyl, nonyl, behenyl, decyl, etc.
- Illustrative lower alkylphenyl radicals include butylphenyl, amylphenyl, di-amylphenyl, octylphenyl, etc.
- Cycloalkyl radicals likewise are useful and these include chiefly cyclohexyl and the lower alkyl-cyclohexyl radicals.
- Other substantially hydrocarbon radicals likewise are useful such as tetradecyl, octadecyl, eicosyl, butylnaphthyl, hexylnaphthyl, octylnaphthyl, cyclohexylphenyl, naphthenyl, etc.
- Many substituted hydrocarbon radicals may also be used, e.g., chloropentyl, dichlorophenyl, and dichlorodecyl.
- phosphorodithioic acids from which the Group II metal salts of this invention are prepared is well known. They are prepared by the reaction of phosphorus pentasulfide with an alcohol or phenol. The reaction involves four moles of the alcohol or phenol per .mole of phosphorus pentasulfide, and may be carried out within the temperature range from about 50 C. to about 200 C.
- the preparation of 0,0-di-n-hexyl phosphorodithioic acid involves the reaction of phosphorus pentasulfide with four moles of n-hexyl alcohol at 22 about C. for about 2 hours. Hydrogen sulfide is liberated and the residue is the defined acid.
- the preparation of the zinc or barium salt of this acid may be effected by reaction with zinc oxide or barium oxide. Simply mixing and heating these two reactants is sufficiout to cause the reaction to take place and the resulting product is sufliciently pure for the purposes of this invention.
- Especially useful Group II metal phosphorodithioates can be prepared from phosphorodithioic acids which in turn are prepared by the reaction of phosphorus pentasulfide with mixtures of alcohols.
- the use of such mixtures enables the utilizatiton of cheaper alcohols which in themselves do not yield oil-soluble phosphorodithioic acids.
- a mixture of isopropyl and hexyl alcohols can be used to produce a very effective, oil-soluble metal phosphorodithioate.
- mixtures of simple phosphorodithioic (i.e., acids prepared from one alcohol) acids can be reacted with zinc oxide or barium oxide to produce less expensive, oil-soluble salts.
- Another class of the phosphorothioate additives contemplated for use in the lubricating compositions of this invention comprises the adducts of the metal phosphorodithioates described above with an epoxide.
- the metal phosphorodithioates useful in preparing such adducts are for the most part the zinc phosphorodithioates.
- the epoxides may be alkylene oxides or arylalkylene oxides.
- the arylalkylene oxides are exemplified by styrene oxide, pethylstyrene oxide, alpha-methylstyrene oxide, 3-betanaphthyl-1,3-butylene oxide, m-dodecylstyrene oxide, and p-chlorostyrene oxide.
- the alkylene oxides include principally the lower alkylene oxides in which the alkylene radical contains 6 or less carbon atoms. Examples of such lower alkylene oxides are ethylene oxide, propylene oxide, 1,2-butene oxide, trimethylene oxide, tetramethylene oxide, butadiene monoepoxide, 1,2-hexene oxide, and propylene epichlorohydrin.
- epoxides useful herein include, for example, butyl 9,10-epoxy-stearate, epoxidized soya bean oil, epoxidized tung oil, and epoxidized copolymer of styrene with butadiene.
- the adduct may be obtained by simply mixing the phosphorodithioate and the epoxide.
- the reaction is usually exothermic and may be carried out within wide temperature limits from about 0 C. to about 200 C. Because the reaction is exothermic it is best carried out by adding one reactant, usually the epoxide, in small increments to the other reactant in order to obtain convenient control of the temperature of the reaction.
- the reaction may be carried out in a solvent such as benzene, mineral oil, naphtha, or n-hexane.
- the chemical structure of the adduct is not known. More than one mole, sometimes as many as four moles, of the epoxide can be made to combine with the phosphorodithioate to form products useful herein. However, adducts obtained by the reaction of one mole of the phosphorodithioate with from about 0.25 mole to about 1 mole of a lower alkylene oxide, particularly ethylene oxide and propylene oxide, have been found to be especially useful and therefore are preferred.
- the lubricating compositions may contain metal detergent additives in amounts usually within the range of about 0.1% to about 20% by weight. In somev applications such as in lubricating marine diesel engines the lubricating compositions may contain as much as 30% of a metal detergent additive. They may contain extreme pressure addition agents, viscosity index improving agents, and pour point depressing agents, each in amounts within the range from about 0.1% to about 10%.
- Example I SAE 20 mineral lubricating oil containing 0.5% of the product of Example 1.
- Example III SAE W-30 mineral lubricating oil containing 0.4% of the product of Example 3.
- Example VI SAE W-30 mineral lubricating oil containing 5% of the product of Example 39.
- Example VII SAE 10W-30 mineral lubricating oil containing 1.5% of the product of Example 2 and 0.05% of phosphorus as the zinc salt of a phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with a mixture of 60% (mole) of p-butylphenol and 40% (mole) of n-pentyl alcohol.
- Example X SAE mineral lubricating oil containing 5% of the product of Example 10, 0.1% of phosphorus as the zinc salt of a mixture of equimolar amounts of di-isopropylphosphorodithioic acid and di-n-decylphosphorodithioic acid, and 2.5% of sulfate ash as a basic barium detergent prepared by carbonating at 150 C. a mixture comprising mineral oil, barium di-dodecylbenzene sulfonate and 1.5 moles of barium hydroxide in the presence of a small amount of water and 0.7 mole of octylphenol as the promoter.
- Example XIV Example XV SAE 10 mineral lubricating oil containing 25% of the product of Example 33, 0.07% of phosphorus as zinc dioctylphosphorodithioate, 2% of a barium detergent prepared by neutralizing with barium hydroxide the hydrolyzed reaction product of a polyproplene (molecular Weight 2000) with 1 mole of phosphorus pentasulfide and 1 mole of sulfur, 3% of a barium sulfonate detergent prepared by carbonating a mineral oil solution of mahogany acid, and a 500% stoichiometrically excess amount of barium hydroxide in the presence of phenol as the promoter at 180 C., 3% of a supplemental ashless detergent prepared by copolymerizing a mixture of 95% (Weight) of decyl-methacrylate and 5% (Weight) of diethylaminoethylacrylate.
- a barium detergent prepared by neutralizing with barium hydroxide the hydrolyze
- Example XXI SAE 90 mineral lubricating oil containing 3% of the product of Example 46 and 0.2% of phosphorus as the 26 lubricant sample employed in the test is a Mid-Continent, conventionally refined mineral oil having a viscosity of about 200 Saybolt Universal Seconds at 100 F.
- Procedure A Copper-lead bearing not present in test sample
- Procedure B Copper-lead bearing present in test sample.
- reaction product of 4 moles of turpentine with 1 mole of phosphorus pentasulfide.
- oil-soluble compositions of this invention as additives in lubricating compositions is illustrated by the results from an oxidation and detergency test in which a 350 cc. sample of a lubricant containing 0.001% of iron naphthenate and 1.5% by weight of the solvent-free additive to be tested is placed in a 2 x 15 (inches) borosilicate tube. A 1% x 5% (inches) SAE 1020 steel panel is immersed in oil. The sample then is heated at 300 F. for a specified period while air is bubbled through it at the rate of 10 liters per hour.
- the oxidized sample is cooled to 120 F., homogenized with 0.5% of water allowed to stand at room temperature for 24 hours, and then filtered through two layers of No. 1 Whatman filter paper at 2 0 mm. Hg pressure.
- the weight of the precipitate, washed with naphtha and dried, is taken as a measure of the effectiveness of the additive to inhibit oxidation and disperse the sludge formed during the test. The greater the weight of the precipitate the less effective the additive.
- the test is adapted to evaluate the corresiveness of the lubricant by the following modification: a clean copper-lead bearing is immersed in the lubricant during the air blowing step.
- the lubricant is used in the crankcase of a 1954 6-cylinder Chevrolet Powerglide engine operated for 144-hours un der recurring cyclic conditions, each cycle consisting of: 2 hours at engine speed of 500 r.p.m. under no load, oil sump temperature of 100-125 F., and air fuel ratio of 10:1; and 2 hours at an engine speed of 2500 r.p.m. under a load of 40 brake horsepower, oil sump temperature of 240280 F., and an air:fuel ratio of 16:1.
- the lubricant is rated in terms of (1) the extent of piston filling, (2) the amount of sludge formed in the engine (rating scale of -0, 80 being indicative of no sludge and 0 being indicative of extremely heavy sludge), and (3) the total amount of engine deposits, i.e., sludge and varnish formed in the engine (rating scale of -0, 100 being indicative of no deposit and 0 being indicative of extremely heavy deposit).
- the results of the test are summarized in Table II.
- the SAE 20 lubricating compositions referred to in Lubricants A-E are composed of a SAE 20 mineral lubricating oil containing 0.3% of barium sulfate ash as a basic barium detergent obtained by carbonating a mixture of an excess of barium hydroxide, hetylphenol (promoter), and a hydrolyzed acidic product of a chlorinated polyisobutene (chlorine content of 4.7% and a molecular Weight of 1000) hetylphenol, and phosphorus trichloride; 0.06% of phosphorus as the zinc salt of a phosphorodithioic acid obtained by the reaction of phosphorus pentasulfide with a mixture of isobutyl alcohol and primary-pentyl alcohol; and 3 parts per million of a polymeric dialkylsiloxane anti-foam agent.
- Such lubricating compositions are suitable for use under consistantly high temperature service conditions and are not entirely satisfactory for use under intermittently high and low temperature service conditions.
- CRC-EX-3 test show test results no better than: percent Ring Filling, 16%; Sludge Rating, 68.5; and Total Deposit Rating, 84.0.
- the eflicacy of the substituted polyamines of this invention as detergent additives in::lubricants for diesel engines operated'cunder relatively severe conditions is demonst'rated by the results (Table III) of the CRC-L-l Engine test (also known Caterpiller 1E test).
- the lubricating composition is used in the crankcase of a 4-stroke diesel engine having a compression ratio of 15 :1 operated for 'l20 hours under the following conditions: speed, 1000 r.p.m.; B.t.u. input per minute, 29003000; load, 20 brake horsepower; water jacket temperature, 175- 180 F.; oii temperature, 140-150" F.
- a diesel fuel having a sulfur content of either 1% or 0.4% is used.
- the lubricant is evaluated according to (1) the piston cleanlinss (rating scale of -100,' 100 being indicative of no deposit and 0 being indicative of heavy deposit) and (2) the amount of ring filling.
- SAE 20 lubricating composition containing 1.35% of the product prepared by the procedure of Example 29 except i that 0.33 equivalent of phosphorus as phosphorus pentoxide is used per equivalent of nitrogen as the partially jacy lated polyamine 2 72. 8 89. 3 F.
- SAE 20 mineral lubricating oil containing 2.5% of the product of Example 2, 1.2% of a sulfurized dipenteue having a sulfur content of 35%, and 3 parts per 7 'rnillion of a polymeric dialkylsiloxane anti-foam agent l 78. 3 97. 1
- a substituted polyamine prepared by the process comprising the reaction at a temperature between about 25 C. and below the decomposition temperature of the process mixture of one mole of an alkylene polyamine having n amino groups with a substantially hydrocarbonsubstituted' succinic acid-producing compound selected from the class consisting of acids, anhydrides, halides, and esters having at least aboutaliphatic carbon atoms in the substantially hydrocarbon substituent and a phosphorus acid-producing compound selected from the class consisting of phosphoric acids, phosphorous acids, phosphouyl acids, phosphinyl acids, and the ester, the halides and the anhydrides thereof and the corresponding thioanalogs thereof; the amount of the succinic acid-producing compound being at least about 0.2 5 mole, the amount of the phosphorus acid-producing compound being at least about 0.001 mole, and the combined amounts of the succinic acid-producing compound and the phosphorus acidprodueing compound being no greater than 11 moles.
- a substituted polyamine prepared by the process comprising the reaction at a temperature between about 25 C. and below the decomposition temperature of the process mixture of one mole of a polyamino substance having 12 amino groupsand selected from the class consisting of linear polyethylene polyamines, imidazolines, pyrimidines, and piperazines with a substantially hydrocarbonsubstituted succinic acid-producing compound selected from the class consisting of acids, anhydrides, halides, and esters having at least about 5-9 aliphatic carbon atoms in the substantially hydrocarbon substituent and a phosphorus acid-producing compound selected from the class consisting of phosphoric acids, phosphorus acids, phosphonyl acids, phosphinyl acids, and the esters, the halides and the anhydrides thereof and the corresponding thioanalogs thereof; the amount of the succinic acid-producing compound being at least about 0.25. mole, the amount of the phosphorus acid-producing compound being at least about 0.001 mole, and the combined amounts
- a substituted polyamine prepared by the process comprising the reaction at a temperature between about 25 C. and below the decomposition ten perature of the process mixture of an ethylene polyamine having 11 amino groups with a substantially hydrocarbon-substituted succinic anhydride or acid having at least about 50 aliphatic carbon atoms in the substantially hydrocarbon substituent and a partially esterified phosphoric acid in which'the ester portion is an alkyl or alkylaryl group having from 1 to about 30 carbon atoms in the alkyl radical; the amount of the succinic anhydride or acid being at least about 0.25 mole, the amount of the partially esterified phosphoric acid being at least about 0.001 mole, and the combined amounts of the succinic anhydride or'acid and the partially esterified phosphoric acid being no greater than 11 moles.
- a substituted polyamine prepared by the process comprising the reaction at a temperature between about 25 C. and below the decomposition temperature of the process mixture of an ethylene polyamine having :1 amino groups with an olefin polymer-substituted succinic anhydride or acid in which the olefin polymer substituent has a molecular weight of from about 700 to about 5000 and an alkylphosphoric acid obtained by the reaction of one mole of phosphorus pentoxide with from about 1 to about 4 moles of an alkanol having up to about 30 carbonatoms;
- the amount of the succinic anhydride or acid being at least about 0.25 mole, the amount of the alkylphosphoric acid being at least about 0.5 mole, and the combined amounts of the succinic anhydride or acid and the alkylphosphoric acid being no greater than n moles.
- a substituted polyamine prepared by the process comprising the reaction at a temperature between about 25 C. and below the decomposition temperature of the process mixture of.a hydroxyalkyl-substituted ethylene polyamine having it. amino groups with an olefin polymersubstituted succinic anhydride or acid in which the olefin polymer substituent has a molecular weight of from about 700 to about 5000 and an alkylphosphoric acid obtained by the reaction of one moleof phosphorus pentoxide with from about 1 to about 4 moles of an alkanol having up to about 30 carbon atoms; the amount.
- the succinic anhydride or acid being at least about 0.25 mole, the amount of .the alkyl phosphoric acid being at least about 0.5 mole, and the combined amounts of. succinic anhydride or acid and the alkylphosphoric acid being no greater than 11 moles.
- a substituted polyamine prepared by the process comprising (A)- forming a partially acylated polyamine intermediate by reacting at a temperature from about C. to about 250 C. one mole of an ethylene polyamine having 11 amino groups with from about 0.25 to about 3 moles of an olefin polymer-substituted succinic anhydride in which the olefin polymer substituent has a molecular weight of from about 700 to 5000 and (B) reacting at a temperature from about 25 C. to about C. said intermediate with from about 0.001; to about 3 moles of phosphorus pentoxide.
- a substituted polyamine prepared by the process comprising (A) forming a partially acylated polyamine intermediate by reacting at a temperature from about 80 C. to about 250 C. one mole of an ethylene polyamine having 11. amino groups with from about 0.25 to about 3 moles of an olefin polymer-substituted succinic anhydride in which the olefin polymer substituent has a molecular weight of from about 700 to 5000 and (B) reacting at a temperature from about 25 C. to about 100 C. said intermediate with from about 0.001 to about 3 moles of an alkylphosphoric acid obtained by the reaction of one mole of phosphorus pentoxide with from about 1 to about 4 moles of an alkanol having from about 8 to 24 carbon atoms.
- the substituted polyamine of claim 8 wherein the ethylene polyamine is a polyethylene polyamine having from 2 to 11 amino groups; the olefin polymer substituent of the succinic anhydride is a polyisobutene group; the amount of the succinic anhydrodide isfrom about 1 to about 3 moles; and the amount of the alkylphosphoric acid is from about 0.5 to about 3 moles.
- a substituted polyamine prepared by the process comprising (A) forming a partially acylated polyamine intermediate by reacting at a temperature from about 80 C. to about 250 C. one mole of an ethylene polyamine having n amino groups with from about 0.25 to about 3 moles of an olefin polymer-substituted succinic anhydride in which the olefin polymer substituents has a molecular weight of from about 700 to 5000 and (B) reacting at a temperature from about 25 C. to about 100 C.
- a phosphorus reagent selected from the class consisting of phosphorus pentasulfide, phosphorus heptasulfide, phosphorus sesquisulfide, phosphorus oxysulfide, phosphorus trichloride, phosphorus pentachlon'de, phosphorus oxytrichloride, phosphorothioic trichloride and phosphorus tribromide.
- a substituted polyamine prepared by the process comprising (A) forming a partially acylated polyamine intermediate by reacting at a temperature from about 80 C. to about 250 C. one mole of an ethylene polyamine having n amino groups with from about 0.25 to about 3 moles of an olefin polymer-substituted succinic anhydride in which the olefin polymer substituent has a molecular weight of from about 700 to 5000 and (B) reacting at a temperature from about 25 C. to about 100 C. said intermediate with from about 0.001 to about 3 moles of phosphorus pentasulfide.
- a substituted polyamine prepared by the process comprising (A) forming a partially acylated polyamine intermediate by reacting at a temperature from about 80 C. to about 250 C. one mole of an ethylene polyamine having n amino groups with from about 0.25 to about 3 moles of an olefin polymer-substituted succinic anhydride in which the olefin polymer substituent has a molecular Weight of from about 700 to 5000 and (B) reacting at a temperature from about 25 C. to about 100 C. said intermediate with from about 0.001 to about 3 moles of a dialkylphosphorodithioic acid having from about 1 to about 24 carbon atoms in each alkyl group.
- a substituted polyamine prepared by the process comprising the reaction at a temperature between about 25 C. and below the decompositon temperature of the process mixture of one mole of an alkylene polyamine having n amino groups with a substantially hydrocarbonsubstituted succinic acid-producing compound selected from the class consisting of acids, anhydrides, halides, and esters having at least about aliphatic carbon atoms in the substantially hydrocarbon substituent and a phosphorus acid-producing compound selected from the class consisting of (a) oxy-phosphoric acids, thio-phosphoric acids, and mixed oxy-thio-phosphoric acids, (b) oxy-phosphorous acids, thio-phosphorous acids, and mixed oxy-thio-phosphorous acids, (c) oXy-phosphinyl acids, thio-phosphinyl acids, and mixed oxy-thio-phosphinyl acids, (d) oxy-phosphonyl acids, thio-phosphonyl acids, and mixed oxy-thi
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Lubricants (AREA)
Description
United States Patent 3,502,677 NITROGEN -CONTAINING AND PHOSPHORUS- CONTAINING SUCCINIC DERIVATIVES I William M. Le Suer, Cleveland, Ohio, assignor to The Lubrizol Corporation, Wicklifie, Ohio, a corporation of Ohio No Drawing. Filed June 17, 1963, Ser. No. 288,481 Int. Cl. C07d 51/70, 49/34, 87/02 U.S. Cl. 260268 14 Claims This invention relates to substituted polyamines and to processes for preparing the same. The substituted polyamines of this invention are useful as anti-wear agents, anti-rust agents, insecticides, plasticizers, detergents, etc. They are especially useful as additives in lubricating compositions, fuels, hydrocarbon oils, and power-transmitting fluids.
Deterioration of lubricating oils, especially mineral oils, has been a great concern in the formulation of lubricating compositions for internal combustion engines, transmissions, gears, etc. Deterioration of the oil results in the formation of products which are corrosive to the metal surfaces with which the oil comes into contact. It also results in the formation of products which agglomerate to form sludgeand varnish-like deposits. The deposits cause sticking of the moving metal parts and obstruct their free movement. They are a principal cause of malfunctioning and premature breakdown of the equipment which the oil lubricates.
It is known that water is a common contaminant in the crankcase lubricant of an engine. It may result from the decomposition of the lubricating oil or come from the combustion chamber as a blow-by product of the burning of the fuel. The presence of water in the lubricant seems to promote the deposition of a mayonnaise-like sludge. This type of sludge is more objectionable because it is tenacious to metal surfaces and is not removed by the oil filter. If the engine is operated under conditions such that the crankcase lubricant temperature is cotninuously high, the water will be eliminated about as fast as it accumulates and only a very small amount of the mayonnaise-like sludge is formed. On the other hand, if the crankcase lubricant temperature is intermittently high and low or consistently low, the water will accumulate and a substantial quantity of the mayonnaiselike sludge will be deposited in the engine.
High operating-temperatures are characteristic of an engine that is consistently run at relatively high speed and continuously for a lengthy period. However, where an automobile is primarily used for trips of short distance such as is characteristic of urban, home-to-work use, a significant portion of the operation occurs before the engine has reached its optimum, high temperature. An ideal environment thus obtains for the accumulation of water in the lubricant. In this type of operation, the problem of mayonnaise sludge has been especially troublesome. Its solution has been a proached by the use in the lubricant of detergents such as metal phenates and sulfonates which have been known to be effective in reducing deposits in engines operated primarily at high temperatures. Unfortunately, such known detergents have not been particularly effective in solving the problems associated with low temperature operation, particularly those problems which are associated with crankcase lubricants in engines which are operated at low or alternating high and low temperatures.
It is accordingly a principal object of this invention to provide novel compositions of matter.
It is also an object of this invention to provide compositions which are adapted for use as additives in hydrocarbon oils.
It is also an object of this invention to provide compositions which are effective as detergents in lubricating compositions.
It is another object of this invention to provide novel compositions which are effective dispersants in lubricant compositions intended for use in engines operated at low or alternating high and low temperatures.
It is another object of this invention to provide improved lubricating compositions.
It is another object of this invention to provide improved fuel compositions.
These and other objects are attained in accordance with this invention by providing a process for preparing substituted polyamines comprising the reaction of 1 mole of an alkylene amine with at least about 0.25 mole of a substantially hydrocarbon-substituted succinic acid-producing compound having at least about 50 aliphatic carbon atoms in the substantially hydrocarbon substituent and at least about 0.001 mole of a phosphorus acid-producing compound selected from the class consisting of phosphoric acids, phosphorous acids, phosphonyl acids, phosphinyl acids, and the esters, the halides, and the anhydrides thereof.
The polyamines from which the products of this invention are derived include principally alkylene amines conforming for the most part to the formula wherein n is an integer preferably less than about 10, A is a hydrogen radical or a substantially hydrocarbon preferably having up to about 30 carbon atoms, and the alkylene radical is preferably a lower alkylene radical having less than about 8 carbon atoms. The alkylene amines include principally methylene amines, ethylene amines, butylene amines, propylene amines, pentylene amines, hexylene amines, heptylene amines, octylene amines, other polymethylene amines, and also the cyclic and the higher homologues of such amines such as piperazines and amino-alkyl-substituted piperazines. They are exemplified specifically by: ethylene diamine, triethylene tetramine, propylene diamine, decamethylene diamine, octamethylene diamine, di(heptamethylene) triamine, tripropylene tetramine, tetraethylene pentamine, trimethylene diamine, pentaethylene hexamine, di(trimethylene)triamine, 2 heptyl- 3 (2 aminopropyl)imidazoline, 4 methyl imidazoline, 1,3 bis(2 aminoethyl)imidazoline, pyrimidine, 1- (2 aminopropyl)piperazine, 1,4 bis(2 aminoethyl)- piperazine, and 2 methyl 1 (2 aminobutyl)piperazine. Higher homologues such as are obtained by condensing two or more of the above-illustrated alkylene amines likewise are useful.
The ethylene amines are especially useful. They are described in some detail under the heading Ethylene Amines in Encyclopedia of Chemical Technology, Kirk and Othmer, volume 5, pages 898-905, Interscience Publishers, New York (1950). Such compounds are prepared most conveniently by the reaction of an alkylene chloride with ammonia. The reaction results in the production of somewhat complex mixtures of alkylene amines, including cyclic condensation products such as piperazines. These mixtures find use in the process of this invention. On the other hand, quite satisfactory products may be obtained also by the use of pure alkylene amines. An especially useful alkylene amine for reasons of economy as well as effectiveness of the products derived therefrom is a mixture of ethylene amines prepared by the reaction of ethylene chloride and ammonia and having a composition which corresponds to that of tetraethylene pentamine.
HydroXyalkyl-substituted alkylene amines, i.e., alkylene amines having one or more hydroxyalkyl substituents on Higher homplogues such as are obtained by condensation of the above illustfated alkylene amines or hydroxy alkyl-substituted alkylene amines through amino radicals or through hydroxy radicals are likewise useful. It will,
be appreciated that condensation through amino radicals results in a higher amine accompanied with removal of ammonia arid that..condensation through the hydroxy radicals results in products containing ether linkages accompanied with removal of water. g
The substantially hydrocarbon-substituted succinic acidproducing compounds used in the above process include the succinic acids, anhydrides, halides, and esters. An important aspect of this invention is the size of the substantially hydrocarbon substituent on the succinic acid-producing compound. Thus, only the substituted succinic acid-producing compounds having at least about 50 aliphatic carbon atoms in' the substantiallyhydrocarbon substituent are contemplated as being within the scope of this invention. This lower limit is based not onlyupon a consideration .of the oil-solubility of the substituted polyamines but also upcgn the effectiveness of such compounds in application contemplated by this invention.
The substantially hydrocarbon substituent of the succinic compound may contain polar groups provided, however, that the polar groups are not present in proportions sufiiciently large to alter signifiiantly the hydrocarbon character of the substituent. The polar groups are exemplified by the chloro, bromo, keto, ether, aldehyde, nitro, etc. The upper limit with respect to the portion of such polar groups in the substituent is approximately 10% based on the weight of the hydrocarbon portion of the substituent. V a V The sources of the substantially hydrocarbon substituent include principally the high molecular weight substantiallyi saturated petroleum fractions and substantially saturated olefin polymers, particularly polymers of monoolefins having from 2 to 'carbon atoms. The especially useful polymers are the polymers of l-mono-olefins such as ethylene, propene, l-biitene, isobutene, l-hexene, 1- octene, 2-methyl-l-heptene, 3-cyclohexyl-l-hutene, and 2- methyl-S-propyl-l-hexenefPolymers of medial olefins, i.e., olefins in which the olefinic linkage is not at the terminal position, likewise are useful. They are illustrated by 2- butene '3-penterfe, and 4-octene.
Also useful are the interpolymers of the olefins such as those illustrated above with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins. Such interpolymers include, for example, those prepared by polymerizing isobutene with styrene; isobutene with butadiene; propene with isoprene; ethylene with piperylene; isobutene with chloroprene; isobutene witlr p-methyl styrene; l-hexene with 1 3-hexadiene; l-octene with l-hexene; l-heptene; with l-pentene; 3-methyll-hutene with l-octene; 3,3-dimethyl-1-pentene with ihexene; isobutene with styrene and piperylenef etc.
The relative proportions :of the mono-olefins to the other monbmers in the interpolymers influence the stability andoil-solubjlity of the final products derived from such interpolymers. Thus, for reasons of oil-solubility and stability the interpolymers contemplated for use in this invention should be substantially aliphatic and substantially saturated, i.e., they should contain at least about 80%, preferably.;at least about 95%, on a Weight basis of units derived from the aliphatic monoolefins and no 4 more than about;5% of olefinic linkages based on the total number of carbon-to-carbon covalent linkages. In most instances, the percentage of oiefinic linkages should be less than about 2% of the total nu-mber of carbon-tocarbon covalent linkages.
Specific examples of such interpolymers include copolymer of 95% (by weight) of isobutene with 5% of styrene; terpolymer of 98% of isobutene with 1% of piperylene and 1% of chloroprene; terpolymer of 95% of isobutene with 2% of l-butene and 3% of l-hexehe; terpolymer of of isobutene with 20% of l-pentene and V 20% of l-octene; copolymer of 80% of l-hexene and 20% of l-heptene; terpolymer o-f of isobutene with 2% of cyclohexene and 8% of propene; and copolymer of 80% of ethylene and 20% of propene.
Another source ofathe substantially hydrocarbon radical comprises saturated aliphatic hydrocarbons such as highly refined high molecular weight white oils or synthetic alkanes such as are obtained by hydrogenation of high molecular weight olefin polymers illustrated above or high molecular weight olefinic substances.
:The useof olefin polymers having molecular weightof about 750-500 is preferred. Higher molecular weight olefin polymers having molecular weights from about 10,000 to about 100,000 or higher have been found to impart also viscosity index improving properties to the final products of this invention. The use of such higher molecular weight olefin polymers often is desirable.
The succinic acid-producing compounds useful in the above process are preferably substantially hydrocarbonsubstituted succinic acid and anhydrides. These succinic compounds are readily. available from .the reaction of maleic anhydride with a high molecular weight olefin or a chlorinated hydrocarbon such as the olefin polymer de- I scribed hereinabove. The reaction involves merely heating the two reactants at temperature about 100-200 C.. Theproduct from such a reaction is an alkenylgsuccinic' anhydride. The alkenyl group may be hydrogenated to an alkyl group. :The anhydride may be hydrolyzed by treat.- ment with water or steam to the corresponding acid. Either the anhydridezor the acid may be converted to the corresponding acid halide or ester by reaction with, e.g., phosphorus halide, phenols, ;or alcohols.
In lieu of the olefins or chlorinated hydrocarbons, other hydrocarbons containing an activating polar substituent, i.e., a substituent which is capable of activating the hydrocarbon molecule in respect to reaction? with maleic acid or anhydride, may be used in the above-illustrated reactiongfor preparing the succinic compounds. Such polar "substituents may be illustrated by sulfide, disulfide, nitro,
hydrocarbon at a temperatureiusually within the range from about 100 C. to about 200 C.
The acid halides of the succinic acids can be prepared by the reaction of the acids or their anhydrides with a halogenation agent such as phosphorus tri-brornide, phosphorus pentachloride or thionyl chloride. The esters of such acids can be prepared simply by the reaction of the acids or their anhydrides with an alcohol or a phenolic compound such as methanol, ethanol, octadecanol, cyclohexanol, phenol, naphthol, octylphenol, etc. The ester'ification is usually promoted by the use of an alkaline catalyst such as sodium hydroxide or sodium alkoxide or an acidic catalyst such as sulfuric acid. The nature of the alcoholic or phenolic portion of the ester radical appears to haveilittle influence on the utility of such ester as reactant in the process described hereinabove.
The phosphorus acid-producing reactants useful in the above process for forming the substituted polyamines of this invention may be phosphorus acids, anhydrides, esters, or halides. The. phosphorus acids, as indicated previously, may be phosphoric acids, phosphorous acids, phosphinyl acids (including phosphinic acids and phosphinous acids), and phosphonyl acids (including phosphonic acids and phosphonous acids). It will be noted that the phosphorus acids include the Oxyphosphorus acids, the thiophosphorus acids, as well as the mixed oxythiophosphorus acids (i.e., those containing both oxygen and sulfur). Thus, a phosphoric acid is used in a generic sense to denote the class consisting of phosphoric acid (H PO phosphorotetrathioic acid (H PS phosphoromonothioic acid (H PO S), phosphorodithioic acid (H PO S and phosphorotrithioic acid (H POS It should be noted that the acids containing both oxygen and sulfur may be further characterized according to the manner in which the oxygen or sulfur is attached to the phosphorus atom of the acid. The nomenclature used here follows essentially that proposed by the American Chemical and Engineering News, vol. 30, No. 43, Oct. 27, 1952. According to this nomenclature, for instance, a phosphorornonothioic acid in which the sulfur atom is attached only to the phosphorus atom (i.e., P(S) (OH)) is a phosphorothionic acid whereas its isomer in which the sulfur atom is attached to both the phosphorus atom and a hydrogen atom (i.e., -P(O)(SH)) is a phosphorothiolic acid. Also according to this nomenclature, the inclusion of thio analogs is admitted only when generic expressions are used and the specific designation of dioctylphosphoric acid refers to the oxy-acids only, i.e., (OctylO) P(O)(OH). Thus, dialkylphosphoric acids, i.e., dialkyl esters of phosphoric acids, include. dialkylphosphoric acid ((AlkyI--O) P(O)(OH)); dialkylphosphorotetrathioic acid ((AlkylS) P(S) (SH) O,S-dialkylphosphorodithionic acid O,S-dialkylphosphorodithiolic acid ((AlkylO) (AlkylS) P (0) (SH) O,S-dialkylphosphorotrithioic acid ((AlkylO) (Alky1-S)P (S) (SH) etc. Similarly, diarylphosphinic acids include: diarylphosphinic acid ((Aryl P(O)(OH)); diarylphosphinodithioic acid (Aryl P(S)'(SH)); diarylphosphinothionic acid (Aryl P(S)(OH)); and diarylphosphinothiolic acid y 2 Specific examples of the organic phosphonyl and phosphinyl acids include: diphenylphosphinic acid, dinaphthylphosphinodithioic acid, diheptylphosphinic acid, di- (heptylphenyl)phosphinous acid, di(chlorodecyl)phosphinic acid, phenylphosphonic acid, phenylphosphonous acid, phenylphosphonomonothioic acid, the acid obtained by the reaction of alpha-pinene with phosphorus pentasulfide, the acid obtained by the reaction of polyisobutene having a molecular weight of 1000 with phosphorus pentasulfide, the acid obtained by the reaction of a polyisobutene having a molecular weight of 500 with phosphorus trichloride and oxygen, and bis(o,p-dichlorophenyl) phosphinornorzothioic acid.
The phosphorus acids, anhydrides, esters, and halides likewise are useful for preparing the substituted polyamines. The anhydrides of inorganic phosphorus acids are especially desirable. They are illustarted by phosphorus pentoxide, phosphorus pentasulfide, phosphorus heptasulfide, phosphorus sesquisulfide, and phosphorus oxysulfide. The anhydrides of organic phosphorus acids are exemplified by the anhydrides of diphenylphosphinic acid, 0,0'-dioctylphosphorodithioic acid, dinaphthylphosphinodithioic acid, etc. The halides of the phosphorus acids include, for instance, phosphorus trichloride, phosphorus pentachloride, phosphorothioic trichloride, phosphorus tribromide, diphenylphosphinic chloride, di(chlorophenyl) phosphinoihioic chloride, 0,0'-diphenylphosphorothioic chloride, phenylphosphonic dichloride, diphenylphosphinous chloride, diphenylphosphorus trichloride, and diphenylphosphinothioic bromide.
The esters of the phosphorus acids may be the completely esterified acids or partially esterified acids. The latter are also known as acidic esters, i.e., at least a portion of the acid is not esterified; they are illustrated by the monoor the di-esterified phosphoric or phosphorous acids and the mono-esterified phosphonic or phosphonous acids. The ester potion may be derived from a substantially hydrocarbon radical usually one having less than about 30 and preferably from about 1 to about 24 aliphatic carbon atoms. The substantially hydrocarbon radicals are exemplified by methyl, ethyl, chloromethyl, o-chlorophenyl, p-bromophenyl, alpha-chloronaphthyl, beta-heptylnaphthyl, o,p-din1ethoxyphenyl, tolyl, isobutyl, octadecyl, 4-chloro-2-heptadecyl, eicosyl, naphthyl, ben- -zyl, chlorobenzyl, 2-phenylethyl, cyclohexyl, cyclopentyl, 2-methylcyclohexyl, the hydrocarbon radical derived from polypropene having a molecular weight of 1,500, the hydrocarbon radical derived from polyisobutene having a molecular weight of 5000, behenyl, stearyl, oleyl, allyl, propargyl, o-heptylphenyl, 2,4,6-trimethylphenyl, 2- mercaptophenyl, m-nitrophenyl, methoxytetraethoxymethyl, l0-keto l-octadecyl, polyisobutene (molecular Weight of 1,000)-substituted :phenyl, xenyl, S-naphthyl- Z-decyl, lO-tolyl-l-stearyl, and 9,10-dichlorostearyl radical.
The commonly used esters are, for example, methyl ester of phosphoric acid, dimethyl ester of phosphoric acid, trirnethyl ester of phosphoric acid, methyl ester of phosphorothionic acid, O-methyl ester of phosphorothiolic acid, dicyclohexyl ester of phisphoric acid, 0,0-dicyclehexyl ester of phosphorodithioic acid, dicyclohexyl ester of phosphorotetrathioic acid, O-cyclohexyl-S-decyl ester of phosphoromonothioic acid, 0,0-diphenyl ester of phosphoromonothiolic acid, triphenyl ester of phosphoric acid, triphenyl ester of phosphorous acid, tritolyl ester of phosphoric acid, dioctadecyl ester of phosphorus acid, trinaphthyl ester of phosphorous acid, trinaphthyl ester of phosphoric acid, 0,0-dinaphthyl ester of phosphoromonothionic acid, 0,0-dinaphthyl ester of phosphorothiolic acid, di(heptylphenyl) ester of phosphoric acid, bis(dichlorophenyl) ester of phosphorous acid, S-benzyl ester of phosphoromonothiolic acid, S,S-di(phenylethyl) ester of phosphorodithioic acid, O,S-didecyl ester of phosphorotrithiolic acid, S,S-didodceyl ester of phosphorotrithiolic acid, diphenyl ester of phosphorotetrathioic acid, O-dodecyl-S-phenyl ester of phosphoromonothiolic acid, 0,0-diisooctyl ester of phosphorodithioic acid, di(nitrophenyl) ester of phosphoric acid, 0,0-di(nitrophenyl) ester of phosphorodithioic acid, 0,0-di(methoxyphenyl) ester of phosphorodithioic acid, 0,0'-di(methoxyphenyl) ester of phosphorodithioic acid,
ester of phosphoric acid, di(methyl(OC H ester of phosphoric acid, decyl octadecyl ester of phosphoric acid, di(4-keto-1-decyl) ester of phosphoric acid, methyl ester of diphenylphosphinic acid, ethyl ester of diphenylphosphinodithioic acid, cyclohexyl ester of dinaphthylphosphinomonothiolic acid, octyl ester of dicyclohexylphosphinomonothioic acid, dimethyl ester of methylphosphonic acid, dimethyl ester of ethylphosphonomono thionic acid, dodecyl ester of cyclohexylphosphonic acid, tertiary-butyl ester of di(heptylphenyl)phosphinous acid, diphenyl ester of phenylphosphonotrithioic acid, diphenyl ester of phenylphosphonous acid, di(polyisobutene (molecular weight of 1500)-substituted phenyl) ester of phosphoric acid, 0,0'-di(polypropene (molecular weight of 300)-substituted naphthyl) ester of phosphorodithioic acid, and oleyl ester of phosphoric acid.
The esters of phosphoric acid and phosphorothioic acids are obtained 'by the reaction of phenol or an alcohol with phosphoric acid or a phosphorothioic acid, or an anhydride of the acid such as phosphorus pentoxide, phosphorus pentasulfide, or phosphorus oxysulfide. The reaction is usually carried out simply by mixing the reactants at a temperature above about 50 C., preferably between about 80 C. and 150 C. In many instances, however, the esters of phosphoric acids tend to decom pose at high temperatures. Thus it is often desirable to avoid prolonged exposure of the reaction mixture to temperatures above about 150 C. A solvent may be used in the reaction to facilitate mixing of the reactants and control of the reaction temperature. The solvent may be benzene, naphtha, chlorobenzene, mineral oil, kerosene, cyclohexane, or carbon tetrachloride, A solvent capable of forming a relatively low boiling azeotrope with water further aids the removal of Water in the esterification of an alcohol or phenol with the phosphorus acid reactant. The relative amounts of the alcohol or phenol reactant and the acid reactant influence the nature of the ester obtained. For instance, equimolar amounts of an alcohol and phosphoric acid tend to result in the formation of a monoester of phosphoric acid whereas the use of a molar excess of the alcohol reactant in the reaction mixture tends to increase the proportion of the diester or triester in the product. In most instances the product will be a mixture of the mono-, di-, and tri-esters of the acid and such a mixture is desirable for use in this invention for reasons of economy.
The reaction of an alcohol or phenol with phosphorus pentasulfide ordinarily results in 0,0-diester of phosphorodithioic acid. Such a reaction involves four moles of the alcohol or phenol per mole of phosphorus pentasulfide and may be carried out within the temperature range from about 50 C. to about 250 C. Thus, the preparation of 0,0'-di-n-hexylphosphorodithioic acid involves the reaction of phosphorus pentasulfide with four moles of n-hexyl alcohol at about 100 C. for about 2 hours. Hydrogen sulfide is liberated and the residue is the defined acid. Treatment of the phosphorodithioic acid with water or steam removes one or both sulfur atoms and converts the product to the corresponding phosphoromonothioic acid or phosphoric acid.
The esters of phosphorotetrathioic acid can be prepared by first the reaction of a mercaptan or thiophenol with PSCl or PSBr to produce an intermediate which is either a phosphorotrithioic halide or triester of phosphorotetrathioic acid and the subsequent reaction of the intermediate with hydrogen sulfide or sodium hydrosulfide. The esters of phosphorotrithioic acids are obtained by the treatment of the esters of the phosphorotetrathioic acids with water or steam.
The esters of phosphorous acids are obtained by the reaction of an alcohol or phenol with phosphorous acid or a phosphorus trihalide such as phosphorus tribromide or phosphorus trichloride and the above noted reaction usually requires carefully controlled conditions such as low temperature in order to give a substantial yield of the esters of phosphorous acids. Under other conditions the reaction of an alcohol or phenol with a phosphorus trihalide may result in a phosphonic acid or ester. Such esters are readily susceptible to rearrangement to phosphonic acids and esters.
The esters of phosphinic, phosphinous, phosphonic, and. phosphonous acids obtained by either direct esterification of the acid or an anhydride with an alcohol or phenol or the reaction of an acid halide with an alcohol or phenol. They are also obtained by the reaction of a salt of the acid such as sodium or ammonium salt of the acid with a suitable halogenated hydrocarbon. The methods for preparing the phosphorus acids and their anhydrides, esters, and halides are known in the art and are not discussed in further detail here.
The reaction by which the products of this invention are obtained can be effected simply by mixing a polyamine reactant with the succinic acid-producing and the phosphorus acid-producing reactants at the desired temperature. The use of an inert solvent in the reaction is not necessary but often desirable, especially when a highly viscous or solid reactant is present in the reaction mixture. The inert solvent useful in the reaction may be a hydrocarbon such as benzene, toluene, naphtha, cyclohexane, n-hexane, or mineral oil.
The chemical composition of the substituted polyamines resulting from the reaction depends primarily upon the reaction conditions employed and the nature of the reactants. Thus, a polyamine containing primaryamino groups is capable of forming salts or amides as well as imides or amidines with a succinic acid or anhydride. On the other hand, a polyamine containing secondary-amino groups is capable of forming salts and amides and a polyamine containing tertiary-amino groups is capable of forming only salts with a succinic acid or anhydride, Similarly, a polyamine having tertiary-amino groups forms salts with a phosphorus acid whereas one having primaryor secondary-amino groups may form either salts or amides with a phosphorus acid. When an ester of a succinic acid or phosphorus acid is used as the reactant with a polyamine, the reaction proceeds by replacing the ester radical with the amino group of the polyamine to form an amide or imide. A by-product of such a reaction is a hydroxyor thio-compound (e.g., alcohol or phenol) derived from the ester radical. The reaction of a polyamine with an acid halide may result in forming a salt, amide, or imide accompanied by the byproduct of hydrogen halide.
In general, a reaction temperature below about C. results in products having predominantly salt linkages, whereas at a higher temperature, the product usually contains predominantly amide, imide, amidine linkages or a mixture of such linkages. The maximum temperature for the reaction is limited by the decomposition point of the reaction mixture. It usually does not exceed about 250 C.
A convenient method of carrying out the process of this invention involves first reacting a polyamine with either one of the two acid-producing reactants (i.e., the succinic acid-producing reactant or the phosphorus acidproducing reactant) to form an intermediate and then reacting the intermediate with the other acid-producing reactant. For instance, an alkylene amine may be first partially acylated by reaction at 80 C., preferably at C. or a higher temperature, with a substantially hydrocarbon-substituted succinic acid or anhydride to form an intermediate having at least some nitrogen-succinic groups (such as succinamides or succinimide groups) and the intermediate is then reacted at 25 C. preferably at 50 C. or a higher temperature with phosphoric acid to form the final product having both nitrogen-succinic groups and nitrogen-phosphorus groups. Alternatively, the alkylene amine may be first combined with phosphoric acid at 25 C., preferably at 50 C. or a higher temperature to form an intermediate and the intermediate is then acylated at 80 C., preferably at 120 C. or a higher temperature with a substituted succinic acid or anhydride to form the final product. Still another method may be used which involves mixing the alkylene amine, the substituted succinic acid or anhyhydride, and phosphoric acid and maintaining the reaction mixture at the desired temperature such as about 10 C. or higher.
The relative proportions of the reactants to be used in the process of this invention are based on the utility of the products resulting therefrom for the purposes of this invention. For the most part, the amount of the phosphorus acid-producing reactant should be at least about 0.001 mole per mole of the alkylene amine used and the amount of the succinic acid-producing reactant should be at least about 0.25 mole per mole of the alkylene amine used. The preferred amounts of these reactants are such that there be from about 1 to 3 moles of the succinic reactant and from about 0.5 to 3 moles of the phosphorus reactant for each mole of the alkylene amine used. In most instances, the practical upper limit for the amounts of the succinic reactant and the phosphorus reactant is based on the stoichiometry for the reaction in which all of the amino groups of the alkylene amine reactant are combined with the succinic and the phosphorus reactants. Thus, such practical upper limit may be as many moles of the combined succinic and phosphorus reactants as the number of amino groups in the alkylene amine. For instance, where an alkylene amine having n number of amino groups, the practical upper limit for the total amounts of the succinic and the phosphorous reactants will be 11 moles per mole of the alkylene amine used.
It will be noted, however, that if an excess of any reactant is used in the process, the un-used reactant may be separated from the desired product by distillation, extraction, precipitation, filtration or such ordinary means; or it may be allowed to remain in the product. It will be also noted that within the above ranges for the amounts of the reactants, the process may result in partially substituted alkylene amines, i.e., products in which some of the amino groups of the alkylene amine reactant are not combined with a succinic or phosphorus reactant. The partially substituted polyamines are contemplated within the scope of this invention.
For the purposes of this invention, the molecular weight of a succinic compound is taken to be twice the equivalent weight based on its acid number as determined by an ASTM method. The molecular Weights of the alkylene amine and the phosphorus reactants likewise may be computed from the nitrogen content and the phosphorus content of such reactants, respectively.
The following examples illustrate the preparation of the compositions of this invention:
Example 1 A mineral oil solution of a partially acylated polyamine having a nitrogen content of 2.1% is prepared by adding 553 parts of a commercial ethylene amine mixture (having an average composition corresponding to that of tetra-ethylene pentamine and a nitrogen content of 34.3%) to a mixture of 5000 parts (1.67 moles per mole of the amine) of a polyisobutene-substituted succinic anhydride, having an acid number of 100 (prepared by the reaction of maleic anhydride and a chlorinated polyisobutene having a molecular weight of 1000 and a chlorine content of 4.3% at 200 C.) and 3650 parts of mineral oil and heating the mixture at 155160 C. for hours while nitrogen is bubbled through the mixture formed during the reaction is distilled ofi. An ester of phosphoric acid is prepared by heating a mixture of 119 parts (0.84 mole) of phosphorus pentoxide, 1332 parts (3.34 moles) of octylphenyl and 485 parts of toluene (solvent) at the reflux temperature (125 -130 C.) azeotropically distilling off the water formed during the reaction within a period of 6 hours, and then removing the solvent from the product by heating the reaction mixture to 140 C./30 mm. The ester is a mixture of the esters of phosphoric acid having a phosphorus content of 3.7% and an acid number of 65 (bromphenol blue indicator). A mixture of this ester (430 parts, 1.67 moles per mole of the amine) and the above partially acylated polyamine (1000 parts) is prepared at 6065 C. and then heated at 105 l10 C. for 3 hours. The product is a substituted polyamine and has a phosphorus content of 1.1% and a nitrogen con tent of 1.5%.
Example 2 A decyl ester of phosphoric acid is prepared by adding one mole of phosphorus pentoxide to 3 moles of decyl alcohol at a temperature within the range from 32 C. to 55 C. and then heating the mixture at 6063 C. until reaction is complete. The product is a mixture of the decyl esters of phosphoric acid having a phosphorus content of 9.9% and an acid number of 250 (phenolphthalein indicator). To a mineral oil solution of a partially acylated polyamine (prepared by the heating of 1021 parts of the polyisobutene-substituted succinic anhydride of Example 1, parts of the commercial ethylene amine described in Example 1, and 684 parts of mineral oil at 150 C. for 10 hours) there is added 137 parts of the above decyl ester at l45150 C. within a period of 30 minutes. The mixture is heated at 150 C. for 1 hour and filtered. The filtrate is diluted with parts of mineral oil and the final oil solution has an oil content of 40%, a nitrogen content of 1.7%, and a phosphorus content of 0.67%.
Example 3 A mineral oil solution of a partially acylated polyamine (1075 grams) having a nitrogen content of 1.9% and prepared according to the procedure described in Exampie 2 is mixed with 204 grams (1.4 moles per mole of the ethylene amine used) of the octadecyl ester of phosphoric acid prepared by the reaction of 3 moles of octadecyl alcohol with 1 mole of phosphorus pentoxide at a temperature of 80-l00 C. and having a phosphorus content of 6.4% and an acid number of 116. The mixture is heated at 6085 C. for 1 hour. The product is a 60% oil solution of a substituted polyamine having nitrogen groups attached to succinic radicals and phosphorus acid salt radicals and has a nitrogen content of 1.6% and a phosphorus content of 0.97%.
Example 4 An ester of phosphoric acid is prepared by heating 1 mole of nonyl-phenyl-polyoxyethylene-ethanol having a molecular weight of 386, 0.25 mole of phosphorus pentoxide, and 140 grams of toluene at the reflux temperature while water is removed by azeotropic distillation. Toluene is distilled off by heating the residue to C./ 30 mm. and the product is a mixture of the esters of phosphoric acid having a phosphorus content of 3.9% and an acid number of 68 (bromophenol blue indicator). A mixture of 360 grams (1.85 moles per mole of the ethylene amine used) of the ester and 840 grams of the oil solution of the partially acylated polyamine of Example 1 is prepared at 6065 C. and then heated at 1051l0 C. for 3 hours. The residue is an oil-soluble substituted polyamine having a phosphorus content of 1.1% and a nitrogen content of 1.2%.
Example 5 An ester of phosphoric acid having a phosphorus content of 0.77% is obtained by reacting a polyisobutenesubstituted propyl alcohol with phosphorus pentoxide in a molar ratio of 4 to 1, respectively, at 130140 C. and filtering the product obtained. The polyisobutene-substituted propyl alcohol is prepared by reacting a chlorinated polyisobutene having a chlorine content of 4.7% and a molecular weight of 750 with methyl acrylate at 190200 C. to form the methyl ester of polyisobutenesuhstituted propionic acid and reducing the ester so formed with sodium in the presence of hexyl alcohol and xylene at 140 C. The polyisobutene-substituted propyl alcohol has a hydroxyl content of 0.9%. An oil-soluble product is obtained by heating the oil solution of the par tially acylated polyamine of Example 1 (385 parts), the above ester of phosphoric acid (729 parts, 1.6 moles per mole of the amine reactant), and 743 parts of mineral oil at 6070 C. for 4 hours. The resulting oil solution of the substituted polyamine has a nitrogen content of 0.4% and a phosphorus content of 0.3%.
Example 6 A mixture of 190 grams (.9 mole) of a commercial ethylene amine having a nitrogen content of 33% and an average composition corresponding to that of tetraethylene pentamine and grams (0.5 mole) of tritolyl ester 1 l of phosphorous; acid having a phosphorus content of 8.9% is prepared at 25'38 C., heated to 200 *C. in 2.5 hours, and then heated at 200225 C. for 5 hours to distill off volatile components of the reaction mixture. The residue is an intermediate product having phosphorus acid amide linkages. 'Fnis intermediate is added to 1632 grams (1.5 moles) of a polyisobutene (molecular weight of 1000) substituted succinic anhydride having an acid number of 103 in 1000 cc. of toluene and 1313 grams of mineral oil at 8090 C. The mixture is heated at the reflux temperature ('ll5-128 C.) while water is removed by azeotropic distillation in 5 hours. The residue is heated to 190 C./ 9 mm. to distill off all volatile components and then filtered. The filtrate is an ,oil-soluble substituted polyamine having a nitrogen content of 2.1% and a phosphorus content of 0.4%.
Example 7 An oil-soluble substituted polyamine is obtained by reacting 1005 grams of a 60% oil solution of a partially acylated polyarnine having a nitrogen content of 2.8%
i(prepared by the reaction of 1 equivalent of a polyiso- "'butene-substituted succinic anhydride of Example 1) with 2 equivalents of a commercial ethylene amine having a nitrogen content of 34.3% and an average composition corresponding to that of tetraethylene pentamine at (150155 C.), 306 grams (2; moles per mole of the amine reactant) of an ester of phosphoric acid (prepared from '3 moles of tride'cyl alcohol and 1 mole of phosphorus pentoxide), and 203 grams of mineral oil at 65 85 C. The product is filtered and the filtrate is found to have a nitrogen content of 2% and a phosphorus content of 1.7%. a
8 Example 8 2 mole per 0.15 mole of the amine reactant) of the above mixed ester at 5578.C. The mixture is heated at 85 C. fora3 hours and filtered. The filtrate is the oil soluble product having a phosphorus content of 2.6%, a sulfur content of 3.3%, and a nitrogen content of 1.4%
:Example 9 'A mixture of 755 grams of soya lecithin having a phosphorus content of 2.1%, 491 grams of the oil solution of the partially acylated polyamine of Example '1, and 235 grams of mineral oil is heated at 165 C. for 4 hours. The residue is an oil-soluble product having a phosphorus content of 1% and a nitrogen content of 1.2%.
Example 10 A mixture of 207 grams of the dee'yl ester of phosphoric acid (prepared by' 'the procedure described in Example 2) and 1270 grams of an oil solution containing 40% of mineral oil and 60% of the partially acylated polyamine (prepared according to the procedure of Example 7) is heated at 5565 C. for 1 hour. The product has an acid number of 27 (phenolphthalein indicator). It is then 1 neutralized by treatment by barium oxide in excess of the stoichiometric amount) and water at 90100 C. The neutralized product'is dried and filtered. Thej'filtrate is the oil-soluble product having a phosphorus content of 0.8%, a nitrogen content of 1.6%, a barium sulfate ash content of 7.5%, and an acid number of 5 (phenolphthalein indicator). l
1 2 Example 1 1 A mixture of; 164 grams of the oil solution of the partially acylated polyamine (having a nitrogen content of 3.4% and prepared by the procedure of Example 3 from 1.5 moles of the polyisobutene substituted succinic anhydride and 0.8 mole of the commrecialethylene"amine) and 36 grams of a mixture of esters of phosphoric acid prepared by the reaction of 4 moles of tertiary-pentylphenol with 1 mole of phosphorus pentoxide at 150- 160 C. is heated at 95 C. for 1.5 hours. The residue is an oil-soluble product having a nitrogen content of 2.7% and a phoshorus content of 1.5%
Example 12 1:
grams of the product and 480 grams of mineral oil is heated at 8090 C. and 68 grams of boron trifiuoride is 7 bubbled into the' mixture at this temperature throughout 1 a period of 1.5 hours. The product is blown with nitrogen for 0.5 hour and the residue has a nitrogen content of 1.2%, 'a phosphorus content of 0.5%, and a boron content of 0.5% W W Example 13 A hexyl alcohol ester of phosphoric acid is prepared as follows: phosphorus pentoxide is added in small increments to 4-methyl-2-pentyl alcohol (3 moles per mole of phosphrus pentoxide) within a period of 1 hour at 1628 C. The mixture is maintained at 2853 C. for 1 hour whereupon a homogeneous solution is obtained. It is heatedto 5055 C., mixed with a filter acid, and filtered. The filtrate is a mixture of .the hexyl esters of phosphoric acid having a phosphorus content of 14% and an acid number of 293 (phenolphthalein indicator). A mixture of 67 grams of the above ester (0.3 mole), grams of mineral oil, and 1000 grams (0.3 mole of..the amine reactant) of a 60% oil solution of the partially acylated polyamine prepared as is described in Example 2 is heated at 90100 C. for 0.5 hour. The resulting homogeneous product has a nitrogen content of 1.8% and a phosphorus content of 0.8%.
Example 14 A butyl ester'of phosphoric acid is prepared bya procedure similar to that described in Example 13 except that butyl alcohol is used in place of the hexyl alcohol. The ester is a mixture of the butyl esters of phosphoric acid having a phosphorus content of 16.4% and an acid number of 420 (phenolphthalein indicator). This ester (413 grams, 2.2 moles) is added to a mixture of 275 grams of mineral oil and a 60% oil solution of a partial 1y acylated polyamine (1170 grams, 0.7 mole of the amine reactant); prepared by' reacting 1 equivalent of the polyisobutene substituted succinic anhydride of Example 1 With 4 equivalents of a cornmercial ethylene amine mixture having a nitrogen content of 34% and an average composition corresponding to that of tetraethylene pentamine at 145 f -165 C? for 6 hours and diluting the product with mineral oil. The mixture is stirred at C. for 1 hour to give a product having a nitrogen content of 3% and a' phosphorus content of 2.7%.
Example 15,
861 grams (0.33 mole of the amine reactant) of a'60% mineral oil solution of the partially acylated polyamine 13 Example 16 A mixture of 134 grams (0.35 mole) of 0,0'-di-isooctylphosphorodithioic acid having an acid number of 1-46 and 1000 grams (0.3 mole of the amine reactant) of a 60% mineral oil solution of the partially acylated polyamine prepared as described in Example 2 is maintained at 6080 C. for 0.5 hour, diluted with mineral oil to a solution having an oil content of 40% and filtered. The filtrate has a nitrogen content of 1.6%, a sulfur content of 2%, and a phosphorus content of 0.9%.
Example 17 A mixture of 18.2 grams (0.17 mole) of ethyl ester of metaphosphoric acid having the empirical formula of C H OPO and 421 grams (0.14 mole of the amine reactant) of a 60% oil solution (having a nitrogen content of 2.3%) of the partially acylated polyamine prepared as described in Example 1 is prepared at 5060 C. and heated at 7090 C. for 6 hours. The resulting product is a brown viscous liquid having a phosphorus content of 1.2% and a nitrogen content of 2.2%.
Example 18 A partially acylated polyamine is prepared by the reaction of 107 grams (0.5 mole) of a commercial ethylene amine mixture having a nitrogen content of 33% and an average composition corresponding to that of tetraethylene pent-amine and 1000 grams (1 mole) of a polyisobutene substituted succinic anhydride of Example 1 in 5 00 grams of mineral oil at 135-160 C. To this intermediate product there is added 212 grams of 0,0-di(4-methyl-2- pentyl) phosphorodithioic acid at 6980 C. The mixture is heated at 90100 C. for 1 hour, diluted with 367 grams of mineral oil and filtered at 100 C. The filtrate has a nitrogen content of 1.6%, a sulfur content 2.1%, and a phosphorus content of 1%.
Example 19 An ester of thiophosphoric acid is prepared by reacting 4 moles of a commercial mixture of alcohols consisting of about 50% of cetyl alcohol and 40% of stearyl alcohol having an average molecular weight of about 260 with 1 mole of phosphorus pentasulfide at 7087 C. and filtering the product. The product consists essentially of the 0,0-diesterified phosphorodithioic acid having a sulfur content of 9.2, a phosphorus content of 4.8%, and an acid number of 68 (bromphenol blue indicator). To 1000 grams of a 60% mineral oil solution of the partially acylated polyamine of Example 2 there is added 290 grams of the above ester. The mixture is heated at 60- 80 C. for 0.5 hour, diluted with 193 grams of mineral oil, and filtered at 100 C. The filtrate has a sulfur content of 1.9%, a phosphorus content of 0.9%, and a nitrogen content of 1.4%.
Example 20 A mixture of 1057 grams of a 60% mineral oil solution (having a nitrogen content of 2.7%) of the partially acylated polyamine prepared as described in Example 7 and 394 grams (0.44 mole) of a 70% toluene solution of 0,0-di (heptylphenyl phosphorothiothyl succinic anhydride having a phosphorus content of 3.5% (obtained by the reaction of 0,0di(heptylphenyl)phosphorodithioic acid and maleic anhydride) is heated at 150l60 C. for 4 hours. The mixture is heated to 150 C./4 mm. to remove toluene and diluted with mineral oil to a solution containing 40% of oil. The oil solution has a sulfur content of 0.99%, a phosphorus content of 0.9%, and a nitrogen content of 1.9%.
Example 21 An oil-soluble composition is prepared by a procedure similar to that described in Example except that the maximum temperature at which the partially acylated polyamine and the 0,0'-di(heptylphenyl)phosphorodithioic acid are reacted is 60 C. The product consists essen- 14 tially of a salt of the phosphorodithioic acid with the polyamine. The product is diluted with mineral oil to a solution containing 40% of the oil and the solution has a nitrogen content of 1.6%, a sulfur content of 3.2%, and a phosphorus content of 1.1%.
Example 22 A partially acylated polyamine is prepared by the reaction of 160 grams (0.7 mole) of a commercial ethylene amine having a nitrogen content of 33% and an average composition corresponding to that of tetraethylene pentamine and 1000 grams (1 mole) of the polyisobutenesubstituted succinic anhydride of Example 1 in 500 grams of mineral oil at 148 l80 C. and removing all of the water formed from the reaction. The product is diluted with 565 grams of mineral oil to a solution having an oil content of 40% To this solution there is added 635 grams of 0,0-di(4-methyl-2-pentyl)phosphorodithioic acid at 70-85 C. An exothermic reaction occurs. The mixture is heated at 100 C. for 1 hour and filtered at 150l60 C. The filtrate has a phosphorus content of 2.1%, a sulfur content of 4.5%, and a nitrogen content of 1.6%.
Example 23 A 60% mineral oil solution (1286 grams) of the partially acylated polyamine prepared as described in Example 2 is mixed with 300 grams of mineral oil and heated to 170 C. To this solution there is added 176 grams (0.5 mole) of tritolyl ester of phosphorus acid at 75 C. The mixture is heated at 150l62 C./611 mm. for 11 hours whereupon 73 grams of a distillate is collected, which contains 67% of cresol. The residue is diluted with 373 grams of mineral oil and filtered at 160 C. The filtrate has a phosphorus content of 1.2% and a nitrogen content of 1.3%.
Example 24 A 60% mineral oil solution (1286 grams) of the partially acylated polyamine prepared as described in Example 2 is diluted with 300 grams of mineral oil and mixed with 59 grams (0.17 mole) of tritolyl ester of phosphorous acid at 154170 C./2-4 mm. for 3 hours. A total of 56 grams of distillate is collected which consists substantially of cresol. The residue is diluted with 300 grams of mineral oil and the oil solution is found to have a phosphorus content of 0.3% and a nitrogen content of 1.6%.
Example 25 A polyamine having a nitrogen content of 32% is obtained by the reaction of acrylonitrile with 216 grams of a mixture consisting of 75% (by weight) of triethylene tetramine and 25% of diethylene triamine at -130 C. for 5 hours. To 713 grams of polyisobutene substituted succinic anhydride of Example 1 there is added grams of the above polyamine at 80100 C. within a period of 1 hour. The mixture is heated at 100 C. for 5 hours and then mixed with 76 grams of tritolyl ester of phosphorous acid at C. within a period of 1 hour. The resulting mixture is heated at -200 C. for 7 hours and then to 190100 C./15 mm. A total of 71 grams of cresol is collected as the distillate. The residue is filtered. The filtrate has a nitrogen content of 2.4% and a phosphorus content of 0.4%.
Example 26 A mixture of 138 grams of tritolyl ester of phosphorus acid and 250 grams of the polyamine prepared from acrylonitrile and a mixture of triethylene tetramine and diethylene triamine by the procedure described in Example 25 is prepared at 2832 C. and then heated at 140150 C./4 mm. for 3.5 hours. A total of 99 grams of distillate is collected which consists substantially of cresol. The residue is then heated to C./9 mm. and is found to have a nitrogen content of 24.5% and a phosphorus content of 4.8%. The polyisobutene substituted succinic anhydride of Example 1 (740 grams) is then mixed With 153 grams of the above product of the polyamine with tritolyl ester of phosphorous acid and 355 grams of mineral oil at 160190 C. for 8.5 hours. A total of 11 grams of Water is collected as the distillate. The product is diluted with 214 grams of mineral oil and filtered at 160 C. The filtrate has a nitrogen content of 2.6% and a phosphorus content of 0.5%
Example 27 An imidazoline is prepared by mixing 1164 grams (5.8 moles) of lauric acid, 836 grams of an amine mixture consisting of 75% (by weight) of triethylene tetramine and of diethylene triamine, and 200 grams of toluene at 2573 C.; refluxing the mixture at l33208 C. for 22.3 hours while toluene and the water formed from the reaction is gradually removed by distillation and heating and residual product to 155 C./5 mm. A total of 1641 grams of the imidazoline is obtained, having a nitrogen content of 17%. A portion (378 grams) of the imidazoline is added at 80 C. to 1000 grams of the polyisobutene substituted succinic anhydride of Example 1 and 450 grams of toluene and the mixture is heated at 150-170 C. for 5 hours while water (17 grams) is removed by distillation. The residue is diluted with 153 grams of toluene and filtered at 100 C. The filtrate is a toluene solution of intermediate product having a nitrogen content of 3.4%. Toluene is then replaced by mineral oil and the oil solution (oil content of 40%) of the intermediate product and 472 grams of tritolyl ester of phosphorous acid is heated at 120170 C./23 mm. for 4.5 hours whereupon a total of 98 grams of cresol is collected as the distillate. The residue is found to have a phosphorus content of 2.1% and a nitrogen content of 2.3%.
Example 28 A partially acylated polyamine is prepared by the reaction of 1 equivalent of the polyisobutene substituted succinic anhydride of Example 1 with one equivalent of a commercial ethylene amine having a nitrogen content of 33% and an average composition corersponding to that of tetraethylene pentamine at 150-160 C. A mixture of 933 grams of a 60% mineral oil solution (having a nitrogen content of 1.5%) of the partially acylated polyamine and 250 grams (0.77 mole) of the decyl ester of phosphoric acid having a phosphorus content of 9.5% and prepared as described in Example 2 is heated at 50- 70 C. for 1 hour. The residue is found to have a nitrogen content of 1.2% and a phosphorus content of 2.3%.
Example 29 A mixture of 2330 grams of a 60% mineral oil solution of the partially acylated polyamine prepared as is described in Example 28 and 89 grams (0.625 mole) is heated at from 30 C. to 160 C. in 2 hours, blown with nitrogen at 160 C. for 3 hours, and filtered. The product has a nitrogen content of 1.4%, a phosphorus content of 0.8%, and an acid number of 45 (phenolphthalein indicator).
Example 30 A mixture of 825 grams (0.25 mole of the amine reactant) of the oil solution of the partially acylated polyamine of Example 1 and 26 grams (0.08 mole) of a crude di(carboxyphenyl)phosphinic acid having a phosphorus content of 9.9% is heated at 150-160 C. for 13 hours and at 160 C./ 20 mm. for 3 hours whereupon 7 grams of water is distilled off from the reaction mixture. The residue is filtered and the filtrate has a nitrogen content of 2% and a phosphorus content of 0.3%.
Example 3 1 A mixture of 55 grams of phosphorus sesquisulfide and 1040 grams of a 60% mineral oil solution of the partially acylated polyamine of Example 7 is blown with nitrogen at 180 C. for 4 hours mixed with 272 grams of mineral 16 oil and blown with steam at 150-160 C. for 4 hours to remove unstably bound sulfur and then dried at'150 C. for 1 hour. The product is filtered. The filtrate has a sulfur content of 0.3%, a nitrogen content of 2%, and a phosphorus content of 1.4%.
Example 32 A 60% oil solution of a partially acylated polyamine having a nitrogen content of 1.14% is obtained by reacting at 160 C. 2 moles of the polyisobutene-substituted succinic anhydride of Example 1 and 0.6 mole of a commercial tetraethylene pentamine having a nitrogen content of 34% and diluting the product with mineral oil. A mixture of the solution 1230 grams) and phosphorus sesquisulfide (55 grams) is blown with nitrogen at 150 C. for 4 hours, diluted with 313 grams of mineral oil, filtered, blown with steam at 150 C. for 4 hours, dried at 150 C. for 1 hours and filtered. The filtrate has a nitrogen content of 0.9%, a sulfur content of 0.53%, and a phosphorus content of 1.4%
Example 33 A mixture of 570 grams of a 60% mineral oil solution of the partially acylated polyamine of Example 7 and 44 grams of phosphorus oxysulfide is heated at 180 C. for 4 hours and filtered at 150 C. The filtrate has a nitrogen content of 2.4%, a sulfur content of 1.2%, and a phosphorus content of 1.6%
Example 34 A mixture of 1130 grams of the 60% oil solution of the partially acylated polyamine of Example 7 and 24 grams of phosphorus pentoxide is heated at 110 C. for 1 hour, at 150-155 C. for 6 hours, and filtered. The filtrate has a phosphorus content of 0.7% and a nitrogen content of 2.1%
' Example 35 A substituted polyamine by the procedure described in Example 31 except that 87 grams of phosphorus heptasulfide is used in place of the phosphorus sesquisulfide. The product has a nitrogen content of 1.6%, a sulfur content of 0.9%, and a phosphorus content of 2.1%.
Example 36 A mixture is prepared from 352 grams of the oil solution of the partially acylated polyamine of Example 1 and 85 grams of a nonylphenyl ester of phosphorotetrathioic acid having a phosphorus content of 5.8% and obtained by the reatcion of 135 C. for 4 moles of p-nonylthiophenol with 1 mole of phosphorus pentasulfide. The mixture is heated at 7285 C. for 4.5 hours and filtered. The filtrate has a nitrogen content of 1.6%, a phosphorus content of 1.4%, and a sulfur content of 5%.
Example 37 A mixture of 1140 grams of the 60% oil solution of the partially acylated polyamines of Example 7, 111 grams of phosphorus pentasulfide, and 324 grams of mineral oil is heated at 160-170 C. for 6 hours and filtered at 160 C. The filtrate has a nitrogen content of 1.9%, a phosphorus content of 1.6% and a sulfur content of 3.7%
Example 38 A 50% mineral oil solution of a substituted polyamine is prepared by the procedure of Example 37 except that the amount of phosphorus pentasulfide used is equal to 0.2 equivalent of phosphorus per equivalent of nitrogen of the partially acylated polyamine used.
Example 39 A mixture of 1040 grams (0.3 mole of the amine reactant) of the 60% oil solution of the partially acylated polyamine of Example 1, grams (0.53 mole) of crude diphenylphosphinodithioic acid having a phosphorus con- 17 tent of 12.1%, and 90 grams of mineral oil is heated at 90% C. for 7 hours and blown with nitrogen for 6 hours whereupon grams of water is distilled off. The residue is filtered and the filtrate has a phosphorus content of 1.2%, a nitrogen content of 1.8%, and a sulfur content of 2.7%.
Example 40 A phosphorus acid is prepared by reacting 200210 C. 2 moles of a commercial hexadecene with 1 mole of phosphorus pentasulfide and hydrolyzing the product by blowing it with steam at 160 C. and diluted with an equal weight of mineral oil. The acid is a mixture of phosphonothioic and phosphinothioic acids and has a phosphorus content of 5.4%, a sulfur content of 5% and and acid number of 146. A mixture of 384 grams (0.67 mole) and 0.4 mole of the amine as the partially acylated polyamine of Example 7 is heated at 100 C.120 C. for 1.5 hours, dissolved in 243 grams of mineral oil and filtered. The filtrate has a sulfur content of 1.2%, a phosphorus content of 1.3%, and a nitrogen content of 1.4%.
Example 41 The oil solution of the partially acylated polyamine of Example 28 is mixed with 1% of its Weight (0.006 mole) per mole of the amine as the partially acylated polyamine intermediate of phosphorus pentoxide and the mitxure is heated at 158-160 C. for 1 hour. The resulting product has a phosphorus content of 0.0045 and a nitrogen content of 1.4%
Example 42 A phosphorus acid is obtained by heating a polyisobutene having a molecular weight of 1000 with of its weight of phosphorus pentasulfide at 260 C., and then blowing the product with steam at 160 C. The acid has a phosphorus content of 2.3% and an acid number of 41 (phenolphthalein indicator). A mixture of 1550 grams of a 60% oil solution of the partially acylated polyamine prepared as is described in Example 1 and 1220 grams is heated at 140 C. for 4 hours and filtered. The filtrate has a nitrogen content of 1%, a phosphorus content of 1%, and a sulfur content of 1%.
Example 43 A substituted polyamine is prepared by the procedure of Example 2 except that the commercial ethylene amine mixture is replaced on an equivalent nitrogen basis with ethylene diamine.
Example 44 A substituted polyamine is prepared by the procedure of Example 1 except that the commercial ethylene amine mixture is replaced on an equivalent nitrogen basis with triethylene tetramine.
Example 45 The process of Example 2 is repeated except that the polyisobutene-substituted succinic anhydride used in preparing the partially acylated polyamine intermediate is replaced on a chemical equivalent basis with polypropene (molecular Weight of 5000)-substituted succinic acid.
Example 46 The process of Example 2 is repeated except that the polyisobutene-substituted succinic anhydride and in preparing the partially acylated polyamine intermediate is replaced on a chemical equivalent basis with a di-methyl ester of the anhydride.
Example 47 A substituted polyamine is obtained by first partially acylating ethylene diamine with the polyisobutene-substituted succinic anhydride of Example 1 to form a monosuccinimide of the diamine and then reacting the monosuccinimide with dioctylphosphoric acid at room temperature to form a salt between the free amino group of the mono-succinimide and the acid.
Example 48 A mixture is prepared from 1 mole of nitrogen as N- piperazinylethyl alkenylsuccinimide in which the alkenyl radical is derived from a polyisobutene having a molecular weight of 1000 and 1 mole of phosphorus as dicyclohexylphosphoric acid. The mixture is maintained at 50- 70 C. for 4 hours to form a substituted N-aminoethyl piperazine in which a nitrogen group is attached to the succinic radical by a succinimide linkage and a nitrogen group is attached to dicyclohexylphosphoric radical by ammonium-phosphoric acid salt linkage.
Example 49 A partially acylated hexamethylene diamine having a nitrogen group attached to a polyisobutene (molecular weight of 60,000)'-substituted succinic radical by an amide linkage is treated at 50-80 C. with phenylphosphoric acid (1 mole per mole of the amine as the partially acylated diamine). The product is a substituted hexamethylene diamine containing both the above-noted succinic radical and a phosphoric acid radical attached to a nitrogen group of the diamine by a salt linkage.
Example 50 A succinic anhydride is obtained by reacting at 200- 220 C. for 20 hours one mole of maleic anhydride with one mole of a copolymer having a molecular weight of 1200 and prepared by copolymerizing parts (by weight) of isobutene with 5 parts of styrene at 2S0 C. in the presence of n-hexane as the solvent and aluminum chloride as the polymerization initiator. The succinic anhydride so obtained (0.5 mole) is mixed at 200 C. with diethylene triamine (0.3 mole) for 6 hours while the Water formed by the reaction is distilled off. The product consists substantially of the mono-succinimide of the triamine. A mixture of the mono-succinimide (2 moles of the amine) and tri-tolyl ester of phosphoric acid (1 mole) dissolved in twice its weight of mineral oil is heated at -200 C./2 mm. While cresol is distilled oil from the reaction mixture. The residue is a substituted polyamine having above-described succinimide linkage and a nitrogen group attached to a ditolyphosphoric radical by an amide linkage.
Example 51 A partially acylated polyamine is obtained by heating at 7080 C. methane diamine (1 mole) and an isobutene-isoprene copolymer-substaituted succinic acid (0.5 mole, the copolymer has a molecular Weight of 2000 and is obtained by copolymerizing a mixture of 99 parts (by Weight) of isobutene and 1 part of isoprene). The product is a salt of the acid and menthane diamine having an average of one free amino group per menthane diamine radical. This product is then heated with dicyclohexylphosphinodithioic acid (1 mole per mole of the diamine reactant as the partially acylated amine) at 50 -80 C. The product is a substituted polyamine having salt linkages between the nitrogen groups with both the succinic acid and the phosphinodithioic acid groups.
Example 52 A polyisobutene (molecular weight of 6,000)-substituted N,N'-dibutyl p-phenylenediamine is obtained by the reaction of two moles of the phenylene-diamine with a suitably substituted succinic anhydride. The product comprices principally the amide derived by the amidation of one of the amino groups of the phenylenediamine. The succinamide is mixed With di-tridecyl ester of phosphoric acid (1 mole per 0.1 mole of the amine reactant) at 50-80 C. for 5 hours so that a salt is formed between the two free amino groups in the succinam-ide and the phosphoric acid. The product thus is a substituted polyamine having a nitrogen group attached to the succinoyl radicals (i.e succinic radicalthrough a succinamide lint:- age) and a nitrogen group attached to a phosphoric acid through a salt linkage).
Example 3 1 The procedure of Example 2 is repeated except that the commercial ethylene amine used in preparing the partially acylated polyamine is replaced with N-hydroxyethyl ethylene diamine. V I
" Example 5 4' The procedure of Example 2 is repeatedzexcept that the commercial ethylene amine used in preparing the. partially acylated polyamine is replaced with N-aminoethyl morpholine. i
Example 55 The procedure of Example 2 is repeated except that the commercial ethylene amine used in preparing the partially acylated polyamine is replaced with melamine.
' Example 56 The procedure of Example 2 is repeated except that the commercial ethylene amine used in preparing the paetially acylated polyamine is replaced with N,N,N',N- tetramethyl hexamethylene diamine.
Example 57 N Example 59 The procedure of Example'58 is repeated except that phehyl ester'of diphenylphosphinodithioic acid and that the reaction temperature is 180 200 C./ mm. The by-product is thiophenol. The'substituted polyafmine contains both succinic radicals and phosphinic radicals (amide) attached to nitrogen groups.
Example 60 A mixture of N-octadeeyl trimethylene diamine (1 mole), the polyisobutene substituted succinic anhydride of Example 1 0.5 mole) and bis(di(heptylphenyl) phosphorothioic)sulfide (i.e., the anhydride of di(heptyl)- phosphorodithioic acid obtained by heating the acid to split off hydrogen sulfide}: (1 mole) is heated at 150 200 C. for 10 hours. The product is a substituted polyamine having nitrogen groups attached to the succinic and phosphorothioic radicals through amide linkages."
The substituted polyamines of this invention are useful for a wide variety of purposes including pesticides, plasticizers, rust inhibiting agents for'treatment of metals, corrosion-inhibiting agents, extreme pressure agents, antiwear 'agents, and detergents. I. i
A principal utility ,of such products is as additives in lubricants. It has been discovered in accordance with this invention that when used for such purpose their effectiveness to inpart a specific property to a lubricant is closely related to the size of the substantially hydrocarbon substituent in the succinic radical attached to the nitrogen groups of the substitued polyamines. More particularly it has been found that products in which the substantially hydrocarbon substituent contains more than about aliphatic carbon atoms are effective to impart oxidationinhibiting, and detergent properties to a lubricant. It has "internal combustion engines may contain from about 0.5
also been found that the detergent properties of the products diminish sharply with a decrease in the size of the substantially hydrocarbon substituent having less than about 50 aliphatic carbon atoms so that products having less tharr about 35 aliphatic carbon atoms in this substituent are ineffective as detergent additives in lubricants. The presence of the phosphorus radicals in the substituted polyamines further enhance the effectiveness of the products even though such radicals are attached to only a portiorr of the nitrogen groups of the substituted polyamines. 7
The lubricating oils in which the substituted polyamines of this invention are useful as additives may be of synthetic, animal, vegetable, or mineral origin. Ordinarily mineral lubricating oils are preferred by reason of their availability, general excellence, and low cost. For certain applications, oils belonging to one of the other three groups may be preferred. For instance, synthetic poly esters oil such as didodecyl adipate and di-Z-ethylhexyl sebacate are often preferred as jet engine lubricants} Normally the lubricating oils preferred will be fluid oils, ranging in viscosity from about 40 Saybolt Universal Seconds at F. to about 200 Saybolt Universal Seconds at 210 -F. e V
The concentration of the substituted polyamines as additives in lubricants usually ranges from about 0.01% to about 10% by weight. The optimum concentrations for a particular application depend to ,a large measure upon the type of service to which the lubricants is to be subjected. Thus, for example, lubricants for use in gaseline to about 5% of the additive, whereas lubricating compositions for use in gears and diesel engines may contain as much as 10% or even more of the additive.
This, invention contemplates also the presence or other additives in the lubricating compositions. Such additives include, for example, supplemental detergents of the ashcontaining type, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents, rust-inhibiting agents, and supplemental oxi-' dation and corrosion-inhibiting agents;
The ash-containing detergents are exemplified by 0il= soluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 10009 With a::phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride. The most commonly used salts of such acids are those of sodium, potassium, lithium, calcium, magnesium, strontium, and barium.
The term basic salt is used to designate the 'metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical. The commonly' employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or
sulfide at a temperature about 50 C. and filtering the resulting mass. The use of a promoter in the neutralization step to aid the incorporation of a large excess of metal likewise is known. Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alky-lphenol, and condensation products of formaldehyde with a phenolic substance; alcohols such as methanol, 2- propanol, ectyl alcohol, Cellosolve, carbotol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenyl-betanaphthylamine, and dodecylamine. A particularly eiTective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal 21 neutralizing agent, a phenolic promoter compound, and a small amount of water and carbonating the mixture at an elevated temperature such as 60-200 C.
The preparation of a basic sulfonate detergent is illustrated as follows: A mixture of 490 parts (by weight) of a mineral oil, 110 parts of water, 61 parts of heptylphenol, 340 parts of barium mahogany sulfonate, and 227 parts of barium oxide is heated at 100 C. for 0.5 hour and then to 150 C. Carbon dioxide is then bubbled into the mixture until the mixture is substantially neutral. The mixture is filtered and the filtrate found to have a sulfate ash content of 25% The preparation of a basic barium salt of a phosphorus acid is illustrated as follows: A polyisobutene having a molecular weight of 50,000 is mixed with by weight of phosphorus pentasulfide at 200 C. for 6 hours. The resulting product is hydrolyzed by treatment with steam at 160 C. to produce an acidic intermediate. The acidic intermediate is then converted to a basic salt by mixing twice its volume of mineral oil, 2 moles of barium hydroxide and 0.7 mole of phenol and carbonating the mixture at 150 C. to produce a fluid product.
The substituted polyamines are especially adapted for use in combination with extreme pressure and corrosioninhibiting additives such as metal dithiocarbamates, xanthates, the Group II metal phosphorodithioates and their epoxide adducts, hindered phenols, sulfurized cycloalkanes, di-alkyl polysulfides, sulfurized fatty esters, phosphosulfurized fatty esters, alkaline earth metal salts of alkylated phenols, dialkyl phosphites, triaryl phosphites, and esters of phosphorodithioic acids. Combinations of the substituted polyamines of this invention with any of the above-mentioned additives are especially desirable for use in lubricants which must have superior extreme pressure and oxidation-inhibiting characteristics.
The Group II metal phosphorodithioates are the salts of acids having the formula in which R and R are substantially hydrocarbon radicals. The metals for forming such salts are exemplified by barium, calcium, strontium, zinc, and cadmium. The barium and zinc phosphorodithioates are especially preferred. The substantially hydrocarbon radicals in the phosphorodithioic acid are preferably low or medium molecular weight alkyl radicals and alkylphenylradicals, i.e., those having from about 1 to about 30 carbon atoms in the alkyl group. Illustrative alkyl radicals include methyl, ethyl, isopropyl, isobutyl, n-butyl, sec-butyl, the various amyl alcohols, n-hexyl, methylisobutyl carbinyl, heptyl, 2-ethylhexyl, diisobutyl, isooctyl, nonyl, behenyl, decyl, etc. Illustrative lower alkylphenyl radicals include butylphenyl, amylphenyl, di-amylphenyl, octylphenyl, etc. Cycloalkyl radicals likewise are useful and these include chiefly cyclohexyl and the lower alkyl-cyclohexyl radicals. Other substantially hydrocarbon radicals likewise are useful such as tetradecyl, octadecyl, eicosyl, butylnaphthyl, hexylnaphthyl, octylnaphthyl, cyclohexylphenyl, naphthenyl, etc. Many substituted hydrocarbon radicals may also be used, e.g., chloropentyl, dichlorophenyl, and dichlorodecyl.
The availability of the phosphorodithioic acids from which the Group II metal salts of this invention are prepared is well known. They are prepared by the reaction of phosphorus pentasulfide with an alcohol or phenol. The reaction involves four moles of the alcohol or phenol per .mole of phosphorus pentasulfide, and may be carried out within the temperature range from about 50 C. to about 200 C. Thus the preparation of 0,0-di-n-hexyl phosphorodithioic acid involves the reaction of phosphorus pentasulfide with four moles of n-hexyl alcohol at 22 about C. for about 2 hours. Hydrogen sulfide is liberated and the residue is the defined acid. The preparation of the zinc or barium salt of this acid may be effected by reaction with zinc oxide or barium oxide. Simply mixing and heating these two reactants is sufficiout to cause the reaction to take place and the resulting product is sufliciently pure for the purposes of this invention.
Especially useful Group II metal phosphorodithioates can be prepared from phosphorodithioic acids which in turn are prepared by the reaction of phosphorus pentasulfide with mixtures of alcohols. The use of such mixtures enables the utilizatiton of cheaper alcohols which in themselves do not yield oil-soluble phosphorodithioic acids. Thus a mixture of isopropyl and hexyl alcohols can be used to produce a very effective, oil-soluble metal phosphorodithioate. For the same reason mixtures of simple phosphorodithioic (i.e., acids prepared from one alcohol) acids can be reacted with zinc oxide or barium oxide to produce less expensive, oil-soluble salts.
Another class of the phosphorothioate additives contemplated for use in the lubricating compositions of this invention comprises the adducts of the metal phosphorodithioates described above with an epoxide. The metal phosphorodithioates useful in preparing such adducts are for the most part the zinc phosphorodithioates. The epoxides may be alkylene oxides or arylalkylene oxides. The arylalkylene oxides are exemplified by styrene oxide, pethylstyrene oxide, alpha-methylstyrene oxide, 3-betanaphthyl-1,3-butylene oxide, m-dodecylstyrene oxide, and p-chlorostyrene oxide. The alkylene oxides include principally the lower alkylene oxides in which the alkylene radical contains 6 or less carbon atoms. Examples of such lower alkylene oxides are ethylene oxide, propylene oxide, 1,2-butene oxide, trimethylene oxide, tetramethylene oxide, butadiene monoepoxide, 1,2-hexene oxide, and propylene epichlorohydrin. Other epoxides useful herein include, for example, butyl 9,10-epoxy-stearate, epoxidized soya bean oil, epoxidized tung oil, and epoxidized copolymer of styrene with butadiene.
The adduct may be obtained by simply mixing the phosphorodithioate and the epoxide. The reaction is usually exothermic and may be carried out within wide temperature limits from about 0 C. to about 200 C. Because the reaction is exothermic it is best carried out by adding one reactant, usually the epoxide, in small increments to the other reactant in order to obtain convenient control of the temperature of the reaction. The reaction may be carried out in a solvent such as benzene, mineral oil, naphtha, or n-hexane.
The chemical structure of the adduct is not known. More than one mole, sometimes as many as four moles, of the epoxide can be made to combine with the phosphorodithioate to form products useful herein. However, adducts obtained by the reaction of one mole of the phosphorodithioate with from about 0.25 mole to about 1 mole of a lower alkylene oxide, particularly ethylene oxide and propylene oxide, have been found to be especially useful and therefore are preferred.
The lubricating compositions may contain metal detergent additives in amounts usually within the range of about 0.1% to about 20% by weight. In somev applications such as in lubricating marine diesel engines the lubricating compositions may contain as much as 30% of a metal detergent additive. They may contain extreme pressure addition agents, viscosity index improving agents, and pour point depressing agents, each in amounts within the range from about 0.1% to about 10%.
The following examples are illustrative of the lubricating compositions of this invention: (all percentages are by weight).
Example I SAE 20 mineral lubricating oil containing 0.5% of the product of Example 1.
23 Example II SAE 30 mineral lubricating oil containing 0.75% of the product of Example 2 and 0.1% of phosphorus as the barium salt of di-n-nonylphosphorodithioic acid.
Example III SAE W-30 mineral lubricating oil containing 0.4% of the product of Example 3.
Example IV SAE 90 mineral lubricating oil containing 0.1% of the product of Example 4 and 0.15% of the zinc salt of an equimolar mixture of di-cyclohexylphosphorodithioic acid and di-isobutyl phosphorodithioic acid.
Example V SAE 30 mineral lubricating oil containing 2% of the product of Example 30.
Example VI SAE W-30 mineral lubricating oil containing 5% of the product of Example 39.
Example VII SAE 10W-30 mineral lubricating oil containing 1.5% of the product of Example 2 and 0.05% of phosphorus as the zinc salt of a phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with a mixture of 60% (mole) of p-butylphenol and 40% (mole) of n-pentyl alcohol.
Example VIII SAE 50 mineral lubricating oil containing 3% of the product of Example 40 and 0.1% of phosphorus as the calcium salt of di-hexylphosphorodithioate.
Example IX SAE 10W-30 mineral lubricating oil containing 2% of the product of Example 2, 0.06% of phosphorus as zinc di-n-octylphosphorodithioate, and 1% of sulfate ash as barium mahogany sulfonate.
Example X SAE mineral lubricating oil containing 5% of the product of Example 10, 0.1% of phosphorus as the zinc salt of a mixture of equimolar amounts of di-isopropylphosphorodithioic acid and di-n-decylphosphorodithioic acid, and 2.5% of sulfate ash as a basic barium detergent prepared by carbonating at 150 C. a mixture comprising mineral oil, barium di-dodecylbenzene sulfonate and 1.5 moles of barium hydroxide in the presence of a small amount of water and 0.7 mole of octylphenol as the promoter.
Example XI SAE 10W-30 mineral lubricating oil containing 6% of the product of Example 17, 0.075% of phosphorus as zinc di-n-octylphosphorodithioate, and 5% of the barium salt of an acidic composition prepared by the reaction of 1000 parts of a polyisobutene having a molecular Weight of 60,000 With 100 parts of phosphorus pentasulfide at 200 C. and hydrolyzing the product with steam at 150 C.
Example XII SAE 10 mineral lubricating oil containing 2% of the product of Example 25, 0.075% of phosphorus as the adduct of zinc di-cyclohexylphosphorodithioate treated with 0.3 mole of ethylene oxide, 2% of a sulfurized sperm oil having a sulfur content of 10%, 3.5% of a poly- (alkyl methacrylate) viscosity index improver, 0.02% of a poly-(alkyl methacrylate) pour point depress-ant, 0.003% of a poly-(alkyl siloxane) anti-foam agent.
24 Example XIII SAE 10 mineral lubricating oil containing 1.5 of the product of Example 27, 0.075% of phosphorus as the adduct obtained by heating zinc dinonylphosphorodithioate with 0.25 mole of 1,2-hexene oxide at C., a sulfurized methyl ester of tall oil acid having a sulfur content of 15%. 6% of a polybutene viscosity index improver, 0.005% of a poly-(alkyl methacrylate) antifoam agent, and 0.5% of lard oil.
Example XIV Example XV SAE 10 mineral lubricating oil containing 25% of the product of Example 33, 0.07% of phosphorus as zinc dioctylphosphorodithioate, 2% of a barium detergent prepared by neutralizing with barium hydroxide the hydrolyzed reaction product of a polyproplene (molecular Weight 2000) with 1 mole of phosphorus pentasulfide and 1 mole of sulfur, 3% of a barium sulfonate detergent prepared by carbonating a mineral oil solution of mahogany acid, and a 500% stoichiometrically excess amount of barium hydroxide in the presence of phenol as the promoter at 180 C., 3% of a supplemental ashless detergent prepared by copolymerizing a mixture of 95% (Weight) of decyl-methacrylate and 5% (Weight) of diethylaminoethylacrylate.
Example XVI SAE 80 mineral lubricating oil containing 2% of the product of Example 20, 0.1% of phosphorus as zinc di-nhexylphosphorodithioate, 10% of a chlorinated parafiin Wax having a chlorine content of 40%, 2% of di-butyl tetrasulfide, 2% of sulfurized dipentene, 0.2% of oleyl amine, 0.003% of an anti-foam agent, 0.02% of a pour point depressant, and 3% of a viscosity index improver.
Example XVII SAE 10 mineral lubricating oil containing 3% of the product of Example 2, 0.075 of phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide With an equimolar mixture of n-butyl alcohol and dodecyl alcohol, 3% of a barium detergent prepared by carbonating a mineral oil solution containing 1 mole of sperm oil, 0.6 mole of octylphenol, 2 moles of barium oxide, and a small amount of Water at C.
Example XVIII SAE 20 mineral lubricating oil containing 2% of the product of Example 12 and 0.07% of phosphorus as zinc di-n-octylphosphorodithioate.
Example XIX SAE 30 mineral lubricating oil containing 3% of the product of Example 14 and 0.1% of phosphorus as zinc di-(isobutylphenyl)-phosphorodithioate.
Example XX SAE 50 mineral lubricating oil containing 2% of the product of Example 35.
25 Example XXI SAE 90 mineral lubricating oil containing 3% of the product of Example 46 and 0.2% of phosphorus as the 26 lubricant sample employed in the test is a Mid-Continent, conventionally refined mineral oil having a viscosity of about 200 Saybolt Universal Seconds at 100 F.
TABLE I Sludge (mg. Bearing Te Hours per 100 cc. Weight Loss Product of This Invcntlon Procedure of Test of sample) (mg.)
A 48 250-400 A 96 800-1, 200 None. B 48 1, 2001, 600 -30 Product of Example 10 A 96 15.8 B 48 2. 1 2 Product of Example A 96 2. 3 Product of Example 28. A 96 6.1 Product of Example 21. A 48 5. 3 Product of Example 15. B 48 2. 2 Product of Example 23. A 96 2. 3 Product of Example 3... A 96 2. 6 Product of Example 9 A 96 3. 4 Product of Example 22 B 48 1. 9 Product of Example 24.- A 96 1. 5 Product of Example 26.. A 96 1. 2 Product of Example 25.. A 96 2. 7 Product of Example 27.- A 48 1.3 Product of Example 29.- A 96 2. 7 Product of Example 32 A 96 2. 6 Product of Example 33.. A 96 1.8 Product of Example 34.. A 96 1. 7 Product of Example 37.. A 96 23 Product of Example 42.. A 96 8. 8
Procedure A: Copper-lead bearing not present in test sample Procedure B: Copper-lead bearing present in test sample.
reaction product of 4 moles of turpentine with 1 mole of phosphorus pentasulfide.
Example XXII SAE 90 mineral lubricating oil containing 3% of the product of 45 and 0.2% of 4,4-methylene-bis(2,6-di-tertbutylphenol) Example XXIII SAE mineral lubricating oil containing 2% of the product of Example 30 and 0.1% of phosphorus as phenylethyl di-cyclohexylphosphorodithioate.
Example XXIV SAE 90 mineral lubricating oil containing 5% of the product of Example 2 and 1% of the calcium salt of the sulfurized phenol obtained by the reaction of 2 moles of heptylphenol with 1 mole of sulfur.
The above lubricants are merely illustrative and the scope of invention includes the use of all the additives previously illustrated as well as others within the broad concept of this invention described herein.
The utility of the oil-soluble compositions of this invention as additives in lubricating compositions is illustrated by the results from an oxidation and detergency test in which a 350 cc. sample of a lubricant containing 0.001% of iron naphthenate and 1.5% by weight of the solvent-free additive to be tested is placed in a 2 x 15 (inches) borosilicate tube. A 1% x 5% (inches) SAE 1020 steel panel is immersed in oil. The sample then is heated at 300 F. for a specified period while air is bubbled through it at the rate of 10 liters per hour. The oxidized sample is cooled to 120 F., homogenized with 0.5% of water allowed to stand at room temperature for 24 hours, and then filtered through two layers of No. 1 Whatman filter paper at 2 0 mm. Hg pressure. The weight of the precipitate, washed with naphtha and dried, is taken as a measure of the effectiveness of the additive to inhibit oxidation and disperse the sludge formed during the test. The greater the weight of the precipitate the less effective the additive. The test is adapted to evaluate the corresiveness of the lubricant by the following modification: a clean copper-lead bearing is immersed in the lubricant during the air blowing step. After the test, the bearing is scrubbed with naphtha, dried, and weighed and its weight loss (in milligrams) and is taken as an indication of the corrosiveness of the lubricant. The results of the test are indicated in the following Table I. The base oil of the Further illustration of the effectiveness of the substituted polyamines of this invention as lubricant additives is had by the modified CRC-EX-3 engine test (the modification consists of extending the test period from the specified 96 hours to 144 hours, thus making the test more severe). This test is recognized in the field as an important test by which lubricants can be evaluated for use under relatively light duty or intermittently high and low temperature service conditions such as are encountered in the operation of automobiles in urban use. In this test, the lubricant is used in the crankcase of a 1954 6-cylinder Chevrolet Powerglide engine operated for 144-hours un der recurring cyclic conditions, each cycle consisting of: 2 hours at engine speed of 500 r.p.m. under no load, oil sump temperature of 100-125 F., and air fuel ratio of 10:1; and 2 hours at an engine speed of 2500 r.p.m. under a load of 40 brake horsepower, oil sump temperature of 240280 F., and an air:fuel ratio of 16:1. At the end of the test, the lubricant is rated in terms of (1) the extent of piston filling, (2) the amount of sludge formed in the engine (rating scale of -0, 80 being indicative of no sludge and 0 being indicative of extremely heavy sludge), and (3) the total amount of engine deposits, i.e., sludge and varnish formed in the engine (rating scale of -0, 100 being indicative of no deposit and 0 being indicative of extremely heavy deposit). The results of the test are summarized in Table II.
The SAE 20 lubricating compositions referred to in Lubricants A-E are composed of a SAE 20 mineral lubricating oil containing 0.3% of barium sulfate ash as a basic barium detergent obtained by carbonating a mixture of an excess of barium hydroxide, hetylphenol (promoter), and a hydrolyzed acidic product of a chlorinated polyisobutene (chlorine content of 4.7% and a molecular Weight of 1000) hetylphenol, and phosphorus trichloride; 0.06% of phosphorus as the zinc salt of a phosphorodithioic acid obtained by the reaction of phosphorus pentasulfide with a mixture of isobutyl alcohol and primary-pentyl alcohol; and 3 parts per million of a polymeric dialkylsiloxane anti-foam agent. Such lubricating compositions are suitable for use under consistantly high temperature service conditions and are not entirely satisfactory for use under intermittently high and low temperature service conditions. By the CRC-EX-3 test, they show test results no better than: percent Ring Filling, 16%; Sludge Rating, 68.5; and Total Deposit Rating, 84.0.
The eflicacy of the substituted polyamines of this invention as detergent additives in::lubricants for diesel engines operated'cunder relatively severe conditions is demonst'rated by the results (Table III) of the CRC-L-l Engine test (also known Caterpiller 1E test). In this test, the lubricating composition is used in the crankcase of a 4-stroke diesel engine having a compression ratio of 15 :1 operated for 'l20 hours under the following conditions: speed, 1000 r.p.m.; B.t.u. input per minute, 29003000; load, 20 brake horsepower; water jacket temperature, 175- 180 F.; oii temperature, 140-150" F. A diesel fuel having a sulfur content of either 1% or 0.4% is used. The lubricant is evaluated according to (1) the piston cleanlinss (rating scale of -100,' 100 being indicative of no deposit and 0 being indicative of heavy deposit) and (2) the amount of ring filling.
TABLE 11 f Percent Total 7 Ring Sludge Deposit Lubricant Tested 7 Y. Filling Rating Rating A. SAE 20 lubricating composition containing 0.41% of the product of Example 6 2 76. 9 03. 6 B. SAE 20 lubricating composition containing 0.81% of the product of Example 18 2 73. 7 91. C. SAE 20 lubricating com io taini 1.35% of the product of Example 16 75. 1 91. 9 D. SAE 20 lubricating composition corrtaining 0.41% or the product of Example 3 67. 0 84. 5 E. SAE 20 lubricating composition containing 1.35% of the product prepared by the procedure of Example 29 except i that 0.33 equivalent of phosphorus as phosphorus pentoxide is used per equivalent of nitrogen as the partially jacy lated polyamine 2 72. 8 89. 3 F. SAE 20 mineral lubricating oil containing 2.5% of the product of Example 2, 1.2% of a sulfurized dipenteue having a sulfur content of 35%, and 3 parts per 7 'rnillion of a polymeric dialkylsiloxane anti-foam agent l 78. 3 97. 1
TABLE III Percent Piston Ring Cleanliness Lubricant Tested Filling Rating G. SAE 30 mineral lubricating eil containing 1.48% of the product of Example 2 and 1.16% of a sulfurized dipentene having a sulfur content of .I 3 96. 0 H. Same' as Lubricant E of Table II 3 97. 5 I. SAE 20 mineral lubricating oil containin 3% of the product of Exampie 32 None 94. 0 J. SAE 30 mineral lubricating oil containing the product of Example 38 2 96. 0 K. SAE 30 mineral lubricating oil containing the product of Example 6 5 07. 0
What is claimed is: n 1
1. A substituted polyamine prepared by the process comprising the reaction at a temperature between about 25 C. and below the decomposition temperature of the process mixture of one mole of an alkylene polyamine having n amino groups with a substantially hydrocarbonsubstituted' succinic acid-producing compound selected from the class consisting of acids, anhydrides, halides, and esters having at least aboutaliphatic carbon atoms in the substantially hydrocarbon substituent and a phosphorus acid-producing compound selected from the class consisting of phosphoric acids, phosphorous acids, phosphouyl acids, phosphinyl acids, and the ester, the halides and the anhydrides thereof and the corresponding thioanalogs thereof; the amount of the succinic acid-producing compound being at least about 0.2 5 mole, the amount of the phosphorus acid-producing compound being at least about 0.001 mole, and the combined amounts of the succinic acid-producing compound and the phosphorus acidprodueing compound being no greater than 11 moles.
2. The substituted polyamine; of claim 1 wherein the alkylene polyamine is a hydroxy-alkyl substituted alkylene polyamine.
3. A substituted polyamine prepared by the process comprising the reaction at a temperature between about 25 C. and below the decomposition temperature of the process mixture of one mole of a polyamino substance having 12 amino groupsand selected from the class consisting of linear polyethylene polyamines, imidazolines, pyrimidines, and piperazines with a substantially hydrocarbonsubstituted succinic acid-producing compound selected from the class consisting of acids, anhydrides, halides, and esters having at least about 5-9 aliphatic carbon atoms in the substantially hydrocarbon substituent and a phosphorus acid-producing compound selected from the class consisting of phosphoric acids, phosphorus acids, phosphonyl acids, phosphinyl acids, and the esters, the halides and the anhydrides thereof and the corresponding thioanalogs thereof; the amount of the succinic acid-producing compound being at least about 0.25. mole, the amount of the phosphorus acid-producing compound being at least about 0.001 mole, and the combined amounts of the succinic acid-producing compound and the phosphorus acidproducing compound being no greater than n moles.
4. A substituted polyamine prepared by the process comprising the reaction at a temperature between about 25 C. and below the decomposition ten perature of the process mixture of an ethylene polyamine having 11 amino groups with a substantially hydrocarbon-substituted succinic anhydride or acid having at least about 50 aliphatic carbon atoms in the substantially hydrocarbon substituent and a partially esterified phosphoric acid in which'the ester portion is an alkyl or alkylaryl group having from 1 to about 30 carbon atoms in the alkyl radical; the amount of the succinic anhydride or acid being at least about 0.25 mole, the amount of the partially esterified phosphoric acid being at least about 0.001 mole, and the combined amounts of the succinic anhydride or'acid and the partially esterified phosphoric acid being no greater than 11 moles.
5. A substituted polyamine prepared by the process comprising the reaction at a temperature between about 25 C. and below the decomposition temperature of the process mixture of an ethylene polyamine having :1 amino groups with an olefin polymer-substituted succinic anhydride or acid in which the olefin polymer substituent has a molecular weight of from about 700 to about 5000 and an alkylphosphoric acid obtained by the reaction of one mole of phosphorus pentoxide with from about 1 to about 4 moles of an alkanol having up to about 30 carbonatoms;
the amount of the succinic anhydride or acid being at least about 0.25 mole, the amount of the alkylphosphoric acid being at least about 0.5 mole, and the combined amounts of the succinic anhydride or acid and the alkylphosphoric acid being no greater than n moles.
6. A substituted polyamine prepared by the process comprising the reaction at a temperature between about 25 C. and below the decomposition temperature of the process mixture of.a hydroxyalkyl-substituted ethylene polyamine having it. amino groups with an olefin polymersubstituted succinic anhydride or acid in which the olefin polymer substituent has a molecular weight of from about 700 to about 5000 and an alkylphosphoric acid obtained by the reaction of one moleof phosphorus pentoxide with from about 1 to about 4 moles of an alkanol having up to about 30 carbon atoms; the amount. of the succinic anhydride or acid being at least about 0.25 mole, the amount of .the alkyl phosphoric acid being at least about 0.5 mole, and the combined amounts of. succinic anhydride or acid and the alkylphosphoric acid being no greater than 11 moles.
7. A substituted polyamine prepared by the process comprising (A)- forming a partially acylated polyamine intermediate by reacting at a temperature from about C. to about 250 C. one mole of an ethylene polyamine having 11 amino groups with from about 0.25 to about 3 moles of an olefin polymer-substituted succinic anhydride in which the olefin polymer substituent has a molecular weight of from about 700 to 5000 and (B) reacting at a temperature from about 25 C. to about C. said intermediate with from about 0.001; to about 3 moles of phosphorus pentoxide. i
8. A substituted polyamine prepared by the process comprising (A) forming a partially acylated polyamine intermediate by reacting at a temperature from about 80 C. to about 250 C. one mole of an ethylene polyamine having 11. amino groups with from about 0.25 to about 3 moles of an olefin polymer-substituted succinic anhydride in which the olefin polymer substituent has a molecular weight of from about 700 to 5000 and (B) reacting at a temperature from about 25 C. to about 100 C. said intermediate with from about 0.001 to about 3 moles of an alkylphosphoric acid obtained by the reaction of one mole of phosphorus pentoxide with from about 1 to about 4 moles of an alkanol having from about 8 to 24 carbon atoms.
9. The substituted polyamine of claim 8 wherein the ethylene polyamine is a polyethylene polyamine having from 2 to 11 amino groups; the olefin polymer substituent of the succinic anhydride is a polyisobutene group; the amount of the succinic anhydrodide isfrom about 1 to about 3 moles; and the amount of the alkylphosphoric acid is from about 0.5 to about 3 moles.
10. A substituted polyamine prepared by the process comprising (A) forming a partially acylated polyamine intermediate by reacting at a temperature from about 80 C. to about 250 C. one mole of an ethylene polyamine having n amino groups with from about 0.25 to about 3 moles of an olefin polymer-substituted succinic anhydride in which the olefin polymer substituents has a molecular weight of from about 700 to 5000 and (B) reacting at a temperature from about 25 C. to about 100 C. said intermediate with from about 0.001 to about 3 moles of a phosphorus reagent selected from the class consisting of phosphorus pentasulfide, phosphorus heptasulfide, phosphorus sesquisulfide, phosphorus oxysulfide, phosphorus trichloride, phosphorus pentachlon'de, phosphorus oxytrichloride, phosphorothioic trichloride and phosphorus tribromide.
11. A substituted polyamine prepared by the process comprising (A) forming a partially acylated polyamine intermediate by reacting at a temperature from about 80 C. to about 250 C. one mole of an ethylene polyamine having n amino groups with from about 0.25 to about 3 moles of an olefin polymer-substituted succinic anhydride in which the olefin polymer substituent has a molecular weight of from about 700 to 5000 and (B) reacting at a temperature from about 25 C. to about 100 C. said intermediate with from about 0.001 to about 3 moles of phosphorus pentasulfide.
12. A substituted polyamine prepared by the process comprising (A) forming a partially acylated polyamine intermediate by reacting at a temperature from about 80 C. to about 250 C. one mole of an ethylene polyamine having n amino groups with from about 0.25 to about 3 moles of an olefin polymer-substituted succinic anhydride in which the olefin polymer substituent has a molecular Weight of from about 700 to 5000 and (B) reacting at a temperature from about 25 C. to about 100 C. said intermediate with from about 0.001 to about 3 moles of a dialkylphosphorodithioic acid having from about 1 to about 24 carbon atoms in each alkyl group.
13. A substituted polyamine prepared by the process comprising the reaction at a temperature between about 25 C. and below the decompositon temperature of the process mixture of one mole of an alkylene polyamine having n amino groups with a substantially hydrocarbonsubstituted succinic acid-producing compound selected from the class consisting of acids, anhydrides, halides, and esters having at least about aliphatic carbon atoms in the substantially hydrocarbon substituent and a phosphorus acid-producing compound selected from the class consisting of (a) oxy-phosphoric acids, thio-phosphoric acids, and mixed oxy-thio-phosphoric acids, (b) oxy-phosphorous acids, thio-phosphorous acids, and mixed oxy-thio-phosphorous acids, (c) oXy-phosphinyl acids, thio-phosphinyl acids, and mixed oxy-thio-phosphinyl acids, (d) oxy-phosphonyl acids, thio-phosphonyl acids, and mixed oxy-thio-phosphonyl acids, (e) the esters, the halides, and the anhydrides of the foregoing oxy-, thio-, and mixed oxy-thio-phosphorus acids, the amount of the amount of the succinic acid-producing compound being at least about 0.25 mole, the amount of the phosphorus acid-producing compound being at least about 0.001 mole, and the combined amounts of the succinic acid-producing compound and the phosphorus acid-producing compound being no greater than n moles.
14. A reaction product obtained by reacting a phosphosulfurized hydrocarbon with a condensation reaction product of a hydrocarbon-substituted succinic anhydride and an amine selected from the group consisting of alkylene polyamines and N-aminoalkyl piperazines, said hydrocarbon substituent having at least about 50 carbon atoms.
References Cited UNITED STATES PATENTS 2,961,457 11/1960 Pohlemann et al. 25246.6 3,018,247 1/1962 Anderson et al. 260268 3,024,195 3/1962 Drummond et a1. 260268 3,185,646 5/1965 Anderson et al. 260268 3,080,222 5/1963 Cantrell et al. 25232.5 3,112,268 11/1963 Calhoun 25246.6 3,160,657 12/1964 Price et al. 25232.5 3,163,603 12/1964 Le Suer 260 -268 3,180,867 4/1965 Shapiro et al 260-268 3,184,411 5/1965 Lowe et al 26046.7 3,184,412 5/1965 Lowe et al. 25246.7 3,185,643 5/1965 Lowe 260268 3,185,645 5/1965 Clayton 260268 3,197,496 7/1965 Le Suer 25246.6 3,202,678 8/1965 Stuart et al 260268 3,209,938 9/1965 Ratner 25232.5 3,210,283 10/1965 Stuart et al 260268 3,216,936 11/1965 Le Suer 260268 3,219,666 11/1965 Norman et al. 260268 3,235,497 2/1966 Lee 25246.7 3,265,618 8/1966 Henderson et al. 25232.5 3,294,684 12/ 1966 McNich et al. 25246.7
PATRICK P. GARVIN, Primary Examiner US. Cl. X.R.
Claims (1)
1. A SUBSTITUTED POLYAMINE PREPARED BY THE PROCESS COMPRISING THE REACTION AT A TEMPERATURE BETWEEN ABOUT 25*C. AND BELOW THE DECOMPOSITION TEMPERATURE OF THE PROCESS MIXTURE OF ONE MOLE OF AN ALKYLENE POLYAMINE HAVING N AMINO GROUPS WITH A SUBSTANTIALLY HYDROCARBONSUBSTITUTED SUCCINIC ACID-PRODUCING COMPOUND SELECTED FROM THE CLASS CONSISTING OF ACIDS, ANHYDRIDES, HALIDES, AND ESTERS HAVING AT LEAST ABOUT 50 ALIPHATIC CARBON ATOMS IN THE SUBSTANTIALLY HYDROCARBON SUBSTIUENT AND A PHOSPHORUS ACID-PRODUCING COMPOUND SELECTED FROM THE CLASS CONSISTING OF PHOSPHORIC ACIDS, PHOSPHOROUS ACIDS, PHOSPHONYL ACIS, PHOSPHINYL ACIDS, AND ETHE ESTER, THE HALIDES AND THE ANHYDRIDES THEREOF AND THE CORRESPONDING THIOANALOGS THEREOF; THE AMOUNT OF THE SUCCINIC ACID-PRODUCING COMPOUND BEING AT LEAST ABOUT 0.2K MOLE, THE AMOUNT OF THE PHOSPHORUS ACID-PRODUCING COMPOUND BEING AT LEAST ABOUT 0.001 MOLE, AND THE COMBINED AMOUNTS OF THE SUCCINIC, ACID-PRODUCING COMPOUND AND THE PHOSPHORUS ACIDPRODUCING COMPOUND BEING NO GREATER THAN N MOLES.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28848163A | 1963-06-17 | 1963-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3502677A true US3502677A (en) | 1970-03-24 |
Family
ID=23107288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US288481A Expired - Lifetime US3502677A (en) | 1963-06-17 | 1963-06-17 | Nitrogen-containing and phosphorus-containing succinic derivatives |
Country Status (3)
Country | Link |
---|---|
US (1) | US3502677A (en) |
FR (1) | FR1403977A (en) |
GB (1) | GB1054093A (en) |
Cited By (156)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3623985A (en) * | 1967-03-29 | 1971-11-30 | Chevron Res | Polysuccinimide ashless detergents as lubricating oil additives |
US3723460A (en) * | 1969-10-10 | 1973-03-27 | Standard Oil Co | Polymeric succinimides and their derivatives as fuel and motor oil additives |
US3844957A (en) * | 1971-07-30 | 1974-10-29 | Cities Service Oil Co | Lubricant and fuel compositions |
US3844960A (en) * | 1970-11-06 | 1974-10-29 | Shell Oil Co | Lubricant compositions |
US3979309A (en) * | 1975-08-14 | 1976-09-07 | Uop Inc. | Lubricating oil additive |
US4097389A (en) * | 1974-08-05 | 1978-06-27 | Mobil Oil Corporation | Novel amino alcohol reaction products and compositions containing the same |
US4306984A (en) * | 1980-06-19 | 1981-12-22 | Chevron Research Company | Oil soluble metal (lower) dialkyl dithiophosphate succinimide complex and lubricating oil compositions containing same |
US4329249A (en) * | 1978-09-27 | 1982-05-11 | The Lubrizol Corporation | Carboxylic acid derivatives of alkanol tertiary monoamines and lubricants or functional fluids containing the same |
US4368133A (en) * | 1979-04-02 | 1983-01-11 | The Lubrizol Corporation | Aqueous systems containing nitrogen-containing, phosphorous-free carboxylic solubilizer/surfactant additives |
US4428849A (en) | 1980-08-25 | 1984-01-31 | Exxon Research & Engineering Co. | Lubricating oil with improved diesel dispersancy |
US4443360A (en) * | 1982-04-19 | 1984-04-17 | Chevron Research Company | Oil-soluble zinc cyclic hydrocarbyl dithiophosphate-succinimide complex and lubricating oil compositions containing same |
US4448703A (en) * | 1981-02-25 | 1984-05-15 | The Lubrizol Corporation | Carboxylic solubilizer/surfactant combinations and aqueous compositions containing same |
US4471091A (en) * | 1982-08-09 | 1984-09-11 | The Lubrizol Corporation | Combinations of carboxylic acylating agents substituted with olefin polymers of high and low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same |
US4486573A (en) * | 1982-08-09 | 1984-12-04 | The Lubrizol Corporation | Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same |
US4487704A (en) * | 1982-11-22 | 1984-12-11 | Chevron Research Company | Lubricating oil compositions containing an overbased calcium sulfonate and a zinc cyclic hydrocarbyl dithiophosphate-succinimide complex |
US4489194A (en) * | 1982-08-09 | 1984-12-18 | The Lubrizol Corporation | Carboxylic acylating agents substituted with olefin polymers of high/low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same |
WO1985003709A1 (en) * | 1984-02-14 | 1985-08-29 | The Lubrizol Corporation | Nitrogen- and phosphorus-containing compositions and aqueous systems containing same |
EP0156572A2 (en) * | 1984-03-21 | 1985-10-02 | Imperial Chemical Industries Plc | Surfactants for oil/water systems in which the hydrophilic component contains a specified anionic grouping |
US4564460A (en) * | 1982-08-09 | 1986-01-14 | The Lubrizol Corporation | Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same |
US4575526A (en) * | 1982-08-09 | 1986-03-11 | The Lubrizol Corporation | Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same |
US4596663A (en) * | 1982-08-09 | 1986-06-24 | The Lubrizol Corporation | Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same |
US4613342A (en) * | 1982-08-09 | 1986-09-23 | The Lubrizol Corporation | Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same |
US4615826A (en) * | 1983-09-22 | 1986-10-07 | Chevron Research Company | Hydrocarbon soluble nitrogen containing dispersant-fluorophosphoric acid adducts |
US4623684A (en) | 1982-08-09 | 1986-11-18 | The Lubrizol Corporation | Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same |
US4642330A (en) * | 1984-12-27 | 1987-02-10 | The Lubrizol Corporation | Dispersant salts |
US4648980A (en) * | 1983-09-22 | 1987-03-10 | Chevron Research Company | Hydrocarbon soluble nitrogen containing dispersant - fluorophosphoric acid adducts |
US4666620A (en) * | 1978-09-27 | 1987-05-19 | The Lubrizol Corporation | Carboxylic solubilizer/surfactant combinations and aqueous compositions containing same |
US4713190A (en) * | 1985-10-23 | 1987-12-15 | Chevron Research Company | Modified carboxylic amide dispersants |
US4747971A (en) * | 1983-09-22 | 1988-05-31 | Chevron Research Company | Hydrocarbon soluble nitrogen containing dispersant - fluorophosphoric acid adducts |
US4770803A (en) * | 1986-07-03 | 1988-09-13 | The Lubrizol Corporation | Aqueous compositions containing carboxylic salts |
US4822433A (en) * | 1984-03-21 | 1989-04-18 | Imperial Chemical Industries Plc | Emulsion explosive composition |
US4857214A (en) * | 1988-09-16 | 1989-08-15 | Ethylk Petroleum Additives, Inc. | Oil-soluble phosphorus antiwear additives for lubricants |
EP0351964A1 (en) | 1988-06-24 | 1990-01-24 | Exxon Chemical Patents Inc. | Synergistic combination of additives useful in power transmitting compositions |
EP0384639A1 (en) * | 1989-02-21 | 1990-08-29 | Ethyl Petroleum Additives, Inc. | Preconditioned automatic transmission fluids and their preparation |
EP0399764A1 (en) | 1989-05-22 | 1990-11-28 | Ethyl Petroleum Additives Limited | Lubricant compositions |
US5041622A (en) * | 1988-04-22 | 1991-08-20 | The Lubrizol Corporation | Three-step process for making substituted carboxylic acids and derivatives thereof |
US5059335A (en) * | 1989-02-08 | 1991-10-22 | The Lubrizol Corporation | Lubricants containing salts of hydroxyalkane phosphonic acids |
EP0480644A1 (en) * | 1990-10-10 | 1992-04-15 | Ethyl Petroleum Additives, Inc. | Ashless or low-ash synthetic base compositions and additives therefor |
EP0516461A1 (en) * | 1991-05-29 | 1992-12-02 | Ethyl Petroleum Additives, Inc. | Lubricating oil compositions and concentrates and the use thereof |
US5185090A (en) * | 1988-06-24 | 1993-02-09 | Exxon Chemical Patents Inc. | Low pressure derived mixed phosphorous- and sulfur-containing reaction products useful in power transmitting compositions and process for preparing same |
US5198133A (en) * | 1988-03-14 | 1993-03-30 | Ethyl Petroleum Additives, Inc. | Modified succinimide or sucinamide dispersants and their production |
US5213697A (en) * | 1989-04-20 | 1993-05-25 | The Lubrizol Corporation | Method for reducing friction between railroad wheel and railway track using metal overbased colloidal disperse systems |
US5242612A (en) * | 1988-06-24 | 1993-09-07 | Exxon Chemical Patents Inc. | Mixed phosphorous- and sulfur-containing reaction products useful in power transmitting compositions |
EP0558835A1 (en) | 1992-01-30 | 1993-09-08 | Albemarle Corporation | Biodegradable lubricants and functional fluids |
US5314633A (en) * | 1988-06-24 | 1994-05-24 | Exxon Chemical Patents Inc. | Low pressure derived mixed phosphorous- and sulfur- containing reaction products useful in power transmitting compositions and process for preparing same |
US5326487A (en) * | 1988-06-24 | 1994-07-05 | Exxon Chemical Patents Inc. | Mixed phosphorous- and sulfur- containing reaction products useful in power transmitting compositions |
US5328619A (en) * | 1991-06-21 | 1994-07-12 | Ethyl Petroleum Additives, Inc. | Oil additive concentrates and lubricants of enhanced performance capabilities |
US5336439A (en) * | 1987-12-23 | 1994-08-09 | The Lubrizol Corporation | Salt compositions and concentrates for use in explosive emulsions |
US5380465A (en) * | 1985-09-05 | 1995-01-10 | Imperial Chemical Industries Plc | Emulsifiers for polymerization process |
US5389273A (en) * | 1988-03-14 | 1995-02-14 | Ethyl Petroleum Additives, Inc. | Modified succinimide or succinamide dispersants and their production |
US5439606A (en) * | 1988-03-14 | 1995-08-08 | Ethyl Petroleum Additives, Inc. | Modified succinimide or succinamide dispersants and their production |
US5449386A (en) * | 1992-10-09 | 1995-09-12 | Institut Francais Du Petrole | Amine phosphates having a terminal cyclic imide |
US5472624A (en) * | 1993-10-06 | 1995-12-05 | Institut Francais Du Petrole | Lubricating compositions containing an amine phosphate with a terminal imide ring |
EP0713908A1 (en) | 1994-11-22 | 1996-05-29 | Ethyl Corporation | Power transmission fluids |
US5534170A (en) * | 1988-06-24 | 1996-07-09 | Exxon Chemical Patents Inc. | Mixed phosphorus- and sulfur-containing reaction products useful in power transmitting compositions |
US5534169A (en) * | 1989-04-20 | 1996-07-09 | The Lubrizol Corporation | Methods for reducing friction between relatively slideable components using metal carboxylates |
US5629434A (en) * | 1992-12-17 | 1997-05-13 | Exxon Chemical Patents Inc | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5643859A (en) * | 1992-12-17 | 1997-07-01 | Exxon Chemical Patents Inc. | Derivatives of polyamines with one primary amine and secondary of tertiary amines |
US5646332A (en) * | 1992-12-17 | 1997-07-08 | Exxon Chemical Patents Inc. | Batch Koch carbonylation process |
US5650536A (en) * | 1992-12-17 | 1997-07-22 | Exxon Chemical Patents Inc. | Continuous process for production of functionalized olefins |
US5652201A (en) * | 1991-05-29 | 1997-07-29 | Ethyl Petroleum Additives Inc. | Lubricating oil compositions and concentrates and the use thereof |
US5767046A (en) * | 1994-06-17 | 1998-06-16 | Exxon Chemical Company | Functionalized additives useful in two-cycle engines |
US5811377A (en) * | 1993-08-03 | 1998-09-22 | Exxon Chemical Patents Inc | Low molecular weight basic nitrogen-containing reaction products as enhanced phosphorus/boron carriers in lubrication oils |
WO1998047989A1 (en) | 1997-04-21 | 1998-10-29 | Exxon Chemical Patents Inc. | Power transmission fluids containing alkyl phosphonates |
WO1999036491A1 (en) | 1998-01-13 | 1999-07-22 | Exxon Chemical Patents Inc. | Automatic transmission fluids of improved viscometric properties |
USRE36479E (en) * | 1986-07-03 | 2000-01-04 | The Lubrizol Corporation | Aqueous compositions containing nitrogen-containing salts |
EP0985725A2 (en) | 1998-09-08 | 2000-03-15 | Chevron Chemical Company LLC | Polyalkylene polysuccinimides and post-treated derivatives thereof |
EP1076087A1 (en) * | 1999-08-11 | 2001-02-14 | Ethyl Corporation | Zinc and phosphorus containing transmission fluids having enhanced performance capabilities |
US6251840B1 (en) | 1995-09-12 | 2001-06-26 | The Lubrizol Corporation | Lubrication fluids for reduced air entrainment and improved gear protection |
EP1142983A1 (en) * | 2000-04-03 | 2001-10-10 | Idemitsu Kosan Company Limited | Lubricant additive |
US6613722B1 (en) * | 1997-03-07 | 2003-09-02 | Exxon Chemical Patents Inc. | Lubricating composition |
US20030220206A1 (en) * | 2000-09-29 | 2003-11-27 | Nippon Mitsubishi Oil Corporation | Lubricant compositions |
US6797678B2 (en) | 2000-04-03 | 2004-09-28 | Idemitsu Kosan Co., Ltd. | Lubricant additive |
US20050041395A1 (en) * | 2003-08-21 | 2005-02-24 | The Lubrizol Corporation | Multifunctional dispersants |
US20050192185A1 (en) * | 2004-02-27 | 2005-09-01 | Saathoff Lee D. | Power transmission fluids |
US20050250656A1 (en) * | 2004-05-04 | 2005-11-10 | Masahiro Ishikawa | Continuously variable transmission fluid |
EP1640440A1 (en) | 2004-09-22 | 2006-03-29 | Infineum International Limited | Friction and/or wear reduction in manual or automated manual transmissions |
US20070042917A1 (en) * | 2005-07-12 | 2007-02-22 | Ramanathan Ravichandran | Amine Tungstates and Lubricant Compositions |
US20080194442A1 (en) * | 2007-02-13 | 2008-08-14 | Watts Raymond F | Methods for lubricating a transmission |
US20090005276A1 (en) * | 2007-06-29 | 2009-01-01 | Watts Raymond F | Boron-Containing Lubricating Oils Having Improved Friction Stability |
US20090005277A1 (en) * | 2007-06-29 | 2009-01-01 | Watts Raymond F | Lubricating Oils Having Improved Friction Stability |
US20090029888A1 (en) * | 2005-07-12 | 2009-01-29 | Ramanathan Ravichandran | Amine tungstates and lubricant compositions |
US20090305919A1 (en) * | 2006-07-27 | 2009-12-10 | The Lubrizol Corporation | Multi-Dispersant Lubricating Composition |
US20100107478A1 (en) * | 2007-04-18 | 2010-05-06 | Instituto Mexicano Del Petroleo | Oxazolidines derived from polyalkyl or polyalkenyl n-hydroxyalkyl succinimides, obtainment process and use |
WO2011102836A1 (en) | 2010-02-19 | 2011-08-25 | Infineum International Limited | Wet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of borated detergents |
WO2011102835A1 (en) | 2010-02-19 | 2011-08-25 | Toyota Jidosha Kabushiki Kaisha | Wet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of sodium detergents |
EP2837675A1 (en) | 2013-08-15 | 2015-02-18 | Infineum International Limited | Automotive transmission fluid compositions for improved energy efficiency |
EP2843033A1 (en) | 2013-08-15 | 2015-03-04 | Infineum International Limited | Transmission fluid compositions for improved energy efficiency |
EP2933320A1 (en) | 2014-04-17 | 2015-10-21 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
EP2990469A1 (en) | 2014-08-27 | 2016-03-02 | Afton Chemical Corporation | Lubricant composition suitable for use in gasoline direct injection engines |
CN105524683A (en) * | 2014-09-28 | 2016-04-27 | 中国石油化工股份有限公司 | phosphorization ashless dispersant and preparation method thereof, and lubricating oil dynamic friction coefficient improving method |
CN105524679A (en) * | 2014-09-28 | 2016-04-27 | 中国石油化工股份有限公司 | Automatic transmission liquid composition and method for improving dynamic friction coefficient of automatic transmission liquid composition |
DE102015118989A1 (en) | 2014-11-05 | 2016-05-12 | Infineum International Ltd. | Power transmission fluids with improved material compatibility |
EP3118285A1 (en) | 2015-07-16 | 2017-01-18 | Infineum International Limited | Method of improving vehicle transmission operation through use of specific lubricant compositions |
WO2017011689A1 (en) | 2015-07-16 | 2017-01-19 | Afton Chemical Corporation | Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition |
US9677026B1 (en) | 2016-04-08 | 2017-06-13 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
US9701921B1 (en) | 2016-04-08 | 2017-07-11 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
WO2017146867A1 (en) | 2016-02-25 | 2017-08-31 | Afton Chemical Corporation | Lubricants for use in boosted engines |
WO2017189277A1 (en) | 2016-04-26 | 2017-11-02 | Afton Chemical Corporation | Random copolymers of acrylates as polymeric friction modifiers, and lubricants containing same |
WO2017192217A1 (en) | 2016-05-05 | 2017-11-09 | Afton Chemical Corporation | Lubricants for use in boosted engines |
WO2017192202A1 (en) | 2016-05-05 | 2017-11-09 | Afton Chemical Corporaion | Lubricant compositions for reducing timing chain stretch |
WO2018111726A1 (en) | 2016-12-16 | 2018-06-21 | Afton Chemical Corporation | Multi-functional olefin copolymers and lubricating compositions containing same |
WO2018136137A1 (en) | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with calcium and magnesium-containing detergents and their use for improving low-speed pre-ignition and for corrosion resistance |
WO2018136136A1 (en) | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition |
WO2018136138A1 (en) | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with overbased calcium and overbased magnesium detergents and method for improving low-speed pre-ignition |
US10214703B2 (en) | 2015-07-16 | 2019-02-26 | Afton Chemical Corporation | Lubricants with zinc dialkyl dithiophosphate and their use in boosted internal combustion engines |
EP3476923A1 (en) | 2017-10-25 | 2019-05-01 | Afton Chemical Corporation | Dispersant viscosity index improvers to enhance wear protection in engine oils |
US10280383B2 (en) | 2015-07-16 | 2019-05-07 | Afton Chemical Corporation | Lubricants with molybdenum and their use for improving low speed pre-ignition |
EP3495461A1 (en) | 2017-12-11 | 2019-06-12 | Infineum International Limited | Automotive transmission fluid compositions for improved energy efficiency |
US10336959B2 (en) | 2015-07-16 | 2019-07-02 | Afton Chemical Corporation | Lubricants with calcium-containing detergent and their use for improving low speed pre-ignition |
US10377963B2 (en) | 2016-02-25 | 2019-08-13 | Afton Chemical Corporation | Lubricants for use in boosted engines |
US10421922B2 (en) | 2015-07-16 | 2019-09-24 | Afton Chemical Corporation | Lubricants with magnesium and their use for improving low speed pre-ignition |
EP3560966A2 (en) | 2018-04-25 | 2019-10-30 | Afton Chemical Corporation | Multifunctional branched polymers with improved low-temperature performance |
EP3578625A1 (en) | 2018-06-05 | 2019-12-11 | Afton Chemical Corporation | Lubricant composition and dispersants therefor having a beneficial effect on oxidation stability |
US10640723B2 (en) * | 2018-03-16 | 2020-05-05 | Afton Chemical Corporation | Lubricants containing amine salt of acid phosphate and hydrocarbyl borate |
WO2020174454A1 (en) | 2019-02-28 | 2020-09-03 | Afton Chemical Corporation | Lubricating compositions for diesel particulate filter performance |
EP3736318A1 (en) | 2019-05-09 | 2020-11-11 | Infineum International Limited | Transmission fluid composition for improved wear protection |
US10836976B2 (en) | 2018-07-18 | 2020-11-17 | Afton Chemical Corporation | Polymeric viscosity modifiers for use in lubricants |
CN112513232A (en) * | 2018-06-22 | 2021-03-16 | 路博润公司 | Lubricating composition for heavy duty diesel engines |
EP3812445A1 (en) | 2019-10-24 | 2021-04-28 | Afton Chemical Corporation | Synergistic lubricants with reduced electrical conductivity |
EP3839017A1 (en) | 2019-12-16 | 2021-06-23 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
EP3839018A1 (en) | 2019-12-16 | 2021-06-23 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
EP3839019A1 (en) | 2019-12-16 | 2021-06-23 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
EP3858954A1 (en) | 2020-01-29 | 2021-08-04 | Afton Chemical Corporation | Lubricant formulations with silicon-containing compounds |
EP3954753A1 (en) | 2020-08-12 | 2022-02-16 | Afton Chemical Corporation | Polymeric surfactants for improved emulsion and flow properties at low temperatures |
WO2022072559A1 (en) | 2020-10-02 | 2022-04-07 | Infineum International Limited | Rejuvenation and/or extension of the lifetime of frictional performance in transmission fluids |
WO2022094557A1 (en) | 2020-10-30 | 2022-05-05 | Afton Chemical Corporation | Engine oils with low temperature pump ability |
EP3995561A2 (en) | 2020-10-16 | 2022-05-11 | Infineum International Limited | Transmission fluid compositions for hybrid and electric vehicle applications |
WO2022136384A1 (en) | 2020-12-24 | 2022-06-30 | Infineum International Limited | Thermally responsive brush polymers having a copolymer backbone and copolymer arms |
EP4067463A1 (en) | 2021-03-30 | 2022-10-05 | Afton Chemical Corporation | Engine oils with improved viscometric performance |
EP4098723A1 (en) | 2021-06-04 | 2022-12-07 | Afton Chemical Corporation | Lubricating compositions for a hybrid engine |
WO2023004265A1 (en) | 2021-07-21 | 2023-01-26 | Afton Chemical Corporation | Methods of reducing lead corrosion in an internal combustion engine |
EP4124648A1 (en) | 2021-07-31 | 2023-02-01 | Afton Chemical Corporation | Engine oil formulations for low timing chain stretch |
US11572523B1 (en) | 2022-01-26 | 2023-02-07 | Afton Chemical Corporation | Sulfurized additives with low levels of alkyl phenols |
EP4194531A1 (en) | 2021-12-09 | 2023-06-14 | Infineum International Limited | Borated detergents and their lubricating applications |
WO2023141399A1 (en) | 2022-01-18 | 2023-07-27 | Afton Chemical Corporation | Lubricating compositions for reduced high temperature deposits |
WO2023159095A1 (en) | 2022-02-21 | 2023-08-24 | Afton Chemical Corporation | Polyalphaolefin phenols with high para-position selectivity |
WO2023212165A1 (en) | 2022-04-27 | 2023-11-02 | Afton Chemical Corporation | Additives with high sulfurization for lubricating oil compositions |
EP4282937A1 (en) | 2022-05-26 | 2023-11-29 | Afton Chemical Corporation | Engine oil formluation for controlling particulate emissions |
EP4306624A1 (en) | 2022-07-14 | 2024-01-17 | Afton Chemical Corporation | Transmission lubricants containing molybdenum |
EP4310162A1 (en) | 2022-07-15 | 2024-01-24 | Afton Chemical Corporation | Detergent systems for oxidation resistance in lubricants |
EP4317369A1 (en) | 2022-08-02 | 2024-02-07 | Afton Chemical Corporation | Detergent systems for improved piston cleanliness |
US11912955B1 (en) | 2022-10-28 | 2024-02-27 | Afton Chemical Corporation | Lubricating compositions for reduced low temperature valve train wear |
US11926804B1 (en) | 2023-01-31 | 2024-03-12 | Afton Chemical Corporation | Dispersant and detergent systems for improved motor oil performance |
WO2024073304A1 (en) | 2022-09-27 | 2024-04-04 | Afton Chemical Corporation | Lubricating composition for motorcycle applications |
EP4357442A1 (en) | 2022-09-21 | 2024-04-24 | Afton Chemical Corporation | Lubricating composition for fuel efficient motorcycle applications |
EP4368687A1 (en) | 2022-11-10 | 2024-05-15 | Afton Chemical Corporation | Corrosion inhibitor and industrial lubricant including the same |
EP4386070A1 (en) | 2022-12-09 | 2024-06-19 | Afton Chemical Corporation | Driveline and transmission fluids for low speed wear and scuffing |
EP4389859A2 (en) | 2022-12-20 | 2024-06-26 | Afton Chemical Corporation | Low ash lubricating compositions for controlling steel corrosion |
EP4417672A1 (en) | 2023-02-17 | 2024-08-21 | Infineum International Limited | Multipurpose oxypyridinones and their functional use |
EP4417673A1 (en) | 2023-02-17 | 2024-08-21 | Infineum International Limited | Multipurpose oxypyridinones and their functional use |
EP4417675A1 (en) | 2023-02-17 | 2024-08-21 | Infineum International Limited | Multipurpose oxypyridinones and their functional use |
EP4417674A1 (en) | 2023-02-17 | 2024-08-21 | Infineum International Limited | Multipurpose oxypyridinones and their functional use |
EP4435077A1 (en) | 2023-03-22 | 2024-09-25 | Afton Chemical Corporation | Antiwear systems for medium and/or heavy duty diesel engines |
EP4442798A1 (en) | 2023-04-06 | 2024-10-09 | Afton Chemical Corporation | Methods of improving the performance of combustion engine after-treatment devices |
EP4446398A1 (en) | 2023-04-13 | 2024-10-16 | Afton Chemical Corporation | Lubricating composition for durability and enhanced fuel economy |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4338205A (en) * | 1980-08-25 | 1982-07-06 | Exxon Research & Engineering Co. | Lubricating oil with improved diesel dispersancy |
GB2123429A (en) * | 1982-05-22 | 1984-02-01 | Orobis Ltd | Phosphorus-containing polymeric lubricant additives |
ZA89991B (en) * | 1988-02-23 | 1989-10-25 | Ici Australia Operations | Explosive composition |
EP0537386B1 (en) * | 1991-10-08 | 1996-12-11 | Ethyl Petroleum Additives Limited | Modified dispersant compositions |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2961457A (en) * | 1958-01-02 | 1960-11-22 | Basf Ag | New esters of omicron, omicron-dialkylphosphoric or omicron. omicron-dialkylthionophosphoric acids |
US3018247A (en) * | 1960-03-15 | 1962-01-23 | California Research Corp | Lubricating oil compositions containing metal dithiophosphate-nu-dialkylaminoalkyl alkenyl succinimide blends |
US3024195A (en) * | 1959-08-24 | 1962-03-06 | California Research Corp | Lubricating oil compositions of alkylpiperazine alkenyl succinimides |
US3080222A (en) * | 1960-02-23 | 1963-03-05 | Gulf Research Development Co | Oxo-octyl amine salts of dioxo-octyl phosphoric acid esters |
US3112268A (en) * | 1960-02-15 | 1963-11-26 | Shell Oil Co | Lubricating oil composition |
US3160657A (en) * | 1960-06-15 | 1964-12-08 | Shell Oil Co | Alkali metal-amine salt of halohydrocarbylphosphonic acid |
US3163603A (en) * | 1963-12-11 | 1964-12-29 | Lubrizol Corp | Amide and imide derivatives of metal salts of substituted succinic acids |
US3180867A (en) * | 1961-05-17 | 1965-04-27 | Us Vitamin Pharm Corp | Piperazine derivatives |
US3184412A (en) * | 1962-09-28 | 1965-05-18 | California Research Corp | Lubricants inhibited against oxidation |
US3184411A (en) * | 1962-09-28 | 1965-05-18 | California Research Corp | Lubricants for reducing corrosion |
US3185643A (en) * | 1962-09-28 | 1965-05-25 | California Reserach Corp | Oxidation resistant lubricants |
US3185645A (en) * | 1962-09-28 | 1965-05-25 | California Research Corp | Oxidation inhibited lubricants |
US3185646A (en) * | 1962-09-28 | 1965-05-25 | California Research Corp | Corrosion inhibited lubricants |
US3197496A (en) * | 1961-08-09 | 1965-07-27 | Lubrizol Corp | Polyphosphorus ester derivatives of o, o-dihydrocarbyl-s-hydroxylalkyl phosphorodithioates |
US3202678A (en) * | 1959-08-24 | 1965-08-24 | California Research Corp | Alkenyl succinimides of tetraethylene pentamine |
US3210283A (en) * | 1963-06-18 | 1965-10-05 | California Research Corp | Lubricant containing alkenyl succinimide and hydroxypolyamine |
US3209938A (en) * | 1963-06-20 | 1965-10-05 | Frees Joseph H De | Quick opening pressure manhole |
US3216936A (en) * | 1964-03-02 | 1965-11-09 | Lubrizol Corp | Process of preparing lubricant additives |
US3219666A (en) * | 1959-03-30 | 1965-11-23 | Derivatives of succinic acids and nitrogen compounds | |
US3235497A (en) * | 1962-08-23 | 1966-02-15 | Standard Oil Co | Lubricating compositions containing multi-functional additives |
US3265618A (en) * | 1963-07-26 | 1966-08-09 | Shell Oil Co | Lubricating oil compositions |
US3294684A (en) * | 1963-07-11 | 1966-12-27 | Standard Oil Co | Lubricant compositions containing detergency additives |
-
0
- GB GB1054093D patent/GB1054093A/en active Active
-
1963
- 1963-06-17 US US288481A patent/US3502677A/en not_active Expired - Lifetime
-
1964
- 1964-06-17 FR FR978650A patent/FR1403977A/en not_active Expired
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2961457A (en) * | 1958-01-02 | 1960-11-22 | Basf Ag | New esters of omicron, omicron-dialkylphosphoric or omicron. omicron-dialkylthionophosphoric acids |
US3219666A (en) * | 1959-03-30 | 1965-11-23 | Derivatives of succinic acids and nitrogen compounds | |
US3024195A (en) * | 1959-08-24 | 1962-03-06 | California Research Corp | Lubricating oil compositions of alkylpiperazine alkenyl succinimides |
US3202678A (en) * | 1959-08-24 | 1965-08-24 | California Research Corp | Alkenyl succinimides of tetraethylene pentamine |
US3112268A (en) * | 1960-02-15 | 1963-11-26 | Shell Oil Co | Lubricating oil composition |
US3080222A (en) * | 1960-02-23 | 1963-03-05 | Gulf Research Development Co | Oxo-octyl amine salts of dioxo-octyl phosphoric acid esters |
US3018247A (en) * | 1960-03-15 | 1962-01-23 | California Research Corp | Lubricating oil compositions containing metal dithiophosphate-nu-dialkylaminoalkyl alkenyl succinimide blends |
US3160657A (en) * | 1960-06-15 | 1964-12-08 | Shell Oil Co | Alkali metal-amine salt of halohydrocarbylphosphonic acid |
US3180867A (en) * | 1961-05-17 | 1965-04-27 | Us Vitamin Pharm Corp | Piperazine derivatives |
US3197496A (en) * | 1961-08-09 | 1965-07-27 | Lubrizol Corp | Polyphosphorus ester derivatives of o, o-dihydrocarbyl-s-hydroxylalkyl phosphorodithioates |
US3235497A (en) * | 1962-08-23 | 1966-02-15 | Standard Oil Co | Lubricating compositions containing multi-functional additives |
US3185643A (en) * | 1962-09-28 | 1965-05-25 | California Reserach Corp | Oxidation resistant lubricants |
US3185646A (en) * | 1962-09-28 | 1965-05-25 | California Research Corp | Corrosion inhibited lubricants |
US3185645A (en) * | 1962-09-28 | 1965-05-25 | California Research Corp | Oxidation inhibited lubricants |
US3184411A (en) * | 1962-09-28 | 1965-05-18 | California Research Corp | Lubricants for reducing corrosion |
US3184412A (en) * | 1962-09-28 | 1965-05-18 | California Research Corp | Lubricants inhibited against oxidation |
US3210283A (en) * | 1963-06-18 | 1965-10-05 | California Research Corp | Lubricant containing alkenyl succinimide and hydroxypolyamine |
US3209938A (en) * | 1963-06-20 | 1965-10-05 | Frees Joseph H De | Quick opening pressure manhole |
US3294684A (en) * | 1963-07-11 | 1966-12-27 | Standard Oil Co | Lubricant compositions containing detergency additives |
US3265618A (en) * | 1963-07-26 | 1966-08-09 | Shell Oil Co | Lubricating oil compositions |
US3163603A (en) * | 1963-12-11 | 1964-12-29 | Lubrizol Corp | Amide and imide derivatives of metal salts of substituted succinic acids |
US3216936A (en) * | 1964-03-02 | 1965-11-09 | Lubrizol Corp | Process of preparing lubricant additives |
Cited By (222)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3623985A (en) * | 1967-03-29 | 1971-11-30 | Chevron Res | Polysuccinimide ashless detergents as lubricating oil additives |
US3723460A (en) * | 1969-10-10 | 1973-03-27 | Standard Oil Co | Polymeric succinimides and their derivatives as fuel and motor oil additives |
US3844960A (en) * | 1970-11-06 | 1974-10-29 | Shell Oil Co | Lubricant compositions |
US3844957A (en) * | 1971-07-30 | 1974-10-29 | Cities Service Oil Co | Lubricant and fuel compositions |
US4097389A (en) * | 1974-08-05 | 1978-06-27 | Mobil Oil Corporation | Novel amino alcohol reaction products and compositions containing the same |
US3979309A (en) * | 1975-08-14 | 1976-09-07 | Uop Inc. | Lubricating oil additive |
US4329249A (en) * | 1978-09-27 | 1982-05-11 | The Lubrizol Corporation | Carboxylic acid derivatives of alkanol tertiary monoamines and lubricants or functional fluids containing the same |
US4666620A (en) * | 1978-09-27 | 1987-05-19 | The Lubrizol Corporation | Carboxylic solubilizer/surfactant combinations and aqueous compositions containing same |
US4368133A (en) * | 1979-04-02 | 1983-01-11 | The Lubrizol Corporation | Aqueous systems containing nitrogen-containing, phosphorous-free carboxylic solubilizer/surfactant additives |
US4306984A (en) * | 1980-06-19 | 1981-12-22 | Chevron Research Company | Oil soluble metal (lower) dialkyl dithiophosphate succinimide complex and lubricating oil compositions containing same |
US4428849A (en) | 1980-08-25 | 1984-01-31 | Exxon Research & Engineering Co. | Lubricating oil with improved diesel dispersancy |
US4448703A (en) * | 1981-02-25 | 1984-05-15 | The Lubrizol Corporation | Carboxylic solubilizer/surfactant combinations and aqueous compositions containing same |
US4443360A (en) * | 1982-04-19 | 1984-04-17 | Chevron Research Company | Oil-soluble zinc cyclic hydrocarbyl dithiophosphate-succinimide complex and lubricating oil compositions containing same |
US4486573A (en) * | 1982-08-09 | 1984-12-04 | The Lubrizol Corporation | Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same |
US4489194A (en) * | 1982-08-09 | 1984-12-18 | The Lubrizol Corporation | Carboxylic acylating agents substituted with olefin polymers of high/low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same |
US4471091A (en) * | 1982-08-09 | 1984-09-11 | The Lubrizol Corporation | Combinations of carboxylic acylating agents substituted with olefin polymers of high and low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same |
US4623684A (en) | 1982-08-09 | 1986-11-18 | The Lubrizol Corporation | Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same |
US4564460A (en) * | 1982-08-09 | 1986-01-14 | The Lubrizol Corporation | Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same |
US4575526A (en) * | 1982-08-09 | 1986-03-11 | The Lubrizol Corporation | Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same |
US4596663A (en) * | 1982-08-09 | 1986-06-24 | The Lubrizol Corporation | Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same |
US4613342A (en) * | 1982-08-09 | 1986-09-23 | The Lubrizol Corporation | Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same |
US4487704A (en) * | 1982-11-22 | 1984-12-11 | Chevron Research Company | Lubricating oil compositions containing an overbased calcium sulfonate and a zinc cyclic hydrocarbyl dithiophosphate-succinimide complex |
US4747971A (en) * | 1983-09-22 | 1988-05-31 | Chevron Research Company | Hydrocarbon soluble nitrogen containing dispersant - fluorophosphoric acid adducts |
US4648980A (en) * | 1983-09-22 | 1987-03-10 | Chevron Research Company | Hydrocarbon soluble nitrogen containing dispersant - fluorophosphoric acid adducts |
US4615826A (en) * | 1983-09-22 | 1986-10-07 | Chevron Research Company | Hydrocarbon soluble nitrogen containing dispersant-fluorophosphoric acid adducts |
JPH0826340B2 (en) * | 1984-02-14 | 1996-03-13 | ザ▲ルーブリゾル コーポレイション | Compositions containing nitrogen and phosphorus, and aqueous systems containing the compositions |
WO1985003709A1 (en) * | 1984-02-14 | 1985-08-29 | The Lubrizol Corporation | Nitrogen- and phosphorus-containing compositions and aqueous systems containing same |
US4772739A (en) * | 1984-02-14 | 1988-09-20 | The Lubrizol Corporation | Nitrogen- and phosphorus-containing compositions and aqueous systems containing same |
US5041598A (en) * | 1984-02-14 | 1991-08-20 | The Lubrizol Corporation | Nitrogen- and phosphorus-containing compositions and aqueous systems containing same |
EP0156572A3 (en) * | 1984-03-21 | 1986-11-20 | Imperial Chemical Industries Plc | Surfactants for oil/water systems in which the hydrophilic component contains a specified anionic grouping |
EP0156572A2 (en) * | 1984-03-21 | 1985-10-02 | Imperial Chemical Industries Plc | Surfactants for oil/water systems in which the hydrophilic component contains a specified anionic grouping |
US4822433A (en) * | 1984-03-21 | 1989-04-18 | Imperial Chemical Industries Plc | Emulsion explosive composition |
US4642330A (en) * | 1984-12-27 | 1987-02-10 | The Lubrizol Corporation | Dispersant salts |
US5380465A (en) * | 1985-09-05 | 1995-01-10 | Imperial Chemical Industries Plc | Emulsifiers for polymerization process |
US4713190A (en) * | 1985-10-23 | 1987-12-15 | Chevron Research Company | Modified carboxylic amide dispersants |
US4770803A (en) * | 1986-07-03 | 1988-09-13 | The Lubrizol Corporation | Aqueous compositions containing carboxylic salts |
USRE36479E (en) * | 1986-07-03 | 2000-01-04 | The Lubrizol Corporation | Aqueous compositions containing nitrogen-containing salts |
US5336439A (en) * | 1987-12-23 | 1994-08-09 | The Lubrizol Corporation | Salt compositions and concentrates for use in explosive emulsions |
US5407500A (en) * | 1987-12-23 | 1995-04-18 | The Lubrizol Corporation | Salt compositions and explosives using same |
US5439606A (en) * | 1988-03-14 | 1995-08-08 | Ethyl Petroleum Additives, Inc. | Modified succinimide or succinamide dispersants and their production |
US5164103A (en) * | 1988-03-14 | 1992-11-17 | Ethyl Petroleum Additives, Inc. | Preconditioned atf fluids and their preparation |
US5389273A (en) * | 1988-03-14 | 1995-02-14 | Ethyl Petroleum Additives, Inc. | Modified succinimide or succinamide dispersants and their production |
US5198133A (en) * | 1988-03-14 | 1993-03-30 | Ethyl Petroleum Additives, Inc. | Modified succinimide or sucinamide dispersants and their production |
US5041622A (en) * | 1988-04-22 | 1991-08-20 | The Lubrizol Corporation | Three-step process for making substituted carboxylic acids and derivatives thereof |
US5185090A (en) * | 1988-06-24 | 1993-02-09 | Exxon Chemical Patents Inc. | Low pressure derived mixed phosphorous- and sulfur-containing reaction products useful in power transmitting compositions and process for preparing same |
EP0351964A1 (en) | 1988-06-24 | 1990-01-24 | Exxon Chemical Patents Inc. | Synergistic combination of additives useful in power transmitting compositions |
US5078893A (en) * | 1988-06-24 | 1992-01-07 | Exxon Chemical Patents Inc. | Synergistic combination of additives useful in power transmitting compositions |
US5242612A (en) * | 1988-06-24 | 1993-09-07 | Exxon Chemical Patents Inc. | Mixed phosphorous- and sulfur-containing reaction products useful in power transmitting compositions |
US5314633A (en) * | 1988-06-24 | 1994-05-24 | Exxon Chemical Patents Inc. | Low pressure derived mixed phosphorous- and sulfur- containing reaction products useful in power transmitting compositions and process for preparing same |
US5326487A (en) * | 1988-06-24 | 1994-07-05 | Exxon Chemical Patents Inc. | Mixed phosphorous- and sulfur- containing reaction products useful in power transmitting compositions |
US5534170A (en) * | 1988-06-24 | 1996-07-09 | Exxon Chemical Patents Inc. | Mixed phosphorus- and sulfur-containing reaction products useful in power transmitting compositions |
US4857214A (en) * | 1988-09-16 | 1989-08-15 | Ethylk Petroleum Additives, Inc. | Oil-soluble phosphorus antiwear additives for lubricants |
EP0359522A1 (en) * | 1988-09-16 | 1990-03-21 | Ethyl Petroleum Additives, Inc. | Oil-soluble phosphorus antiwear additives for lubricants |
US5059335A (en) * | 1989-02-08 | 1991-10-22 | The Lubrizol Corporation | Lubricants containing salts of hydroxyalkane phosphonic acids |
AU616593B2 (en) * | 1989-02-21 | 1991-10-31 | Ethyl Petroleum Additives, Inc. | Preconditioned atf fluids and their preparation |
EP0384639A1 (en) * | 1989-02-21 | 1990-08-29 | Ethyl Petroleum Additives, Inc. | Preconditioned automatic transmission fluids and their preparation |
US5534169A (en) * | 1989-04-20 | 1996-07-09 | The Lubrizol Corporation | Methods for reducing friction between relatively slideable components using metal carboxylates |
US5213697A (en) * | 1989-04-20 | 1993-05-25 | The Lubrizol Corporation | Method for reducing friction between railroad wheel and railway track using metal overbased colloidal disperse systems |
EP0399764A1 (en) | 1989-05-22 | 1990-11-28 | Ethyl Petroleum Additives Limited | Lubricant compositions |
EP0611818A1 (en) | 1990-07-31 | 1994-08-24 | Exxon Chemical Patents Inc. | Low pressure derived mixed phosphorous- and sulfur-containing reaction products useful in power transmitting compositions and process for preparing the same |
US5360562A (en) * | 1990-10-10 | 1994-11-01 | Ethyl Petroleum Additives, Inc. | Ashless or low-ash synthetic base compositions and additives therefor |
EP0480644A1 (en) * | 1990-10-10 | 1992-04-15 | Ethyl Petroleum Additives, Inc. | Ashless or low-ash synthetic base compositions and additives therefor |
US5652201A (en) * | 1991-05-29 | 1997-07-29 | Ethyl Petroleum Additives Inc. | Lubricating oil compositions and concentrates and the use thereof |
AU657528B2 (en) * | 1991-05-29 | 1995-03-16 | Ethyl Petroleum Additives, Inc. | Lubricating oil compositions and concentrates and the use thereof |
EP0516461A1 (en) * | 1991-05-29 | 1992-12-02 | Ethyl Petroleum Additives, Inc. | Lubricating oil compositions and concentrates and the use thereof |
US5328619A (en) * | 1991-06-21 | 1994-07-12 | Ethyl Petroleum Additives, Inc. | Oil additive concentrates and lubricants of enhanced performance capabilities |
EP0558835A1 (en) | 1992-01-30 | 1993-09-08 | Albemarle Corporation | Biodegradable lubricants and functional fluids |
US5449386A (en) * | 1992-10-09 | 1995-09-12 | Institut Francais Du Petrole | Amine phosphates having a terminal cyclic imide |
US5717039A (en) * | 1992-12-17 | 1998-02-10 | Exxon Chemical Patents Inc. | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5646332A (en) * | 1992-12-17 | 1997-07-08 | Exxon Chemical Patents Inc. | Batch Koch carbonylation process |
US5650536A (en) * | 1992-12-17 | 1997-07-22 | Exxon Chemical Patents Inc. | Continuous process for production of functionalized olefins |
US5629434A (en) * | 1992-12-17 | 1997-05-13 | Exxon Chemical Patents Inc | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5696064A (en) * | 1992-12-17 | 1997-12-09 | Exxon Chemical Patents Inc. | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5698722A (en) * | 1992-12-17 | 1997-12-16 | Exxon Chemical Patents Inc. | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5703256A (en) * | 1992-12-17 | 1997-12-30 | Exxon Chemical Patents Inc. | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5643859A (en) * | 1992-12-17 | 1997-07-01 | Exxon Chemical Patents Inc. | Derivatives of polyamines with one primary amine and secondary of tertiary amines |
US5811377A (en) * | 1993-08-03 | 1998-09-22 | Exxon Chemical Patents Inc | Low molecular weight basic nitrogen-containing reaction products as enhanced phosphorus/boron carriers in lubrication oils |
US5472624A (en) * | 1993-10-06 | 1995-12-05 | Institut Francais Du Petrole | Lubricating compositions containing an amine phosphate with a terminal imide ring |
US5767046A (en) * | 1994-06-17 | 1998-06-16 | Exxon Chemical Company | Functionalized additives useful in two-cycle engines |
EP0713908A1 (en) | 1994-11-22 | 1996-05-29 | Ethyl Corporation | Power transmission fluids |
US6251840B1 (en) | 1995-09-12 | 2001-06-26 | The Lubrizol Corporation | Lubrication fluids for reduced air entrainment and improved gear protection |
US6613722B1 (en) * | 1997-03-07 | 2003-09-02 | Exxon Chemical Patents Inc. | Lubricating composition |
WO1998047989A1 (en) | 1997-04-21 | 1998-10-29 | Exxon Chemical Patents Inc. | Power transmission fluids containing alkyl phosphonates |
WO1999036491A1 (en) | 1998-01-13 | 1999-07-22 | Exxon Chemical Patents Inc. | Automatic transmission fluids of improved viscometric properties |
EP0985725A2 (en) | 1998-09-08 | 2000-03-15 | Chevron Chemical Company LLC | Polyalkylene polysuccinimides and post-treated derivatives thereof |
US6482778B2 (en) | 1999-08-11 | 2002-11-19 | Ethyl Corporation | Zinc and phosphorus containing transmission fluids having enhanced performance capabilities |
EP1076087A1 (en) * | 1999-08-11 | 2001-02-14 | Ethyl Corporation | Zinc and phosphorus containing transmission fluids having enhanced performance capabilities |
EP1142983A1 (en) * | 2000-04-03 | 2001-10-10 | Idemitsu Kosan Company Limited | Lubricant additive |
US6797678B2 (en) | 2000-04-03 | 2004-09-28 | Idemitsu Kosan Co., Ltd. | Lubricant additive |
US6352962B1 (en) | 2000-04-03 | 2002-03-05 | Idemitsu Kosan Co., Ltd. | Lubricant additive comprising reaction product of phosphate or phosphite and boronated dispersant |
US20030220206A1 (en) * | 2000-09-29 | 2003-11-27 | Nippon Mitsubishi Oil Corporation | Lubricant compositions |
US6828286B2 (en) | 2000-09-29 | 2004-12-07 | Nippon Mitsubishi Oil Corporation | Lubricant compositions |
US20050041395A1 (en) * | 2003-08-21 | 2005-02-24 | The Lubrizol Corporation | Multifunctional dispersants |
US7947636B2 (en) | 2004-02-27 | 2011-05-24 | Afton Chemical Corporation | Power transmission fluids |
US20050192185A1 (en) * | 2004-02-27 | 2005-09-01 | Saathoff Lee D. | Power transmission fluids |
US20050250656A1 (en) * | 2004-05-04 | 2005-11-10 | Masahiro Ishikawa | Continuously variable transmission fluid |
EP1640440A1 (en) | 2004-09-22 | 2006-03-29 | Infineum International Limited | Friction and/or wear reduction in manual or automated manual transmissions |
US20070042917A1 (en) * | 2005-07-12 | 2007-02-22 | Ramanathan Ravichandran | Amine Tungstates and Lubricant Compositions |
US20080194440A1 (en) * | 2005-07-12 | 2008-08-14 | Ramanathan Ravichandran | Amine tungstates and lubricant compositions |
US8080500B2 (en) | 2005-07-12 | 2011-12-20 | King Industries, Inc. | Amine tungstates and lubricant compositions |
US20090029888A1 (en) * | 2005-07-12 | 2009-01-29 | Ramanathan Ravichandran | Amine tungstates and lubricant compositions |
US7820602B2 (en) | 2005-07-12 | 2010-10-26 | King Industries, Inc. | Amine tungstates and lubricant compositions |
US8598099B2 (en) | 2006-07-27 | 2013-12-03 | The Lubrizol Corporation | Multi-dispersant lubricating composition |
US20090305919A1 (en) * | 2006-07-27 | 2009-12-10 | The Lubrizol Corporation | Multi-Dispersant Lubricating Composition |
EP1964911A2 (en) | 2007-02-13 | 2008-09-03 | Infineum International Limited | Methods for lubricating a transmission |
US20080194442A1 (en) * | 2007-02-13 | 2008-08-14 | Watts Raymond F | Methods for lubricating a transmission |
US20100107478A1 (en) * | 2007-04-18 | 2010-05-06 | Instituto Mexicano Del Petroleo | Oxazolidines derived from polyalkyl or polyalkenyl n-hydroxyalkyl succinimides, obtainment process and use |
US9981958B2 (en) | 2007-04-18 | 2018-05-29 | Instituto Mexicano Del Petroleo | Oxazolidines derived from polyalkyl or polyalkenyl n-hydroxyalkyl succinimides, obtainment process and use |
EP2028257A2 (en) | 2007-06-29 | 2009-02-25 | Infineum International Limited | Boron-containing lubricating oils having improved friction stability |
EP2028256A2 (en) | 2007-06-29 | 2009-02-25 | Infineum International Limited | Lubricating oils having improved friction stability |
US8623797B2 (en) | 2007-06-29 | 2014-01-07 | Infineum International Limited | Boron-containing lubricating oils having improved friction stability |
US20090005277A1 (en) * | 2007-06-29 | 2009-01-01 | Watts Raymond F | Lubricating Oils Having Improved Friction Stability |
US20090005276A1 (en) * | 2007-06-29 | 2009-01-01 | Watts Raymond F | Boron-Containing Lubricating Oils Having Improved Friction Stability |
WO2011102836A1 (en) | 2010-02-19 | 2011-08-25 | Infineum International Limited | Wet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of borated detergents |
WO2011102835A1 (en) | 2010-02-19 | 2011-08-25 | Toyota Jidosha Kabushiki Kaisha | Wet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of sodium detergents |
US9365794B2 (en) | 2010-02-19 | 2016-06-14 | Infineum International Limited | Wet friction clutch—lubricant systems providing high dynamic coefficients of friction through the use of borated detergents |
EP2843033A1 (en) | 2013-08-15 | 2015-03-04 | Infineum International Limited | Transmission fluid compositions for improved energy efficiency |
US10227544B2 (en) | 2013-08-15 | 2019-03-12 | Infineum International Limited | Automotive transmission fluid compositions for improved energy efficiency |
EP2837675A1 (en) | 2013-08-15 | 2015-02-18 | Infineum International Limited | Automotive transmission fluid compositions for improved energy efficiency |
US9657252B2 (en) | 2014-04-17 | 2017-05-23 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
EP2933320A1 (en) | 2014-04-17 | 2015-10-21 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
EP2990469A1 (en) | 2014-08-27 | 2016-03-02 | Afton Chemical Corporation | Lubricant composition suitable for use in gasoline direct injection engines |
CN105524679A (en) * | 2014-09-28 | 2016-04-27 | 中国石油化工股份有限公司 | Automatic transmission liquid composition and method for improving dynamic friction coefficient of automatic transmission liquid composition |
CN105524683A (en) * | 2014-09-28 | 2016-04-27 | 中国石油化工股份有限公司 | phosphorization ashless dispersant and preparation method thereof, and lubricating oil dynamic friction coefficient improving method |
DE102015118989A1 (en) | 2014-11-05 | 2016-05-12 | Infineum International Ltd. | Power transmission fluids with improved material compatibility |
US9732301B2 (en) | 2014-11-05 | 2017-08-15 | Infineum International Limited | Power transmitting fluids with improved materials compatibility |
US9957463B2 (en) | 2014-11-05 | 2018-05-01 | Infineum International Limited | Power transmitting fluids with improved materials compatibility |
WO2017011689A1 (en) | 2015-07-16 | 2017-01-19 | Afton Chemical Corporation | Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition |
EP3118285A1 (en) | 2015-07-16 | 2017-01-18 | Infineum International Limited | Method of improving vehicle transmission operation through use of specific lubricant compositions |
US10550349B2 (en) | 2015-07-16 | 2020-02-04 | Afton Chemical Corporation | Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition |
EP3943581A1 (en) | 2015-07-16 | 2022-01-26 | Afton Chemical Corporation | Lubricants with tungsten and their use for improving low speed pre-ignition |
US10421922B2 (en) | 2015-07-16 | 2019-09-24 | Afton Chemical Corporation | Lubricants with magnesium and their use for improving low speed pre-ignition |
US10336959B2 (en) | 2015-07-16 | 2019-07-02 | Afton Chemical Corporation | Lubricants with calcium-containing detergent and their use for improving low speed pre-ignition |
US10280383B2 (en) | 2015-07-16 | 2019-05-07 | Afton Chemical Corporation | Lubricants with molybdenum and their use for improving low speed pre-ignition |
US10214703B2 (en) | 2015-07-16 | 2019-02-26 | Afton Chemical Corporation | Lubricants with zinc dialkyl dithiophosphate and their use in boosted internal combustion engines |
WO2017146867A1 (en) | 2016-02-25 | 2017-08-31 | Afton Chemical Corporation | Lubricants for use in boosted engines |
EP3613831A1 (en) | 2016-02-25 | 2020-02-26 | Afton Chemical Corporation | Lubricants for use in boosted engines |
US10377963B2 (en) | 2016-02-25 | 2019-08-13 | Afton Chemical Corporation | Lubricants for use in boosted engines |
US9701921B1 (en) | 2016-04-08 | 2017-07-11 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
EP3228684A1 (en) | 2016-04-08 | 2017-10-11 | Afton Chemical Corporation | Lubricant compositions having improved frictional characteristics and methods of use thereof |
EP3243892A1 (en) | 2016-04-08 | 2017-11-15 | Afton Chemical Corporation | Lubricant compositions having improved frictional characteristics and methods of use thereof |
US9677026B1 (en) | 2016-04-08 | 2017-06-13 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
WO2017189277A1 (en) | 2016-04-26 | 2017-11-02 | Afton Chemical Corporation | Random copolymers of acrylates as polymeric friction modifiers, and lubricants containing same |
WO2017192202A1 (en) | 2016-05-05 | 2017-11-09 | Afton Chemical Corporaion | Lubricant compositions for reducing timing chain stretch |
US10323205B2 (en) | 2016-05-05 | 2019-06-18 | Afton Chemical Corporation | Lubricant compositions for reducing timing chain stretch |
WO2017192217A1 (en) | 2016-05-05 | 2017-11-09 | Afton Chemical Corporation | Lubricants for use in boosted engines |
US11155764B2 (en) | 2016-05-05 | 2021-10-26 | Afton Chemical Corporation | Lubricants for use in boosted engines |
WO2018111726A1 (en) | 2016-12-16 | 2018-06-21 | Afton Chemical Corporation | Multi-functional olefin copolymers and lubricating compositions containing same |
US10370615B2 (en) | 2017-01-18 | 2019-08-06 | Afton Chemical Corporation | Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition |
WO2018136138A1 (en) | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with overbased calcium and overbased magnesium detergents and method for improving low-speed pre-ignition |
US10443011B2 (en) | 2017-01-18 | 2019-10-15 | Afton Chemical Corporation | Lubricants with overbased calcium and overbased magnesium detergents and method for improving low-speed pre-ignition |
US10443558B2 (en) | 2017-01-18 | 2019-10-15 | Afton Chemical Corporation | Lubricants with calcium and magnesium-containing detergents and their use for improving low-speed pre-ignition and for corrosion resistance |
WO2018136136A1 (en) | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition |
WO2018136137A1 (en) | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with calcium and magnesium-containing detergents and their use for improving low-speed pre-ignition and for corrosion resistance |
EP3476923A1 (en) | 2017-10-25 | 2019-05-01 | Afton Chemical Corporation | Dispersant viscosity index improvers to enhance wear protection in engine oils |
US10513668B2 (en) | 2017-10-25 | 2019-12-24 | Afton Chemical Corporation | Dispersant viscosity index improvers to enhance wear protection in engine oils |
EP3495461A1 (en) | 2017-12-11 | 2019-06-12 | Infineum International Limited | Automotive transmission fluid compositions for improved energy efficiency |
US10711219B2 (en) | 2017-12-11 | 2020-07-14 | Infineum International Limited | Automotive transmission fluid compositions for improved energy efficiency |
US10640723B2 (en) * | 2018-03-16 | 2020-05-05 | Afton Chemical Corporation | Lubricants containing amine salt of acid phosphate and hydrocarbyl borate |
EP3560966A2 (en) | 2018-04-25 | 2019-10-30 | Afton Chemical Corporation | Multifunctional branched polymers with improved low-temperature performance |
US11760953B2 (en) | 2018-04-25 | 2023-09-19 | Afton Chemical Corporation | Multifunctional branched polymers with improved low-temperature performance |
US11098262B2 (en) | 2018-04-25 | 2021-08-24 | Afton Chemical Corporation | Multifunctional branched polymers with improved low-temperature performance |
US11459521B2 (en) | 2018-06-05 | 2022-10-04 | Afton Chemical Coporation | Lubricant composition and dispersants therefor having a beneficial effect on oxidation stability |
EP3578625A1 (en) | 2018-06-05 | 2019-12-11 | Afton Chemical Corporation | Lubricant composition and dispersants therefor having a beneficial effect on oxidation stability |
CN112513232A (en) * | 2018-06-22 | 2021-03-16 | 路博润公司 | Lubricating composition for heavy duty diesel engines |
US11702610B2 (en) * | 2018-06-22 | 2023-07-18 | The Lubrizol Corporation | Lubricating compositions |
CN112513232B (en) * | 2018-06-22 | 2022-09-13 | 路博润公司 | Lubricating composition for heavy duty diesel engines |
US10836976B2 (en) | 2018-07-18 | 2020-11-17 | Afton Chemical Corporation | Polymeric viscosity modifiers for use in lubricants |
WO2020174454A1 (en) | 2019-02-28 | 2020-09-03 | Afton Chemical Corporation | Lubricating compositions for diesel particulate filter performance |
EP3736318A1 (en) | 2019-05-09 | 2020-11-11 | Infineum International Limited | Transmission fluid composition for improved wear protection |
US11312918B2 (en) | 2019-05-09 | 2022-04-26 | Infineum International Limited | Transmission fluid composition for improved wear protection |
US11066622B2 (en) | 2019-10-24 | 2021-07-20 | Afton Chemical Corporation | Synergistic lubricants with reduced electrical conductivity |
EP3812445A1 (en) | 2019-10-24 | 2021-04-28 | Afton Chemical Corporation | Synergistic lubricants with reduced electrical conductivity |
EP3839018A1 (en) | 2019-12-16 | 2021-06-23 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
US11685874B2 (en) | 2019-12-16 | 2023-06-27 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
US11365273B2 (en) | 2019-12-16 | 2022-06-21 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
US11384311B2 (en) | 2019-12-16 | 2022-07-12 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
EP3839019A1 (en) | 2019-12-16 | 2021-06-23 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
EP3839017A1 (en) | 2019-12-16 | 2021-06-23 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
EP3858954A1 (en) | 2020-01-29 | 2021-08-04 | Afton Chemical Corporation | Lubricant formulations with silicon-containing compounds |
EP4368689A1 (en) | 2020-08-12 | 2024-05-15 | Afton Chemical Corporation | Polymeric surfactants for improved emulsion and flow properties at low temperatures |
EP3954753A1 (en) | 2020-08-12 | 2022-02-16 | Afton Chemical Corporation | Polymeric surfactants for improved emulsion and flow properties at low temperatures |
WO2022072559A1 (en) | 2020-10-02 | 2022-04-07 | Infineum International Limited | Rejuvenation and/or extension of the lifetime of frictional performance in transmission fluids |
EP3995561A2 (en) | 2020-10-16 | 2022-05-11 | Infineum International Limited | Transmission fluid compositions for hybrid and electric vehicle applications |
US11905488B2 (en) | 2020-10-16 | 2024-02-20 | Infineum International Limited | Transmission fluid compositions for hybrid and electric vehicle applications |
WO2022094557A1 (en) | 2020-10-30 | 2022-05-05 | Afton Chemical Corporation | Engine oils with low temperature pump ability |
WO2022136384A1 (en) | 2020-12-24 | 2022-06-30 | Infineum International Limited | Thermally responsive brush polymers having a copolymer backbone and copolymer arms |
EP4067463A1 (en) | 2021-03-30 | 2022-10-05 | Afton Chemical Corporation | Engine oils with improved viscometric performance |
EP4098723A1 (en) | 2021-06-04 | 2022-12-07 | Afton Chemical Corporation | Lubricating compositions for a hybrid engine |
WO2023004265A1 (en) | 2021-07-21 | 2023-01-26 | Afton Chemical Corporation | Methods of reducing lead corrosion in an internal combustion engine |
EP4124648A1 (en) | 2021-07-31 | 2023-02-01 | Afton Chemical Corporation | Engine oil formulations for low timing chain stretch |
EP4194531A1 (en) | 2021-12-09 | 2023-06-14 | Infineum International Limited | Borated detergents and their lubricating applications |
US11939550B2 (en) | 2021-12-09 | 2024-03-26 | Infineum International Limited | Borated detergents and their lubricating applications |
WO2023141399A1 (en) | 2022-01-18 | 2023-07-27 | Afton Chemical Corporation | Lubricating compositions for reduced high temperature deposits |
US11976250B2 (en) | 2022-01-26 | 2024-05-07 | Afton Chemical Corporation | Sulfurized additives with low levels of alkyl phenols |
US11572523B1 (en) | 2022-01-26 | 2023-02-07 | Afton Chemical Corporation | Sulfurized additives with low levels of alkyl phenols |
WO2023147258A1 (en) | 2022-01-26 | 2023-08-03 | Afton Chemical Corporation | Sulfurized additives with low levels of alkyl phenols |
WO2023159095A1 (en) | 2022-02-21 | 2023-08-24 | Afton Chemical Corporation | Polyalphaolefin phenols with high para-position selectivity |
US11976252B2 (en) | 2022-02-21 | 2024-05-07 | Afton Chemical Corporation | Polyalphaolefin phenols with high para-position selectivity |
WO2023212165A1 (en) | 2022-04-27 | 2023-11-02 | Afton Chemical Corporation | Additives with high sulfurization for lubricating oil compositions |
EP4282937A1 (en) | 2022-05-26 | 2023-11-29 | Afton Chemical Corporation | Engine oil formluation for controlling particulate emissions |
EP4306624A1 (en) | 2022-07-14 | 2024-01-17 | Afton Chemical Corporation | Transmission lubricants containing molybdenum |
US11970671B2 (en) | 2022-07-15 | 2024-04-30 | Afton Chemical Corporation | Detergent systems for oxidation resistance in lubricants |
EP4310162A1 (en) | 2022-07-15 | 2024-01-24 | Afton Chemical Corporation | Detergent systems for oxidation resistance in lubricants |
EP4317369A1 (en) | 2022-08-02 | 2024-02-07 | Afton Chemical Corporation | Detergent systems for improved piston cleanliness |
EP4357442A1 (en) | 2022-09-21 | 2024-04-24 | Afton Chemical Corporation | Lubricating composition for fuel efficient motorcycle applications |
WO2024073304A1 (en) | 2022-09-27 | 2024-04-04 | Afton Chemical Corporation | Lubricating composition for motorcycle applications |
US11912955B1 (en) | 2022-10-28 | 2024-02-27 | Afton Chemical Corporation | Lubricating compositions for reduced low temperature valve train wear |
EP4361235A1 (en) | 2022-10-28 | 2024-05-01 | Afton Chemical Corporation | Lubricating compositions for reduced low temperature valve train wear |
EP4368687A1 (en) | 2022-11-10 | 2024-05-15 | Afton Chemical Corporation | Corrosion inhibitor and industrial lubricant including the same |
EP4386070A1 (en) | 2022-12-09 | 2024-06-19 | Afton Chemical Corporation | Driveline and transmission fluids for low speed wear and scuffing |
EP4389859A2 (en) | 2022-12-20 | 2024-06-26 | Afton Chemical Corporation | Low ash lubricating compositions for controlling steel corrosion |
US11926804B1 (en) | 2023-01-31 | 2024-03-12 | Afton Chemical Corporation | Dispersant and detergent systems for improved motor oil performance |
EP4410934A1 (en) | 2023-01-31 | 2024-08-07 | Afton Chemical Corporation | Dispersant and detergent systems for improved motor oil performance |
EP4417672A1 (en) | 2023-02-17 | 2024-08-21 | Infineum International Limited | Multipurpose oxypyridinones and their functional use |
EP4417673A1 (en) | 2023-02-17 | 2024-08-21 | Infineum International Limited | Multipurpose oxypyridinones and their functional use |
EP4417675A1 (en) | 2023-02-17 | 2024-08-21 | Infineum International Limited | Multipurpose oxypyridinones and their functional use |
EP4417674A1 (en) | 2023-02-17 | 2024-08-21 | Infineum International Limited | Multipurpose oxypyridinones and their functional use |
EP4435077A1 (en) | 2023-03-22 | 2024-09-25 | Afton Chemical Corporation | Antiwear systems for medium and/or heavy duty diesel engines |
US12110468B1 (en) | 2023-03-22 | 2024-10-08 | Afton Chemical Corporation | Antiwear systems for improved wear in medium and/or heavy duty diesel engines |
EP4442798A1 (en) | 2023-04-06 | 2024-10-09 | Afton Chemical Corporation | Methods of improving the performance of combustion engine after-treatment devices |
EP4446398A1 (en) | 2023-04-13 | 2024-10-16 | Afton Chemical Corporation | Lubricating composition for durability and enhanced fuel economy |
Also Published As
Publication number | Publication date |
---|---|
FR1403977A (en) | 1965-06-25 |
GB1054093A (en) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3502677A (en) | Nitrogen-containing and phosphorus-containing succinic derivatives | |
US3513093A (en) | Lubricant containing nitrogen-containing and phosphorus-containing succinic derivatives | |
US3403102A (en) | Lubricant containing phosphorus acid esters | |
US3346493A (en) | Lubricants containing metal complexes of alkenyl succinic acid-amine reaction product | |
US3338832A (en) | Lubricating oil containing reaction product of certain acylated nitrogen containing intermediates and a boron compound | |
US3454607A (en) | High molecular weight carboxylic compositions | |
US3282955A (en) | Reaction products of acylated nitrogen intermediates and a boron compound | |
US3390082A (en) | Lubricants containing metal-free dispersants and inhibitors | |
US3197405A (en) | Phosphorus-and nitrogen-containing compositions and process for preparing the same | |
US3306908A (en) | Reaction products of high molecular weight hydrocarbon succinic compounds, amines and heavy metal compounds | |
US3284409A (en) | Substituted succinic acid-boron-alkylene amine phosphatide derived additive and lubricating oil containing same | |
US3444170A (en) | Process which comprises reacting a carboxylic intermediate with an amine | |
US3281428A (en) | Reaction product of certain acylated nitrogen containing intermediates and a boron compound | |
US3254025A (en) | Boron-containing acylated amine and lubricating compositions containing the same | |
US3366569A (en) | Lubricating compositions containing the reaction product of a substituted succinic acid-producing compound, an amino compound, and an alkenyl cyanide | |
US3344069A (en) | Lubricant additive and lubricant containing same | |
US3278550A (en) | Reaction products of a hydrocarbonsubstituted succinic acid-producing compound, an amine and an alkenyl cyanide | |
US4151173A (en) | Acylated polyoxyalkylene polyamines | |
US3272743A (en) | Lubricants containing metal-free dispersants and metallic dispersants | |
US3533945A (en) | Lubricating oil composition | |
US3200107A (en) | Process for preparing acylated amine-cs2 compositions and products | |
US3448048A (en) | Lubricant containing a high molecular weight acylated amine | |
US3284410A (en) | Substituted succinic acid-boron-alkylene amine-cyanamido derived additive and lubricating oil containing same | |
US3519564A (en) | Heterocyclic nitrogen-sulfur compositions and lubricants containing them | |
US3256185A (en) | Lubricant containing acylated aminecarbon disulfide product |