US3502123A - Lumber sorting machine - Google Patents

Lumber sorting machine Download PDF

Info

Publication number
US3502123A
US3502123A US515697A US3502123DA US3502123A US 3502123 A US3502123 A US 3502123A US 515697 A US515697 A US 515697A US 3502123D A US3502123D A US 3502123DA US 3502123 A US3502123 A US 3502123A
Authority
US
United States
Prior art keywords
lumber
cut
conveyor
switch
saw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US515697A
Inventor
Alexander J Golick
Ernest D Giuseponi
Arthur J Randolph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3502123A publication Critical patent/US3502123A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q16/00Equipment for precise positioning of tool or work into particular locations not otherwise provided for
    • B23Q16/001Stops, cams, or holders therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/04Sorting according to size
    • B07C5/12Sorting according to size characterised by the application to particular articles, not otherwise provided for
    • B07C5/14Sorting timber or logs, e.g. tree trunks, beams, planks or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q7/00Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting
    • B23Q7/12Sorting arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/202With product handling means
    • Y10T83/2022Initiated by means responsive to product or work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/202With product handling means
    • Y10T83/2033Including means to form or hold pile of product pieces
    • Y10T83/2037In stacked or packed relation
    • Y10T83/2057Including means to deliver individual pieces to a stack holder

Definitions

  • This invention relates to a lumber cutting and sorting apparatus and more particularly to apparatus for sorting lumber according to the length of the cutting, and which apparatus also may include operator-controlled means for separating cuttings of the same length according to grade or other factors or characteristics.
  • An object of this invention is the provision of an automatic lumber cutting-sorting apparatus which eliminates the need for manually sorting the lumber after cutting, and which requires considerably less space and equipment than conventional lumber cutting and sorting apparatus.
  • a further object of this invention is the provision of means under control of the operator for sorting the cut lumber according to grade.
  • Another object of this invention is the provision of an improved method of sorting lumber.
  • the gauge stop may comprise a plurality of adjustably positioned stop members.
  • the stop members are provided with sensing means, such as switches, for sensing which stop member is employed when making the cut.
  • Other sensing means such as photocells, ultrasonic means, etc., located in any suitable position also may be employed.
  • a plurality of movable deflector plates are located at spaced locations along and above the primary conveyor downstream of the saw, which detlector plates are normally disposed out of the 3,502,123 Patented Mar. 24, 1970 ICC path of movement of the cut pieces of lumber.
  • the deilector plates may be lowered into deflecting position over the conveyor to deflect the cut board from said conveyor into the desired channel.
  • the means for actuating said deflector plates include said sensing means at the stop members whereby the location at which the lumber is deflected from the main conveyor is determined by the length of board cut. The boards are thereby sorted according to length.
  • two or more deflector actuating means may be selectively connected to a single stop member switch through a selector switch means under control of the operator whereby, in addition to automatically sorting the lumber by length, the operator may also divert the board to an alternate destination by simply actuating the selector switch.
  • the lumber deflected from the primary conveyor may be directed by said deiiector plates onto parallel or diverging cross conveyors extending transversely of and beneath the primary conveyor. From the cross conveyors the sorted lumber may be stacked in corresponding accumulators by means of a stacking unit.
  • FIGURE 1 is a perspective view of a lumber cuttingsorting apparatus embodying this invention
  • FIGURE 2 is a sectional view taken substantially on line 2-2 of FIGURE l;
  • FIGURE 3 is a fragmentary sectional plan view showing a portion of the primary conveyor and cross conveyors
  • FIGURE 4 is a fragmentary view taken on line 4 4 of FIGURE 2;
  • FIGURE 5 is an enlarged fragmentary plan view showing a portion of the primary conveyor and measuring uide;
  • FIGURE 6 is a sectional view taken on line 6-6 0f FIGURE 5;
  • FIGURE 7 is an enlarged fragmentary sectional view taken on line 7--7 of FIGURE 1;
  • FIGURE 8 is an enlarged perspective view of the cutoff saw, showing a control box and limit switches added thereto;
  • FIGURE 9 is a simplified schematic diagram of the control system for the apparatus.
  • FIGURE 10 is a diagrammatic plan view showing a plurality of saws, primary belts, cross conveyors, and random length and long length conveyors at the end of the primary belts, and
  • FIGURE 11 is a diagrammatic fragmentary sectional view taken on line 11-11 of FIGURE 10.
  • FIGURE 1 For a brief description of the apparatus of this invention reference is rst made to FIGURE 1 wherein the apparatus is shown comprising a saw 14 to which long lengths of lumber may be supplied from any suitable source (not shown) for cutting to desired length. Any suitable type saw such as a mechanically operated cut-olf saw may be employed in the apparatus. In the illustrated apparatus a conventional cut-off saw which has been modified -by the addition of various control switches as described in detail below is employed. A lumber support table 13 at one side of the table saw 14 may be used to support lumber being supplied to the saw and the outer end of the lumber extending across the saw.
  • Any suitable type saw such as a mechanically operated cut-olf saw may be employed in the apparatus.
  • a conventional cut-off saw which has been modified -by the addition of various control switches as described in detail below is employed.
  • a lumber support table 13 at one side of the table saw 14 may be used to support lumber being supplied to the saw and the outer end of the lumber extending across the saw.
  • a lumber cut-olf gauge stop 15 is arranged in tandem with the saw 14, and a primary conveyor 16 is arranged in parallel with the gauge stop.
  • a substantially conventional lumber cut-off gauge stop 15 is shown which includes a plurality of adjustatbly positioned stop members 17 pivotally mounted on a slotted bracket 18.
  • the gauge stop 15 is modied by the addition of sensing means such as switches 19 to the stop members 17.
  • Lead wires 20 from the switches 19 are provided with plug connectors 21P for plugging into desired jacks 21] carried on a panel 22 below the lumber measuring guide (a plug and jack together being designated 21).
  • the jacks are connected through cables 23 to control windings of solenoidactuated air valves 24-1, 24-2, etc., which valves control the pressurization of air cylinders 25-1 through 25-10.
  • the cylinders 25-1 through 25-10 actuate curved deflector plates 26-1 through 26-10, respectively, for vertical plane movement of the deector plates -between raised and lowered positions over the primary conveyor 16. With the deflector plates in the raised position, the lumber on the primary conveyor passes therebeneath. In the lowered position, the deflector plate is lowered into the path of the lumber traveling along the primary conveyor whereby the lumber is deflected from the primary conveyor 16 and onto one of a plurality of parallel extending cross-conveyors 27-1 through 27-10.
  • the crossconveyor onto which the lumber is transferred depends upon which deflector plate is lowered, which, in turn, depends upon which stop switch 19 at the measuring guide is actuated.
  • the cut pieces are thereby automatically separated according to length and deposited onto the cross-conveyors.
  • the lumber from the cross-conveyors 27-1 through 27-10 is fed to inclined elevating conveyors 28-1 through 2810, respectively, from whence it is stacked in accumulators 30-1 through 30-10, respectively.
  • a foot-controlled switch 62 controls the raising of the saw blade 38 to cutting position through the slot 37 in the saw by means of any suitable mechanism.
  • Saws of conventional design may be employed and need not be described in detail.
  • Mounted on the side of the saw cabinet are a pair of switches 82 and 88 which are actuated by a switch actuating lever 96 xedly secured to a pivot shaft 46, which shaft is pivoted as the saw blade 38 is raised and lowered.
  • the switch 82 is a normally closed switch which is held open by the lever 96 when the saw blade is retracted and which closes only when the blade is extended.
  • This switch is included in the energization circuit for the control windings of the solenoid actuated valves 24-1, 24-2, etc., for the operation of the dellector plates 26-1, 26-2, etc.
  • the switch 88 is normally open and is actuated to a closed position by the lever 96 when the saw blade is raised.
  • This switch is inclined in the energization circuit for control of a kicker mechanism for the transfer of cut lumber off the lumber cut-olf gauge stop and onto the primary conveyor 16.
  • a control box 98 is mounted on the front panel of the saw cabinet within convenient reach of the sawer.
  • a normally open grade selector switch 100 with an actuating arm 102 extending therefrom is mounted on the box- 98.
  • the switch 100 is effective for grade selection during only a single cycle of operation of the machine.
  • the control box 98 houses ano-ther grade selector switch 104 which may be set by the operator to the predominate grade lumber being run through the machine.
  • Push button switch 108 is also contained in the control box 98, which switch is included in a circuit for raising all of the deector plates 26-1 through 26-10.
  • FIGURE 6 wherein the primary conveyor 16 is shown comprising a pair ofl spaced longitudinally extending channel beams 114A and 114B mounted on a base plate 116 attached to suitable supporting means not shown.
  • a vertical guide plate 118 and an elongated rectangular-shaped frame member 120 are attached to the upper edges of the channel beams 114A and 114B, respectively.
  • Idler rollers 122 for the support of the forward run of a conveyor belt 124 are rotatably supported between the members 118 and 120.
  • the conveyor belt passes over end rollers at opposite ends and is driven by a motor 126. (See FIGURE 1.)
  • the lumber cut-off gauge stop 15, as seen in FIG- URES 5 and 6, comprises the inverted L-shaped mounting bracket 18 attached as by -bolts or other suitable means not shown to the longitudinal frame element 120.
  • the lumber 132 to be cut is supported on the horizontal bracket 18 against upright ange 136 formed thereon.
  • FIGURES 5 and 6 the lumber to be cut is shown in broken line view on the lumber cut-off gauge stop 15, and a cut-off piece of lumber is shown in full line on the conveyor 16.
  • slots are formed in the bracket 18 at suitable intervals therealong. In the fragmentary view of FIG- URE 5 the slots are shown spaced one inch apart, and inch markings 15 through 20 inches are shown adjacent the slots. The slots extend along the bracket 18 for any desired length of say eight to ten feet.
  • the stop members 17 are pivotally supported on the bracket 18 within any of the slots 140 as desired.
  • Inverted L-shaped slots 144 are formed in the stop members for ready positioning of the stop members at any desired slot 140.
  • stop members are shown at the sixteen and twenty inch slots.
  • Each stop member 17 carries a weight 146 at the lower end thereof, and the force of gravity on the weights operates to hold the upper end of the stop members in an extended position through the slotted portion of the lumber supporting surface, as shown in full line in FIGURE 6.
  • the stop members may be manually pivoted in a clockwise direction as viewed in FIGURE 6 to the broken line position wherein the upper portion of the stop mem-ber no longer extends through the lumber supporting surface. Pivotal movement of the stop members is accomplished when the sawyer moves the lumber transversely of the measuring guide into engagement with the flange 136. Those stop members engaged by the side of the lumber are forced into a non-operative position.
  • the stop members are positioned in desired slots for cutting the lumber to the desired length, and the lumber to be cut is manually advanced by the sawyer over the saw table and along the lumber cut-off gauge stop.
  • the swayer moves the lumber transversely-against the ange 136, at the same time sliding the lumber forward into abutting relation with the desired stop member. It will be apparent that all of the stop members between the saw and the desired stop member are swung out of normal position by the lumber at this time. With the lumber abutting the desired stop member, the lumber may then be cut to the desired length.
  • the cut-off forward section of lumber is transferred off the lumber cutoff gauge stop 15 and onto the conveyor belt 124 of the conveyor 16.
  • pivotably mounted kicker arms of any suitable design are employed. In the illustrated arrangement the arms are shown fixedly secured to a shaft which is rocked by an air cylinder 156.
  • the stop or abutment members 17 are supplied with sensing means such as the normally open electrical limit switches 19 which have actuating rods 164 extending through sleeves 166 which face upstream and against which the end of the lumber to be cut is abutted.
  • sensing means such as the normally open electrical limit switches 19 which have actuating rods 164 extending through sleeves 166 which face upstream and against which the end of the lumber to be cut is abutted.
  • a plurality of parallel aligned cross-conveyors 27-1 through 27-10 extend beneath the primary conveyor 16, and movable deector plates 26-1 through 26-10 are positioned over the primary conveyor at the cross-conveyors for selectively dellecting the cut lumber from the primary conveyor onto the cross-conveyors. All dellectors may be of the same construction whereby a description of one applies to them all.
  • a U-shaped supporting member 176 extends longitudinal of the primary conveyor 16 over the cross-conveyors 27-1 through 27-10 and is supported by suitable framework, not shown.
  • the air cylinders 25-1 through 25-10 are mounted on the member 176 with the piston rods 180 extending downwardly through clearance holes in the member.
  • the deliector plates 26-1, 26-2, etc. are attached to the lower ends of the piston rods by welding or other suitable means, not shown.
  • the deliector plates are of a curved shape and extend across the main conveyor 16 and along the far edge of the channel divider of the associated cross-conveyor.
  • the lower edges of the deilector plates are formed with downwardly protruding portions directly over the cross-conveyors for directing the lumber as it is projected from the main conl veyor.
  • the deflector plates may be of any desired conliguration for guiding the travel of the deflected boards.
  • the invention is not limited to deliector plates of any particular shape.
  • each deliector plate is movable between a lowered position, shown in full lines and raised position shown in broken lines. In the lowered position, the deliector is positioned in the path of the lumber traveling along the main conveyor. Engagement of the end of a board 132 with the deflector deliects the board to the right as viewed in FIGURE 2, for transfer of the board olif the primary conveyor and onto a cross-conveyor.
  • the primary conveyor 16 operates at high speeds (generally between 500-100 feet per minute) whereby the cut boards are positively projected off the primary conveyor and along the cross-conveyor as a result of the high inertia imparted to the boards.
  • the primary belt has a rough top surface for a high coefficient of friction to insure prompt acceleration and removal of the cut board.
  • Mechanical means may be included in the kicker mechanism, if desired, to provide a longitudinal component of velocity to the board as it is kicked from the lumber cut-off gauge.
  • hoses 184 and 186 lead from opposite ends of the cylinders to the solenoid operated valves 24-1, 24-2, etc. for control of air liow to the cylinders.
  • the valves 24-1, 24*2, etc. are mounted on top of an inverted L-shaped bracket 188 attached to the supporting member 176 along one edge thereof as by welding or other suitable means, not shown.
  • a switch 190 is attached to each of the dellector plates 26-1 through 26-9 at the downstream end ajacent the upper edge of the dellector plate.
  • a movable switch actuating arm 192 extends downwardly from each of the switches into the path of the board being deflected by the lowered deflector plate.
  • the normally open switch 190 is actuated to a closed condition by the board 132 passing thereby.
  • the switches are included in the control circuit for the associated solenoid operated yalves 24-1, 24-2, etc. for returning the lowered dellec-tor plates to the raised position.
  • the deflected boards drop onto one of the cross-conveyors 27-1, 27-2, etc., depending upon which dellector plate is lowered.
  • the cross-conveyors as shown in FIG- URES 1 and 2 are mounted on a base 194 having parallel upright guide rails 196 attached thereto by means not shown.
  • Cross-conveyor belts 198 pass over rollers 200 at opposite ends thereof. Only the rollers 200 at one end of the belt are shown, which rollers are driven by a motor 202 through a suitable belt and pulley arrangement. Idler rollers, not shown, may be positioned beneath the forward run of the conveyor belts 198 is desired.
  • the cross-conveyors may be of sullicient length to extend beneath other primary conveyors, shown in FIGURES 6. 10 and 11, whereby lumber from several primary cori veyors and saws is fed onto the cross-conveyors.
  • the cross-conveyors are generally operated at speeds of to feet per minute to reduce stacking of the boards thereon from the primary conveyors.
  • the elevating conveyors as seen in FIGURES 1 and 2 comprise a base 216 having a plurality of upwardly extending walls 220A and 220B attached thereto at the rear end of the base.
  • a pair of wide conveyor belts 222 are employed in the stacking conveyor; one for the conveyors 28-1 through 28-5 and the other for the conveyors 28-6 through 28-10.
  • Each conveyor belt passes over rollers 224 and 226 at opposite ends of the conveyors.
  • the roller 224 at the lower end of the conveyor is driven by motor 228 through a lbelt and pulley arrangement for driving the conveyor belts.
  • the elevating conveyors are preferably operated at a speed of 10 to 25 percent greater than the cross-conveyors.
  • the lower roller 224 is rotatably supported at its ends and center by vertical walls 225 extending upwardly from the base 216, only one of which walls is seen in FIGURE 2.
  • the upper roller 226 is similarly rotatably supported by the walls 220A.
  • the walls 220B intermediate the walls 220A are notched as at 227 for the roller 226 and upper end of the belts 222.
  • a plurality of guide rails 218 extend over the conveyor belts between the guide rails 196 for the crossconveyors and the walls 220A and 220B.
  • the guide rails 218 may be welded or otherwise suitably secured by means not shown to said guide rails 196 and walls 220A and 220B.
  • the conveyor belts 222 have a rough top surface for a high coeliicient of friction whereby boards resting directly on the belts are conveyed therealong.
  • the conveyors are inclined at a sullicient angle such that boards stacked on those being conveyed normally slide back.
  • Each of the inclined conveyors 28-1, 28-2, etc. is provided with lumber orienting lingers 231 and 232 attached to opposite guide rails 218 and extending over the conveyor belt.
  • the fingers 231 are shown attached to the left hand guide rails, looking downstream, and are closely spaced with the conveyor belts 222, to deflect all boards which engage the same to the right side of the conveyors.
  • the lingers 232 are at a height such that boards traveling with the wide face thereof on the conveyor belt pass under the lingers without engaging the same as shown at conveyor 28-3 in FIGURE 4. Boards traveling on edge, however, strike the linger 232, as shown at conveyor 28-2, and are tipped over onto the wide face thereof.
  • the lingers 232 also serve to unstack boards that may remain piled upon each other.
  • a lirst board 132A is shown flat on the conveyor belt, and the forward end of a second board 132B is shown resting upon the rear end of the lirst board.
  • the lirst board 132A passes beneath the linger 232 without contacting the same.
  • the second board 132B engages the finger 232 and is detained until the lirst board 132A passes out from under it, after which it too passes under the linger 232.
  • each accumulator comprises an inclined base 236 for the support of the bottom board of the stack.
  • the ends of the stacked boards butt against an inclined end member 234 extending at substantially right angles with the base 236.
  • deflectors 238 extend from one side of the upright panels 220A and 220B to urge the boards against an opposite panel.
  • the boards which are propelled off the elevated end of the elevating conveyors slide along landings 239 and into the accumulators. Provision is made for convenient removal of stacked lumber from the accumulators.
  • the movable dellector plates 26-1 through 26-9 are in a normally raised position and are selectively lowered in accordance with the length of the board cut by the saw, and the grade of the cut board.
  • the last dellector plate 26-10 at the downstream end of the row of deector plates is in a normally lowered position and is raised by actuation of one of the stop member switches 19.
  • one or more of the stop member switches 19 on stop members farthest from the saw are utilized to raise the deflector plates 26-10 whereby long length boards are passed along the primary conveyor without being deflected by any of the deflector plates 26-1 through 26410.
  • Lumber which is cut without the actuation of one of the stop switches 19 passes beneath all the raised deflector plates 261 through 26-9 and is deflected by the last deflector plate 26-10.
  • the last bin 30-10 therefore receives the odd-length cuts.
  • a suitable arrangement for returning the deflector plate 2610 to the lowered position includes a normally open switch 240 which is attached to the bracket 188 with the switch actuating arm in the path of travel of the deiiector plate 26-10 such that the switch is closed when the deector plate is in a raised position as illustrated in broken line in FIGURE 7.
  • the down coil of the solenoid operated valve for the cylinder 25-10 is thereby energized and air pressure is supplied to the upper end of the cylinder 25-10 to return the deflector plate 26-10 ⁇ to the lowered position.
  • a throttle valve 242 is included in the air pressure line leading to the upper end of the cylinder 25-10 to delay the downward movement of the deector plate 26-10 for a suicicnt time to permit the cut board to pass therebeneath.
  • FIGURE 9 the stop switch 19-1 is actuated to the closed position by the board.
  • the numerals 1, 2, etc. are added as suixes to the switches designated 19 in other figures for convenience in individually identifying the same.
  • this switch 19-1 is shown connected through a plug connector 21 to the down winding 24D of the solenoid operated valve 24-1.
  • the solenoid remains deenergized, however, until the saw actuated series connected switch 82 is closed upon actuation of the saw.
  • the operator momentarily closes the foot actuated switch 62 for actuation of the saw to the raised position to cut the board.
  • An air cylinder 48 under control of a solenoid actuated valve 49 (shown in block form) may be used to actuate the saw.
  • the saw automatically returns to the retracted position.
  • the switch 88 is closed for energization of a solenoid winding 256A included in a solenoid actuated valve 256.
  • the valve 256 is included in the air pressure system for the kicker cylinder 156 for actuation of the kicker members 150. Kicker mechanisms are well known and require no further explanation.
  • the switch 82 is closed thereby completing the energization circuit for the down solenoid winding 24D for the valve 24-1 through the main switch 254, saw actuated switch 82, stop switch 19-1 and plug connector 21. The other end of the winding is connected to the ground terminal 25S.
  • the switch 82 may be actuated after the saw completes the cut, if desired, and alternately the switch may be located downstream of the saw ybetween the saw and deflector plates with appropriate modifications of the circuitry.
  • the deflector plate 26-1 When the cut board is transferred from the lumber cut-oif gauge stop the swith 19-1 reopens. However, the deflector plate 26-1 remains in the lowered position until the up solenoid winding 24U for the valve 24-1 is energized. As the cut board is deflected by the lowered deector plate 26-1 onto the cross-conveyor 27-1, the board closes the switch 190 at the deliector 26-1 for completion of the energization circuit of the up solenoid Winding 24U for the valve 24-1. The deilector plate 26-1 is thereby returned to the raised position in preparation for another cycle of operation. Before the deilector plate is returned to the raised position the cut board will have been deflected onto the cross-conveyor 27-1.
  • the board is fed to the inclined conveyor 28-1 and thence into the accumulator 30-1 in the manner described above.
  • the above described cycle of operation of the deflector plate 26-1 applies also to the other deflector plates 26-2 through 26-9 and need not be repeated.
  • the cut boards are sorted into the accumulators 30-1, 30-2, etc., according to length dependent upon which stop switch 19 is actuated and which movable dellector plate operator 25-1, 25-2, etc., is controlled by the stop switch.
  • the deector plates 26-1 through 26-9 should be lowered for only the length of time required to deflect the board to avoid interference with boards cut immediately prior thereto and immediately thereafter.
  • Lowering of the deliector plates after closure of the stop switch 19 and switch 82 is preferably delayed until the board is conveyed to a position just in front of the deflector plate.
  • Any suitable delay means may be provided for this purpose.
  • Electrical time delay units 269 are included in the circuits to the down windings 24D of the solenoid controlled valves 2442 through 24-9 to provide the desired time delay. (The iirst deiiector plate 26-1 being close to the saw generally does not require a time delay.)
  • Other suitable time delay means would include throttle valves in the air system for the cylinders 25-2 through 25-9. Also, instead of individual time delay means, banks of say three of the deflector plate actuating means could be supplied with a single time delay means, if desired.
  • relatively low grade lumber such as shop-grade
  • shop-grade is employed in the production of goods such as doors, door frames, and the like, from which lumber the major defects are cut out by the saw operator.
  • control box 98 at the saw is provided with grade selector switches 100 and 104 which permit separation of lumber cut to the same length into different accumulators under control of the operator. This additional separating or sorting process may be made on any desired basis such as the grade of the cut boards.
  • the switches 100 and 104 are connected in parallel in the energization circuit for the control winding 272 of a relay 274.
  • the relay is shown with a pair of movable arms 276 and 278 under control of the Winding 272.
  • the movable arms 276 and 278 are shown connected to the stop member switches 19-3 and 19-4, respectively, through connector plugs 21.
  • stop member switch 19-3 may be used to control the lowering of either the deilcctor plate 26-3 or 26-5
  • stop member switch 19-4 may be used to control the lowering of either the deflector plate 26-4 or 26-6, depending upon the condition of the relay 274.
  • the boards which are cut using the stop switches 19-3 and 19-4 are deilected by the deilector plates 26-3 and 26-4, respectively.
  • the relay is energized by closure of either switch 100 or 104, actuation of the same stop switches 19-3 and 19-4 results in deflection of the boards by the deector plates 26-5 and 26-6, respectively.
  • the cut boards are predominately of an A grade quality.
  • the switches 100 and 104 With the switches 100 and 104 in the open position, the A grade cuttings made using the stop switch 19-3 are deected onto conveyor 27-3 for transfer to the corresponding accumulator 30-3.
  • a B grade quality piece is to be cut using the stop switch 19-3.
  • the operator trips the switch 100 rnomentarily whereby the B grade piece is deected onto conveyor 27-5.
  • the switch 100 returns to the normal open position upon deenergization of a suitable holding circuit, not shown, when switch 82 is closed. If the lumber to be cut is predominately of B grade, the switch 104 may be closed, which switch remains closed until reopened by the operator when an A grade piece is to be cut.
  • a and B grade designations are for purposes of description only, the apparatus not being limited for use with any particular grade lumber.
  • a relay 274 is shown with two movable arms for sorting by grade cuttings made using stop switches 19-3 and 194, additional relay contacts may be included for use with other stop switches, as desired. Also, by use of additional switches (not shown) lumber cut to a single length may be selectively diverted into any one of three or more accumulators.
  • the lumber also may be sorted according to width and thickness by use of appropriately located sensing means which means are included in the deflector actuating circuit.
  • sensing means may include photocells, sensing switches, ultrasonic sensors and the like.
  • switches 287 located on the saw table sense the width of the boards and ⁇ switches 288 sense the thicknessf
  • the switches 288 are actuated by switch actuating plates carried on the saw guide and clamping mechanism, which mechanism reciprocates in a vertical plane to stabilize the lumber on the saw table when making the cut in the usual manner. These switches also may be locked manually when cutting boards of any one width.
  • These ⁇ switches when used in conjunction with the switches 19, provide for sorting the lumber according to width, thickness and length simultaneously. Such switches obviously may be used independently of the switches 19 for sorting the lumber by width and/ or thickness without sorting according to length.
  • FIGURE 9 A schematic diagram of the control circuit for the reflector plate 26-10 is also shown in FIGURE 9.
  • the deector plate is shown under control of the stop member switch 19-10.
  • a plurality of shunt-connected jacks 21] for control by other stop switches are provided.
  • the up winding 24U of the Solenoid controlled switch 24-10 is energized upon closure of the saw controlled switch 82 to raise the deector plate 26-10.
  • the switch 240 is closed, for energization of the down winding 24D of the solenoid controlled valve 24-10.
  • valve 24-10 remains in the up condition until energization of the associated down winding 24D upon closure of the switch 240. Flow of air under pressure to the upper end of the cylinder 25-10 is restricted by the throttle valve 242 whereby the deector plate 26- is slowly lowered, permitting the long piece of lumber to pass therebeneath.
  • switch 108 may be closed, which switch is included in the energization circuit for a relay 290.
  • the relay 290 includes a plurality of movable contacts 294 individually connected to the up windings 24U. It will be apparent that whenever the relay 290 is energized by closure of the switch 108, all of the up windings 24U of the solenoid controlled valves 24-1 through 24-10 are energized to raise the deector plates 26-1 through 26-10 The deector plate 26-10, of Course, automatically returns to the lowered position after being raised, in the manner described above.
  • Random length and long length conveyors are positioned at the end of the primary conveyors as shown in FIGURES l0 and 1l and described in detail hereinbelow.
  • a second switch 300 is connected in parallel with the switch 108.
  • the switch 300 is under control of a governor mechanism 302 driven by the primary conveyor belt 124 through a roller 304.
  • the switch 300 is held open by the governor 302. If a deilector plate 26-1 through 26-10 lowers onto a piece of lumber that is delayed in its travel along the primary conveyor belt 124, the belt is stopped or its speed is reduced whereby the governor controlled switch 300 is closed to raise all of the deector plates.
  • the piece trapped between one of the deector plates and the primary conveyor belt is thereupon released and travels therealong past the cross-conveyors and onto the random length or long length conveyor. The machine is thereby automatically restored to operative condition when such a situation occurs without intervening action by the operation.
  • FIGURE 10 wherein a plurality of primary conveyors 16 are shown extending over the cross-conveyors 27-1 through 27-10. Also, a random short length lumber conveyor 310 and a long length lumber conveyor 312 are shown at the end of the primary conveyors 16 for separation of boards which pass along the main conveyors undeected by any of the deflector plates. Such boards are separated according to length. The shorter length boards projected oi the primary conveyors strike the face of stop plates 314 at the far edge of the conveyor 310 and fall onto the conveyor belt 316 to be carried away in the direction of the arrow 318. Long length boards, (of about six feet or greater) span the distance between the end of the main conveyors and the associated stop plate 314.
  • Such long boards therefore are propelled along the upper edge of the stop plates 314 and strike the face of a stop plate 320 at the far edge of the conveyor 312. These long boards then fall onto the conveyor belts 322 to be carried away in the direction of the arrows 324.
  • the conveyors 310 and 312 may feed into accumulators or to any desired location, not shown.
  • means are provided for passing selected boards oi the end of the primary conveyors 16.
  • the apparatus may be operated with all of the deector plates in a raised position whereby all the cut lumber passes oil the end of the primary conveyors 16.
  • a count of the total number of cuts made by each saw and the number pieces of any size or grade which are cut are readily obtained with the apparatus of this invention by simply adding counters at appropriate locations in the system.
  • a mechanically operated counter 330 is suitably attached to the saw to provide a count of the number of times the saw is actuated.
  • Electrical counters 332 are shown connected to the windings of each solenoid controlled valve to provide a count of the number of pieces deected by the deflector 26-1 through 26-9 and the number of pieces passed beneath the deector 2610. Any type counter (such as electrical,
  • the information provided by the counters is particularly useful for inventory purposes (including a running inventory), production control, and the like. Accurate lumber recovery information for each sawyer is also obtained from this information.
  • signal or alarm means could 'be included to signal the operator when a desired count is reached. Also, the information may be fed to remote locations, and may be used for control purposes.
  • switches 19 it is not necessary to mount the switches 19 directly on the stop members. Instead, the switches 19 could be mounted for actuation by the stop members when the lumber is butted against the stop members. Alternatively, the switches 19 may be mounted for sensing stop members 17 which are swung out of the normal position by the board. With suitable electrical circuitry the stop member against which the board is butted may be ascertained with such an arrangement of switches.
  • the villustrated defiector plates are mounted for vertical reciprocating movement, other movements are possible.
  • the deector plates could be pivotally mounted upon a common shaft for pivotal movement between operative and inoperative positions.
  • individual air cylinders are shown for each -detiector plate, the defiector plates could be individually gravity and/or resiliently biased toward one position, and a suitable return mechanism adapted ⁇ for actuation by a single yair cylinder could be used to ⁇ return the ⁇ defiector plates to normal raised position after being lowered.
  • actuating means other than air (or hydraulic) cylinders under control of solenoid actuated valve may be employed.
  • switches 190 are shown for use in raising the dellector plate after a board has passed thereby, other suitable arrangements are possible. For example, a simple time delay mechanism for raising the deflectors a predetermined time after they have 'been lowered, or after actuation of the saw, may be employed. The requirement for sensing switches 190 would be eliminated by such an arrangement.
  • the cross-conveyors are shown extending at right angles with the primary conveyors. Obviously, other angular relationships are possible. Further, as mentioned above, the cross-conveyors could extend in a diverging pattern from the primary conveyors, if desired.
  • one -or more of the cross-conveyors could feed onto a remote conveyor or conveyors rather than onto the elevating conveyors.
  • Such remote conveyor may be under control of an operator at a remote location Afor selectively supplying boards to such remote location as required. It is intended that -these Iand -other such changes and modifications shall fall within the spirit and scope of the invention as reci-ted in the following claims.
  • a lumber cutting-sorting apparatus comprising,
  • a lumber cutting-sorting apparatus comprising,
  • stop members having sensing means associated therewith against which an end of the lumber to be cut by the saw is adapted to be butted
  • a primary conveyor for conveying cut lumber from the saw
  • the lumber cutting-sorting apparatus as defined in claim 3 including a plurality of conveying means beneath the forward run of the primary conveyor upon which the cut lumber from the primary conveyor is transferred.
  • the lumber cutting-sorting apparatus as defined in claim 4 including inclined elevating conveyors upon which cu-t lumber from the conveying means is fed, and
  • the lumber cutting-sorting apparatus as defined in claim 3 including operator controlled means for selectively t-ransferring lumber which is cut to the same length off the primary conveyor at either one of at least .two positions therealong for sorting the lumber as by grade.
  • the lumber cutting-sorting machine as defined in claim 3 including time delay means for controlling the time interval between completion of the cut and actua tion of said lumber transferring means.
  • the lumber cutting-sorting machine as defined in claim 3 including a random length lumber conveyor at the downstream end of said primary conveyor extending generally transversely thereof upon which random short lengths of lumber which are projected off the end of the primary conveyor are transferred, and
  • a long length lumber conveyor adjacent said random length lumber conveyor to receive long lengths of lumber which are projected off the end of the primary conveyor across the random length lumber conveyor and onto the long length lumber conveyor.
  • the lumber cutting-sorting machine as defined in claim 10 including means under control of the operator for selectively connecting one of said sensing means associated with a stop member to any one of a plurality of said defiector actuating means for moving the deflectors into operative position.
  • a lumber cutting-sorting machine comprising, a primary conveyor,
  • sensing means associated with each said stop member for sensing the stop member against which the end of the lumber to be cut is butted
  • the lumber cutting-sorting machine as defined in claim 12 including means for sensing the speed of the primary conveyor, and
  • defiector actuating means comprise cylinders operatively connected to said deflector plates.
  • Lumber cutting and sorting apparatus comprising:
  • control means actuating said lumber sorting means responsive to said sensing means.
  • sensing means senses length of the cut lumber and further including means for sensing the width of the lumber; said control means also actuating said lumber sorting means responsive to said width sensing means.
  • sensing means senses length of the cut lumber and further including means for sensing the thickness of the lumber; said control means also actuating said lumber sorting means responsive to said thickness sensing means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Forests & Forestry (AREA)
  • Veneer Processing And Manufacture Of Plywood (AREA)

Description

March 24, 1970 A.J.Go1 |cK ETA. 3,502,123
LUMBER SORTING MACHINE 6 Sheets-Sheet l Filed Dec. 22, 1965 INVENTORS ALEXANDER J. GOLlCK ERNEST D. GIUSEPONI ARTHUR J. RANDOLPH In ATTORNEYS March 24, :|970 A. J. GQLICK am 3,502,123
LUMBER SORTING MACHINE Filed Dec. 22, 1965 6 Sheets-Sheet 2 INVENTORS ALEXANDER J. GOLICK ERNEST D. GIUSEPONI ARTHUR J. RANDOLPH BYWIM ATTORN EYS March 24, 1970 A.J.Go| |cK E'rAL 3,502,123
LUMBER SORTING MACHINE Filed Dec. 22, 1965 6 Sheets-Sheet 5 INVENTORS ALEXANDER J. GOLICK ERNEST D. GIUSEPONI ARTHUR J. RANDOLPH BY/.zff
ATTORNEYS March 24, 1970 A, 1 GOLlCK Er Al. 3,502,123
LUMBER SORTING MACHINE 6 Sheets-Sheet 4 Filed Dec. 22. 1965 INVENTORS ALEXANDER J. GOLICK ERNEST D. GIUSEPONI ARTHUR J. RANDOLPHl ATTOR NEYS MarCh 24, 1970 A, J, GQ| |CK ET AL 3,502,123
LUMBER SORTING MACHINE 6 Sheets-Sheet 5 Filed Dec. 22, 1965 l. HMM
ATTORNEYS March 24, 1970 A. J. GOLICK ETAL 3,502,123
LUMBER SORTING MACHINE 6 Sheets-Sheet 6 Filed Dec. 22, 1965 u memmcmm lm'mmmmm FIB-1l] INVENTORS ALEXANDER J. GOLICK PIE-11 ERNEST D. GIUSEPONI ARTHUR J. RANDOLPH y AT ORNEYS United States Patent O 3,502,123 LUMBER SORTING MACHINE Alexander J. Golick, 7518 23rd Ave., NW., Seattle, Wash.
98107, and Ernest D. Giuseponi and Arthur J. Randolph, Santa Rosa, Calif.; said Giuseponi and Randolph assignors to said Golick Filed Dec. 22, 1965, Ser. No. 515,697 Int. Cl. B27d 31/08; B07c 5/08 U.S. Cl. 143-157 22 Claims ABSTRACT OF THE DISCLOSURE This invention relates to a lumber cutting and sorting apparatus and more particularly to apparatus for sorting lumber according to the length of the cutting, and which apparatus also may include operator-controlled means for separating cuttings of the same length according to grade or other factors or characteristics.
Under conventional systems of cutting and separating components of various lengths, the normal procedure has been to cut the components of various lengths and grades. The pieces are carried away on a common conveyor with all lengths intermingled together. A man would then separate the various lengths and grades and stack the various lengths and grades in separate bins, carts, etc.
With the system of this invention we are able to separate the various lengths into separate bins and separate pieces of the same length of different grade into additional bins, at the same time the piece is being cut at the saw, thus saving manpower.
An object of this invention is the provision of an automatic lumber cutting-sorting apparatus which eliminates the need for manually sorting the lumber after cutting, and which requires considerably less space and equipment than conventional lumber cutting and sorting apparatus.
A further object of this invention is the provision of means under control of the operator for sorting the cut lumber according to grade.
Another object of this invention is the provision of an improved method of sorting lumber.
These and other objects and advantages are obtained by means of apparatus comprising a saw, such as a cutoff saw, and a lumber cut-oif gauge stop in tandem therewith. The gauge stop may comprise a plurality of adjustably positioned stop members. In accordance with this invention, the stop members are provided with sensing means, such as switches, for sensing which stop member is employed when making the cut. Other sensing means such as photocells, ultrasonic means, etc., located in any suitable position also may be employed. After the cut is made by the saw the cut piece is moved transversely off the gauge stop and onto a primary conveyor extending parallel with the gauge stop. The transfer of the cut piece from the gauge stop onto the conveyor may be effected by any suitable means such as by gravity or by mechanically operated kicker members.
In accordance with this invention a plurality of movable deflector plates are located at spaced locations along and above the primary conveyor downstream of the saw, which detlector plates are normally disposed out of the 3,502,123 Patented Mar. 24, 1970 ICC path of movement of the cut pieces of lumber. The deilector plates may be lowered into deflecting position over the conveyor to deflect the cut board from said conveyor into the desired channel. The means for actuating said deflector plates include said sensing means at the stop members whereby the location at which the lumber is deflected from the main conveyor is determined by the length of board cut. The boards are thereby sorted according to length.
If desired, two or more deflector actuating means may be selectively connected to a single stop member switch through a selector switch means under control of the operator whereby, in addition to automatically sorting the lumber by length, the operator may also divert the board to an alternate destination by simply actuating the selector switch.
The lumber deflected from the primary conveyor may be directed by said deiiector plates onto parallel or diverging cross conveyors extending transversely of and beneath the primary conveyor. From the cross conveyors the sorted lumber may be stacked in corresponding accumulators by means of a stacking unit.
In the drawings wherein litle reference characters refer to the same parts in the several views:
FIGURE 1 is a perspective view of a lumber cuttingsorting apparatus embodying this invention;
FIGURE 2 is a sectional view taken substantially on line 2-2 of FIGURE l;
FIGURE 3 is a fragmentary sectional plan view showing a portion of the primary conveyor and cross conveyors;
FIGURE 4 is a fragmentary view taken on line 4 4 of FIGURE 2;
FIGURE 5 is an enlarged fragmentary plan view showing a portion of the primary conveyor and measuring uide; g FIGURE 6 is a sectional view taken on line 6-6 0f FIGURE 5;
FIGURE 7 is an enlarged fragmentary sectional view taken on line 7--7 of FIGURE 1;
FIGURE 8 is an enlarged perspective view of the cutoff saw, showing a control box and limit switches added thereto;
FIGURE 9 is a simplified schematic diagram of the control system for the apparatus.
FIGURE 10 is a diagrammatic plan view showing a plurality of saws, primary belts, cross conveyors, and random length and long length conveyors at the end of the primary belts, and
FIGURE 11 is a diagrammatic fragmentary sectional view taken on line 11-11 of FIGURE 10.
For a brief description of the apparatus of this invention reference is rst made to FIGURE 1 wherein the apparatus is shown comprising a saw 14 to which long lengths of lumber may be supplied from any suitable source (not shown) for cutting to desired length. Any suitable type saw such as a mechanically operated cut-olf saw may be employed in the apparatus. In the illustrated apparatus a conventional cut-off saw which has been modified -by the addition of various control switches as described in detail below is employed. A lumber support table 13 at one side of the table saw 14 may be used to support lumber being supplied to the saw and the outer end of the lumber extending across the saw.
A lumber cut-olf gauge stop 15 is arranged in tandem with the saw 14, and a primary conveyor 16 is arranged in parallel with the gauge stop. A substantially conventional lumber cut-off gauge stop 15 is shown which includes a plurality of adjustatbly positioned stop members 17 pivotally mounted on a slotted bracket 18. In accordance with this invention the gauge stop 15 is modied by the addition of sensing means such as switches 19 to the stop members 17. Lead wires 20 from the switches 19 are provided with plug connectors 21P for plugging into desired jacks 21] carried on a panel 22 below the lumber measuring guide (a plug and jack together being designated 21). The jacks, in turn, are connected through cables 23 to control windings of solenoidactuated air valves 24-1, 24-2, etc., which valves control the pressurization of air cylinders 25-1 through 25-10. The cylinders 25-1 through 25-10 actuate curved deflector plates 26-1 through 26-10, respectively, for vertical plane movement of the deector plates -between raised and lowered positions over the primary conveyor 16. With the deflector plates in the raised position, the lumber on the primary conveyor passes therebeneath. In the lowered position, the deflector plate is lowered into the path of the lumber traveling along the primary conveyor whereby the lumber is deflected from the primary conveyor 16 and onto one of a plurality of parallel extending cross-conveyors 27-1 through 27-10. The crossconveyor onto which the lumber is transferred depends upon which deflector plate is lowered, which, in turn, depends upon which stop switch 19 at the measuring guide is actuated. The cut pieces are thereby automatically separated according to length and deposited onto the cross-conveyors.
The lumber from the cross-conveyors 27-1 through 27-10 is fed to inclined elevating conveyors 28-1 through 2810, respectively, from whence it is stacked in accumulators 30-1 through 30-10, respectively.
As best seen in FIGURE 8, a plurality of switches are included at the saw 14. A foot-controlled switch 62 controls the raising of the saw blade 38 to cutting position through the slot 37 in the saw by means of any suitable mechanism. Saws of conventional design may be employed and need not be described in detail. Mounted on the side of the saw cabinet are a pair of switches 82 and 88 which are actuated by a switch actuating lever 96 xedly secured to a pivot shaft 46, which shaft is pivoted as the saw blade 38 is raised and lowered. The switch 82 is a normally closed switch which is held open by the lever 96 when the saw blade is retracted and which closes only when the blade is extended. This switch is included in the energization circuit for the control windings of the solenoid actuated valves 24-1, 24-2, etc., for the operation of the dellector plates 26-1, 26-2, etc. The switch 88 is normally open and is actuated to a closed position by the lever 96 when the saw blade is raised. This switch is inclined in the energization circuit for control of a kicker mechanism for the transfer of cut lumber off the lumber cut-olf gauge stop and onto the primary conveyor 16.
A control box 98 is mounted on the front panel of the saw cabinet within convenient reach of the sawer. A normally open grade selector switch 100 with an actuating arm 102 extending therefrom is mounted on the box- 98. The switch 100 is effective for grade selection during only a single cycle of operation of the machine. The control box 98 houses ano-ther grade selector switch 104 which may be set by the operator to the predominate grade lumber being run through the machine. Push button switch 108 is also contained in the control box 98, which switch is included in a circuit for raising all of the deector plates 26-1 through 26-10.
Reference is now made to FIGURE 6 wherein the primary conveyor 16 is shown comprising a pair ofl spaced longitudinally extending channel beams 114A and 114B mounted on a base plate 116 attached to suitable supporting means not shown. A vertical guide plate 118 and an elongated rectangular-shaped frame member 120 are attached to the upper edges of the channel beams 114A and 114B, respectively. Idler rollers 122 for the support of the forward run of a conveyor belt 124 are rotatably supported between the members 118 and 120. The conveyor belt passes over end rollers at opposite ends and is driven by a motor 126. (See FIGURE 1.)
The lumber cut-off gauge stop 15, as seen in FIG- URES 5 and 6, comprises the inverted L-shaped mounting bracket 18 attached as by -bolts or other suitable means not shown to the longitudinal frame element 120. The lumber 132 to be cut is supported on the horizontal bracket 18 against upright ange 136 formed thereon. In FIGURES 5 and 6 the lumber to be cut is shown in broken line view on the lumber cut-off gauge stop 15, and a cut-off piece of lumber is shown in full line on the conveyor 16.
Slots are formed in the bracket 18 at suitable intervals therealong. In the fragmentary view of FIG- URE 5 the slots are shown spaced one inch apart, and inch markings 15 through 20 inches are shown adjacent the slots. The slots extend along the bracket 18 for any desired length of say eight to ten feet. The stop members 17 are pivotally supported on the bracket 18 within any of the slots 140 as desired. Inverted L-shaped slots 144 are formed in the stop members for ready positioning of the stop members at any desired slot 140. In FIG- URE 5 stop members are shown at the sixteen and twenty inch slots. Each stop member 17 carries a weight 146 at the lower end thereof, and the force of gravity on the weights operates to hold the upper end of the stop members in an extended position through the slotted portion of the lumber supporting surface, as shown in full line in FIGURE 6. The stop members may be manually pivoted in a clockwise direction as viewed in FIGURE 6 to the broken line position wherein the upper portion of the stop mem-ber no longer extends through the lumber supporting surface. Pivotal movement of the stop members is accomplished when the sawyer moves the lumber transversely of the measuring guide into engagement with the flange 136. Those stop members engaged by the side of the lumber are forced into a non-operative position.
In use, the stop members are positioned in desired slots for cutting the lumber to the desired length, and the lumber to be cut is manually advanced by the sawyer over the saw table and along the lumber cut-off gauge stop. When the forward end of the lumber is just short of the desired stop member, but extends beyond the last preceding stop member, the swayer moves the lumber transversely-against the ange 136, at the same time sliding the lumber forward into abutting relation with the desired stop member. It will be apparent that all of the stop members between the saw and the desired stop member are swung out of normal position by the lumber at this time. With the lumber abutting the desired stop member, the lumber may then be cut to the desired length.
After the cut has been made by the saw, the cut-off forward section of lumber is transferred off the lumber cutoff gauge stop 15 and onto the conveyor belt 124 of the conveyor 16. For this purpose pivotably mounted kicker arms of any suitable design are employed. In the illustrated arrangement the arms are shown fixedly secured to a shaft which is rocked by an air cylinder 156.
In accordance with this invention, the stop or abutment members 17 are supplied with sensing means such as the normally open electrical limit switches 19 which have actuating rods 164 extending through sleeves 166 which face upstream and against which the end of the lumber to be cut is abutted. Thus, it will be seen that the lumber is butted against the desired stop member through the actuating mechanism of a switch whereby the switch at the desired stop member is actuated into a closed position While the remainder of the switches 19 remain unactuated. The sleeves 166 are removably attached to the stop members by means not shown, and by proper selection of sleeves. The lumber may be cut to any desired length in increments of less than one inch.
As mentioned above, a plurality of parallel aligned cross-conveyors 27-1 through 27-10 extend beneath the primary conveyor 16, and movable deector plates 26-1 through 26-10 are positioned over the primary conveyor at the cross-conveyors for selectively dellecting the cut lumber from the primary conveyor onto the cross-conveyors. All dellectors may be of the same construction whereby a description of one applies to them all. As seen in FIGURES 1 and 2 a U-shaped supporting member 176 extends longitudinal of the primary conveyor 16 over the cross-conveyors 27-1 through 27-10 and is supported by suitable framework, not shown. The air cylinders 25-1 through 25-10 are mounted on the member 176 with the piston rods 180 extending downwardly through clearance holes in the member. The deliector plates 26-1, 26-2, etc., are attached to the lower ends of the piston rods by welding or other suitable means, not shown. The deliector plates are of a curved shape and extend across the main conveyor 16 and along the far edge of the channel divider of the associated cross-conveyor. The lower edges of the deilector plates are formed with downwardly protruding portions directly over the cross-conveyors for directing the lumber as it is projected from the main conl veyor. The deflector plates may be of any desired conliguration for guiding the travel of the deflected boards. The invention is not limited to deliector plates of any particular shape.
As seen in FIGURE 2 each deliector plate is movable between a lowered position, shown in full lines and raised position shown in broken lines. In the lowered position, the deliector is positioned in the path of the lumber traveling along the main conveyor. Engagement of the end of a board 132 with the deflector deliects the board to the right as viewed in FIGURE 2, for transfer of the board olif the primary conveyor and onto a cross-conveyor. The primary conveyor 16 operates at high speeds (generally between 500-100 feet per minute) whereby the cut boards are positively projected off the primary conveyor and along the cross-conveyor as a result of the high inertia imparted to the boards. The primary belt has a rough top surface for a high coefficient of friction to insure prompt acceleration and removal of the cut board. Mechanical means may be included in the kicker mechanism, if desired, to provide a longitudinal component of velocity to the board as it is kicked from the lumber cut-off gauge.
The fluid connections for the cylinders 25-1, 25-2, etc. will be described in detail hereinbelow. For present purposes, it will be suflicient to note that hoses 184 and 186 lead from opposite ends of the cylinders to the solenoid operated valves 24-1, 24-2, etc. for control of air liow to the cylinders. The valves 24-1, 24*2, etc. are mounted on top of an inverted L-shaped bracket 188 attached to the supporting member 176 along one edge thereof as by welding or other suitable means, not shown.
A switch 190 is attached to each of the dellector plates 26-1 through 26-9 at the downstream end ajacent the upper edge of the dellector plate. A movable switch actuating arm 192 extends downwardly from each of the switches into the path of the board being deflected by the lowered deflector plate. The normally open switch 190 is actuated to a closed condition by the board 132 passing thereby. The switches are included in the control circuit for the associated solenoid operated yalves 24-1, 24-2, etc. for returning the lowered dellec-tor plates to the raised position.
The deflected boards drop onto one of the cross-conveyors 27-1, 27-2, etc., depending upon which dellector plate is lowered. The cross-conveyors as shown in FIG- URES 1 and 2 are mounted on a base 194 having parallel upright guide rails 196 attached thereto by means not shown. Cross-conveyor belts 198 pass over rollers 200 at opposite ends thereof. Only the rollers 200 at one end of the belt are shown, which rollers are driven by a motor 202 through a suitable belt and pulley arrangement. Idler rollers, not shown, may be positioned beneath the forward run of the conveyor belts 198 is desired. Also, the cross-conveyors may be of sullicient length to extend beneath other primary conveyors, shown in FIGURES 6. 10 and 11, whereby lumber from several primary cori veyors and saws is fed onto the cross-conveyors. The cross-conveyors are generally operated at speeds of to feet per minute to reduce stacking of the boards thereon from the primary conveyors.
From the cross-conveyors 271, 27-2, etc. the lumber is fed onto the elevating conveyors 28-1, 28-2 etc., for stacking of the cut lumber in the corresponding accumulators 30-1, 30-2, etc. The elevating conveyors as seen in FIGURES 1 and 2 comprise a base 216 having a plurality of upwardly extending walls 220A and 220B attached thereto at the rear end of the base. A pair of wide conveyor belts 222 are employed in the stacking conveyor; one for the conveyors 28-1 through 28-5 and the other for the conveyors 28-6 through 28-10. Each conveyor belt passes over rollers 224 and 226 at opposite ends of the conveyors. The roller 224 at the lower end of the conveyor is driven by motor 228 through a lbelt and pulley arrangement for driving the conveyor belts. The elevating conveyors are preferably operated at a speed of 10 to 25 percent greater than the cross-conveyors. The lower roller 224 is rotatably supported at its ends and center by vertical walls 225 extending upwardly from the base 216, only one of which walls is seen in FIGURE 2. The upper roller 226 is similarly rotatably supported by the walls 220A. The walls 220B intermediate the walls 220A are notched as at 227 for the roller 226 and upper end of the belts 222. A plurality of guide rails 218 extend over the conveyor belts between the guide rails 196 for the crossconveyors and the walls 220A and 220B. The guide rails 218 may be welded or otherwise suitably secured by means not shown to said guide rails 196 and walls 220A and 220B. The conveyor belts 222 have a rough top surface for a high coeliicient of friction whereby boards resting directly on the belts are conveyed therealong. The conveyors are inclined at a sullicient angle such that boards stacked on those being conveyed normally slide back.
Each of the inclined conveyors 28-1, 28-2, etc., is provided with lumber orienting lingers 231 and 232 attached to opposite guide rails 218 and extending over the conveyor belt. The fingers 231 are shown attached to the left hand guide rails, looking downstream, and are closely spaced with the conveyor belts 222, to deflect all boards which engage the same to the right side of the conveyors. The lingers 232, on the other hand, are at a height such that boards traveling with the wide face thereof on the conveyor belt pass under the lingers without engaging the same as shown at conveyor 28-3 in FIGURE 4. Boards traveling on edge, however, strike the linger 232, as shown at conveyor 28-2, and are tipped over onto the wide face thereof. The lingers 232 also serve to unstack boards that may remain piled upon each other. In FIGURE 4, at the conveyor 28-1, a lirst board 132A is shown flat on the conveyor belt, and the forward end of a second board 132B is shown resting upon the rear end of the lirst board. The lirst board 132A passes beneath the linger 232 without contacting the same. However, the second board 132B engages the finger 232 and is detained until the lirst board 132A passes out from under it, after which it too passes under the linger 232.
The boards 132 are projected off the upper end of the inclined elevating conveyors 28-1, 28-2, etc., and come to rest in the accumulators 30-1, 30-2, etc. As seen in FIGURES 1 and 2, each accumulator comprises an inclined base 236 for the support of the bottom board of the stack. The ends of the stacked boards butt against an inclined end member 234 extending at substantially right angles with the base 236. To form neat stacks deflectors 238 extend from one side of the upright panels 220A and 220B to urge the boards against an opposite panel. The boards which are propelled off the elevated end of the elevating conveyors slide along landings 239 and into the accumulators. Provision is made for convenient removal of stacked lumber from the accumulators.
The movable dellector plates 26-1 through 26-9 are in a normally raised position and are selectively lowered in accordance with the length of the board cut by the saw, and the grade of the cut board. The last dellector plate 26-10 at the downstream end of the row of deector plates, on the other hand, is in a normally lowered position and is raised by actuation of one of the stop member switches 19. Generally, one or more of the stop member switches 19 on stop members farthest from the saw are utilized to raise the deflector plates 26-10 whereby long length boards are passed along the primary conveyor without being deflected by any of the deflector plates 26-1 through 26410. Lumber which is cut without the actuation of one of the stop switches 19 (e.g., where a stop member 17 without a switch 19 is employed or where the switch is removed from the circuit by removal of the associated plug 21P from a jack 21]) passes beneath all the raised deflector plates 261 through 26-9 and is deflected by the last deflector plate 26-10. The last bin 30-10 therefore receives the odd-length cuts.
A suitable arrangement for returning the deflector plate 2610 to the lowered position includes a normally open switch 240 which is attached to the bracket 188 with the switch actuating arm in the path of travel of the deiiector plate 26-10 such that the switch is closed when the deector plate is in a raised position as illustrated in broken line in FIGURE 7. The down coil of the solenoid operated valve for the cylinder 25-10 is thereby energized and air pressure is supplied to the upper end of the cylinder 25-10 to return the deflector plate 26-10` to the lowered position. A throttle valve 242 is included in the air pressure line leading to the upper end of the cylinder 25-10 to delay the downward movement of the deector plate 26-10 for a suicicnt time to permit the cut board to pass therebeneath.
The operation and advantages of the apparatus will be better understood with a description of the schematic diagram of FIGURE 9 to which figure reference is now also made. For purposes of description, assume that the stop switch 19-1 is actuated to the closed position by the board. (In FIGURE 9 the numerals 1, 2, etc. are added as suixes to the switches designated 19 in other figures for convenience in individually identifying the same.) In FIGURE 9, this switch 19-1 is shown connected through a plug connector 21 to the down winding 24D of the solenoid operated valve 24-1. The solenoid remains deenergized, however, until the saw actuated series connected switch 82 is closed upon actuation of the saw. With this arrangement of switches if the board to be cut is placed against a stop member not desired, the operator may reposition the board at the desired stop member without lowering a plurality of deector plates.
Holding the board against the desired stop member, the operator momentarily closes the foot actuated switch 62 for actuation of the saw to the raised position to cut the board. An air cylinder 48 under control of a solenoid actuated valve 49 (shown in block form) may be used to actuate the saw. As mentioned above, the saw automatically returns to the retracted position. When the saw reaches the raised position, the switch 88 is closed for energization of a solenoid winding 256A included in a solenoid actuated valve 256. The valve 256, in turn, is included in the air pressure system for the kicker cylinder 156 for actuation of the kicker members 150. Kicker mechanisms are well known and require no further explanation.
It was assumed above that the stop switch 19-1 was closed by the board to be cut. At the beginning of the saw stroke, the switch 82 is closed thereby completing the energization circuit for the down solenoid winding 24D for the valve 24-1 through the main switch 254, saw actuated switch 82, stop switch 19-1 and plug connector 21. The other end of the winding is connected to the ground terminal 25S. With the valve 24-1 in the down position the deector plate 26-1 is lowered by the cylin- 8 der 25-1. It here will be noted that the switch 82 may be actuated after the saw completes the cut, if desired, and alternately the switch may be located downstream of the saw ybetween the saw and deflector plates with appropriate modifications of the circuitry.
When the cut board is transferred from the lumber cut-oif gauge stop the swith 19-1 reopens. However, the deflector plate 26-1 remains in the lowered position until the up solenoid winding 24U for the valve 24-1 is energized. As the cut board is deflected by the lowered deector plate 26-1 onto the cross-conveyor 27-1, the board closes the switch 190 at the deliector 26-1 for completion of the energization circuit of the up solenoid Winding 24U for the valve 24-1. The deilector plate 26-1 is thereby returned to the raised position in preparation for another cycle of operation. Before the deilector plate is returned to the raised position the cut board will have been deflected onto the cross-conveyor 27-1. From the cross-conveyor 27-1 the board is fed to the inclined conveyor 28-1 and thence into the accumulator 30-1 in the manner described above. The above described cycle of operation of the deflector plate 26-1 applies also to the other deflector plates 26-2 through 26-9 and need not be repeated. With this arrangement the cut boards are sorted into the accumulators 30-1, 30-2, etc., according to length dependent upon which stop switch 19 is actuated and which movable dellector plate operator 25-1, 25-2, etc., is controlled by the stop switch. The deector plates 26-1 through 26-9 should be lowered for only the length of time required to deflect the board to avoid interference with boards cut immediately prior thereto and immediately thereafter. Lowering of the deliector plates after closure of the stop switch 19 and switch 82 is preferably delayed until the board is conveyed to a position just in front of the deflector plate. Any suitable delay means may be provided for this purpose. Electrical time delay units 269 are included in the circuits to the down windings 24D of the solenoid controlled valves 2442 through 24-9 to provide the desired time delay. (The iirst deiiector plate 26-1 being close to the saw generally does not require a time delay.) Other suitable time delay means would include throttle valves in the air system for the cylinders 25-2 through 25-9. Also, instead of individual time delay means, banks of say three of the deflector plate actuating means could be supplied with a single time delay means, if desired.
Often, relatively low grade lumber, such as shop-grade, is employed in the production of goods such as doors, door frames, and the like, from which lumber the major defects are cut out by the saw operator. Short length sections of defective lumber, such as loose knots and the like, which are cut oli simply fall off the edge of the saw and onto a transversely extending conveyor 270 positioned between the saw 14 and main conveyor 16 where they are carried away from the saw (see FIGURE l).
As mentioned above the control box 98 at the saw is provided with grade selector switches 100 and 104 which permit separation of lumber cut to the same length into different accumulators under control of the operator. This additional separating or sorting process may be made on any desired basis such as the grade of the cut boards. As seen in FIGURE 9 the switches 100 and 104 are connected in parallel in the energization circuit for the control winding 272 of a relay 274. The relay is shown with a pair of movable arms 276 and 278 under control of the Winding 272. The movable arms 276 and 278 are shown connected to the stop member switches 19-3 and 19-4, respectively, through connector plugs 21. Fixed contacts 280 and 282 associated with the movable contact arm 276 are connected to the down control windings 24D of solenoid controlled valves 24-3 and 24-5, respectively, whereas xed contacts 284 and 286 associated with the movable contact arm 278 are connected to the down control windings 24D of the solenoid controlled valves 24-4 and 24-6, respectively. It will be apparent therefore that the stop member switch 19-3 may be used to control the lowering of either the deilcctor plate 26-3 or 26-5, and stop member switch 19-4 may be used to control the lowering of either the deflector plate 26-4 or 26-6, depending upon the condition of the relay 274. With the relay deenergized, as illustrated, the boards which are cut using the stop switches 19-3 and 19-4 are deilected by the deilector plates 26-3 and 26-4, respectively. When the relay is energized by closure of either switch 100 or 104, actuation of the same stop switches 19-3 and 19-4 results in deflection of the boards by the deector plates 26-5 and 26-6, respectively.
Assume that the cut boards are predominately of an A grade quality. With the switches 100 and 104 in the open position, the A grade cuttings made using the stop switch 19-3 are deected onto conveyor 27-3 for transfer to the corresponding accumulator 30-3. Now assume a B grade quality piece is to be cut using the stop switch 19-3. The operator then trips the switch 100 rnomentarily whereby the B grade piece is deected onto conveyor 27-5. The switch 100 returns to the normal open position upon deenergization of a suitable holding circuit, not shown, when switch 82 is closed. If the lumber to be cut is predominately of B grade, the switch 104 may be closed, which switch remains closed until reopened by the operator when an A grade piece is to be cut. It will be understood that the A and B grade designations are for purposes of description only, the apparatus not being limited for use with any particular grade lumber. Also, although a relay 274 is shown with two movable arms for sorting by grade cuttings made using stop switches 19-3 and 194, additional relay contacts may be included for use with other stop switches, as desired. Also, by use of additional switches (not shown) lumber cut to a single length may be selectively diverted into any one of three or more accumulators.
The lumber also may be sorted according to width and thickness by use of appropriately located sensing means which means are included in the deflector actuating circuit. Such sensing means may include photocells, sensing switches, ultrasonic sensors and the like. In FIGURE 8 switches 287 located on the saw table sense the width of the boards and `switches 288 sense the thicknessfThe switches 288 are actuated by switch actuating plates carried on the saw guide and clamping mechanism, which mechanism reciprocates in a vertical plane to stabilize the lumber on the saw table when making the cut in the usual manner. These switches also may be locked manually when cutting boards of any one width. These `switches when used in conjunction with the switches 19, provide for sorting the lumber according to width, thickness and length simultaneously. Such switches obviously may be used independently of the switches 19 for sorting the lumber by width and/ or thickness without sorting according to length.
A schematic diagram of the control circuit for the reflector plate 26-10 is also shown in FIGURE 9. There, the deector plate is shown under control of the stop member switch 19-10. A plurality of shunt-connected jacks 21] for control by other stop switches are provided. When a long board is cut using the stop switch 19-10, the up winding 24U of the Solenoid controlled switch 24-10 is energized upon closure of the saw controlled switch 82 to raise the deector plate 26-10. As described above, when the deilector plate 26-10 reaches the raised position the switch 240 is closed, for energization of the down winding 24D of the solenoid controlled valve 24-10. The valve 24-10 remains in the up condition until energization of the associated down winding 24D upon closure of the switch 240. Flow of air under pressure to the upper end of the cylinder 25-10 is restricted by the throttle valve 242 whereby the deector plate 26- is slowly lowered, permitting the long piece of lumber to pass therebeneath.
If any or all of the deilectors are to be raised, switch 108 may be closed, which switch is included in the energization circuit for a relay 290. The relay 290 includes a plurality of movable contacts 294 individually connected to the up windings 24U. It will be apparent that whenever the relay 290 is energized by closure of the switch 108, all of the up windings 24U of the solenoid controlled valves 24-1 through 24-10 are energized to raise the deector plates 26-1 through 26-10 The deector plate 26-10, of Course, automatically returns to the lowered position after being raised, in the manner described above. (However, by opening the main power Switch 254 at the appropriate time when all of the deector plates are in a raised position lumber cut by the saw is conveyed to the end of the primary conveyor without being deected. Random length and long length conveyors are positioned at the end of the primary conveyors as shown in FIGURES l0 and 1l and described in detail hereinbelow.)
As seen in FIGURE 9, a second switch 300 is connected in parallel with the switch 108. The switch 300 is under control of a governor mechanism 302 driven by the primary conveyor belt 124 through a roller 304. When the conveyor belt is traveling at or above a predetermined speed, including the normal speed thereof, the switch 300 is held open by the governor 302. If a deilector plate 26-1 through 26-10 lowers onto a piece of lumber that is delayed in its travel along the primary conveyor belt 124, the belt is stopped or its speed is reduced whereby the governor controlled switch 300 is closed to raise all of the deector plates. The piece trapped between one of the deector plates and the primary conveyor belt is thereupon released and travels therealong past the cross-conveyors and onto the random length or long length conveyor. The machine is thereby automatically restored to operative condition when such a situation occurs without intervening action by the operation.
Reference is now made to FIGURE 10 wherein a plurality of primary conveyors 16 are shown extending over the cross-conveyors 27-1 through 27-10. Also, a random short length lumber conveyor 310 and a long length lumber conveyor 312 are shown at the end of the primary conveyors 16 for separation of boards which pass along the main conveyors undeected by any of the deflector plates. Such boards are separated according to length. The shorter length boards projected oi the primary conveyors strike the face of stop plates 314 at the far edge of the conveyor 310 and fall onto the conveyor belt 316 to be carried away in the direction of the arrow 318. Long length boards, (of about six feet or greater) span the distance between the end of the main conveyors and the associated stop plate 314. Such long boards therefore are propelled along the upper edge of the stop plates 314 and strike the face of a stop plate 320 at the far edge of the conveyor 312. These long boards then fall onto the conveyor belts 322 to be carried away in the direction of the arrows 324. The conveyors 310 and 312 may feed into accumulators or to any desired location, not shown. As described above, means are provided for passing selected boards oi the end of the primary conveyors 16. Also, as described above, the apparatus may be operated with all of the deector plates in a raised position whereby all the cut lumber passes oil the end of the primary conveyors 16.
A count of the total number of cuts made by each saw and the number pieces of any size or grade which are cut are readily obtained with the apparatus of this invention by simply adding counters at appropriate locations in the system. As seen in FIGURE 9, a mechanically operated counter 330 is suitably attached to the saw to provide a count of the number of times the saw is actuated. Electrical counters 332 are shown connected to the windings of each solenoid controlled valve to provide a count of the number of pieces deected by the deflector 26-1 through 26-9 and the number of pieces passed beneath the deector 2610. Any type counter (such as electrical,
mechanical, etc.) may be used at the various locations as desired. The information provided by the counters is particularly useful for inventory purposes (including a running inventory), production control, and the like. Accurate lumber recovery information for each sawyer is also obtained from this information. In addition to counters, signal or alarm means could 'be included to signal the operator when a desired count is reached. Also, the information may be fed to remote locations, and may be used for control purposes.
The invention having been described in detail in accordance with the requirements of the patent statutes, various changes and modifications may suggest themselves to those skilled in this art. For example, although a total of ten cross conveyors 27-1 through 27-10 and associated bins 30-1 through 30-10 are shown the apparatus may include a greater or lesser number thereof, as desired. Also, while four saws and primary conveyors are shown, a fewer or greater number of saws and main conveyors may be employed in association with the illustrated cross conveyors.
In addition, it is not necessary to mount the switches 19 directly on the stop members. Instead, the switches 19 could be mounted for actuation by the stop members when the lumber is butted against the stop members. Alternatively, the switches 19 may be mounted for sensing stop members 17 which are swung out of the normal position by the board. With suitable electrical circuitry the stop member against which the board is butted may be ascertained with such an arrangement of switches.
Although the villustrated defiector plates are mounted for vertical reciprocating movement, other movements are possible. For example, the deector plates could be pivotally mounted upon a common shaft for pivotal movement between operative and inoperative positions. Further, while individual air cylinders are shown for each -detiector plate, the defiector plates could be individually gravity and/or resiliently biased toward one position, and a suitable return mechanism adapted `for actuation by a single yair cylinder could be used to `return the `defiector plates to normal raised position after being lowered. Obviously actuating means other than air (or hydraulic) cylinders under control of solenoid actuated valve may be employed.
Further, although switches 190 are shown for use in raising the dellector plate after a board has passed thereby, other suitable arrangements are possible. For example, a simple time delay mechanism for raising the deflectors a predetermined time after they have 'been lowered, or after actuation of the saw, may be employed. The requirement for sensing switches 190 would be eliminated by such an arrangement.
ln the illustrated arrangement the cross-conveyors are shown extending at right angles with the primary conveyors. Obviously, other angular relationships are possible. Further, as mentioned above, the cross-conveyors could extend in a diverging pattern from the primary conveyors, if desired.
If desired one -or more of the cross-conveyors could feed onto a remote conveyor or conveyors rather than onto the elevating conveyors. Such remote conveyor may be under control of an operator at a remote location Afor selectively supplying boards to such remote location as required. It is intended that -these Iand -other such changes and modifications shall fall within the spirit and scope of the invention as reci-ted in the following claims.
We claim:
1. A lumber cutting-sorting apparatus comprising,
a saw for cutting said lumber,
means for sensing the length of lumber cut as the lumber is cut by said saw, and
means responsive to said sensing means for sorting the cut lumber according to length.
2. The lumber cutting-sorting apparatus as recited in claim 1 including,
a lumber cut-off gauge stop f-or use in cutting said Ilumber to a predetermined length, and
means for connecting said sensing means to said lumber cut-off gauge stop for sensing lumber cut -to said predetermined length.
3. A lumber cutting-sorting apparatus comprising,
a saw,
stop members having sensing means associated therewith against which an end of the lumber to be cut by the saw is adapted to be butted,
a primary conveyor for conveying cut lumber from the saw, and
means under control of the s-top member sensing means lfor transferring the cut lumber off the primary convey-or `at spaced positions therealong for sorting the same according to length.
4. The lumber cutting-sorting apparatus as defined in claim 3 including a plurality of conveying means beneath the forward run of the primary conveyor upon which the cut lumber from the primary conveyor is transferred.
5. The lumber cutting-sorting apparatus as defined in claim 4 including inclined elevating conveyors upon which cu-t lumber from the conveying means is fed, and
accumulators beneath the upper ends of the inclined elevating conveyors to receive cut lumber falling therein from the elevating conveyors.
6. The lumber cutting-sorting apparatus as defined in claim 3 including operator controlled means for selectively t-ransferring lumber which is cut to the same length off the primary conveyor at either one of at least .two positions therealong for sorting the lumber as by grade.
7. The lumber cutting-sorting machine as defined in claim 3 including time delay means for controlling the time interval between completion of the cut and actua tion of said lumber transferring means.
8. The lumber cutting-sorting machine as defined in claim 7 wherein said time delay means comprises electrical time delay mechanisms.
9. The lumber cutting-sorting machine as defined in claim 3 including a random length lumber conveyor at the downstream end of said primary conveyor extending generally transversely thereof upon which random short lengths of lumber which are projected off the end of the primary conveyor are transferred, and
a long length lumber conveyor adjacent said random length lumber conveyor to receive long lengths of lumber which are projected off the end of the primary conveyor across the random length lumber conveyor and onto the long length lumber conveyor.
10. The lumber cutting-sorting apparatus as defined in claim 3 wherein said means for transferring the cut lumber off the primary conveyor comprises,
a plurality of deflectors at longitudinally spaced intervals along said primary conveyor, and
means operatively connected to said deflectors for individually actuating the same between a normally inoperative position out of the path of movement of lumber on said primary conveyor and an inoperative position in the path of movement of lumber on said primary conveyor.
11. The lumber cutting-sorting machine as defined in claim 10 including means under control of the operator for selectively connecting one of said sensing means associated with a stop member to any one of a plurality of said defiector actuating means for moving the deflectors into operative position.
12. A lumber cutting-sorting machine comprising, a primary conveyor,
a plurality of deflectors at spaced intervals along said primary conveyor for transferring lumber off said conveyor,
means operatively connected to individual deflectors for actuating the same between an inoperative position out of the path of movement of lumber on said primary conveyor and an operative position in deflecting position over said primary conveyor,
a saw at the upstream end of the primary conveyor,
a plurality f stop members in parallel with the primary conveyor adjacent the upstream end of the conveyor against any one of which an end of lumber extending past the saw may be butted for cutting the lumber to predetermined lengths,
sensing means associated with each said stop member for sensing the stop member against which the end of the lumber to be cut is butted, and
means under control of said sensing means for individually energizing said defiector actuating means.
13. The lumber cutting-sorting machine as defined in claim 12 wherein said deflectors are moved into operative position under control of said sensing means associated with said stop members, said machine including sensing means adjacent said deectors for sensing lumber deflected thereby, and
means under control of said sensing means adjacent said defiectors for energizing said deflector actuating means for moving the deectors into inoperative position.
14. The lumber cutting-sorting machine as defined in claim 12 including means for sensing the speed of the primary conveyor, and
means for energizing said deliector actuating means for moving the deflectors into inoperative position when the speed of the primary -conveyor is below a predetermined minimum speed.
15. The lumber cutting-sorting machine as defined in claim 12 wherein said defiector actuating means comprise cylinders operatively connected to said deflector plates.
16. The lumber cutting-sorting machine as defined in claim 12 including switch for rendering said sensing means associated with said stop members inoperative until said switch is actuated.
17. The lumber cutting-sorting machine as defined in claim 12 wherein a defiector adjacent the downstream end of said primary conveyor is in a normally operative position to defiect lumber and the other deliectors are in a normally inoperative position.
18. The lumber cutting-sorting machine as defined in claim 12 including,
means for counting the number of times said defiectors are actuated.
19. Lumber cutting and sorting apparatus comprising:
(a) a cutting station having saw means for cutting the lumber to a selected dimension;
(b) lumber dimension sensing means at said cutting station for detecting a dimension of the lumber while located where cut by said saw means;
(c) lumber sorting means to which the lumber is conveyed after being cut; and
(d) control means actuating said lumber sorting means responsive to said sensing means.
20. The apparatus defined by claim 19, wherein said sensing means senses length of the cut lumber and further including means for sensing the width of the lumber; said control means also actuating said lumber sorting means responsive to said width sensing means.
21. The apparatus defined by claim 19, wherein said sensing means senses length of the cut lumber and further including means for sensing the thickness of the lumber; said control means also actuating said lumber sorting means responsive to said thickness sensing means.
22. The apparatus defined by claim 21, further including means for sensing the Width of the lumber; said control means also actuating said lumber sorting means responsive to said width sensing means.
References Cited UNITED STATES PATENTS 2,793,662 5/1957 Oholm 143-157 1,067,297 7/1913 Barker 241-101 2,876,815 3/1959 Rogers 143-157 XR 3,292,783 12/1966 Quist 209-74 XR 2,729,248 1/1956 King 143-37 XR 2,636,601 4/1953 Bovay 209-74 XR 1,298,510 3/1919 Kaas 143-157 XR 1,220,799 3/1917 Tanner 143-157 XR 964,670 7/1910 Moncrelie.
GERALD A. DOST, Primary Examiner U.S. Cl. X.R.
US515697A 1965-12-22 1965-12-22 Lumber sorting machine Expired - Lifetime US3502123A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US51569765A 1965-12-22 1965-12-22

Publications (1)

Publication Number Publication Date
US3502123A true US3502123A (en) 1970-03-24

Family

ID=24052376

Family Applications (1)

Application Number Title Priority Date Filing Date
US515697A Expired - Lifetime US3502123A (en) 1965-12-22 1965-12-22 Lumber sorting machine

Country Status (1)

Country Link
US (1) US3502123A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848646A (en) * 1971-12-30 1974-11-19 Hines E Lumber Co Method and apparatus for cutting lumber to random or specified clear lengths
US4040459A (en) * 1974-01-14 1977-08-09 Bush Manufacturing Company Log handling system
US4069851A (en) * 1975-09-18 1978-01-24 Bilber Brothers Inc. Method and apparatus for processing logs
US4468993A (en) * 1982-06-11 1984-09-04 International Paper Company Small log bucking system
US4852029A (en) * 1987-06-17 1989-07-25 Accu-Tech Incorporated Automated material classification apparatus and method
US4986407A (en) * 1987-04-07 1991-01-22 Bernhard Heuft Apparatus for controlling the path of transportation of articles
US20080082204A1 (en) * 2006-09-29 2008-04-03 Tin, Inc. Building lumber package assembly method and system
US20080223767A1 (en) * 2007-03-13 2008-09-18 Robert Ahrens Selection and bundling apparatus for random length materials
US11130642B2 (en) * 2018-07-04 2021-09-28 Ost—Ostschweizer Fachhochschule Method and device for separation of long parts
US11691310B2 (en) 2017-10-20 2023-07-04 Mitek Holdings, Inc. Automated lumber cutting and delivery system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US964670A (en) * 1909-03-27 1910-07-19 Malcolm Moncreiffe Lumber-sorter.
US1067297A (en) * 1912-06-11 1913-07-15 Bauer Bros Co Fire-beating attachment for hulling and grinding apparatus.
US1213799A (en) * 1916-04-18 1917-01-23 Splitdorf Electrical Co Electric-circuit-breaking device.
US1298510A (en) * 1917-10-30 1919-03-25 Harald Kaas Plant for automatically assorting wooden materials and the like according to their sizes.
US2636601A (en) * 1949-11-10 1953-04-28 Arthur Temple Jr Lumber sorter
US2729248A (en) * 1953-02-24 1956-01-03 King Lumber Engineering Compan Board trimming, sorting, and stacking apparatus
US2793662A (en) * 1952-03-27 1957-05-28 Svenska Flaektfabriken Ab Trimming and assorting device for sheet-like materials
US2876815A (en) * 1957-03-22 1959-03-10 Southern Wood Preserving Co Method of and apparatus for trimming and sorting switch ties
US3292783A (en) * 1964-01-28 1966-12-20 Stetson Ross Machine Company I Lumber sorter and stacker apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US964670A (en) * 1909-03-27 1910-07-19 Malcolm Moncreiffe Lumber-sorter.
US1067297A (en) * 1912-06-11 1913-07-15 Bauer Bros Co Fire-beating attachment for hulling and grinding apparatus.
US1213799A (en) * 1916-04-18 1917-01-23 Splitdorf Electrical Co Electric-circuit-breaking device.
US1298510A (en) * 1917-10-30 1919-03-25 Harald Kaas Plant for automatically assorting wooden materials and the like according to their sizes.
US2636601A (en) * 1949-11-10 1953-04-28 Arthur Temple Jr Lumber sorter
US2793662A (en) * 1952-03-27 1957-05-28 Svenska Flaektfabriken Ab Trimming and assorting device for sheet-like materials
US2729248A (en) * 1953-02-24 1956-01-03 King Lumber Engineering Compan Board trimming, sorting, and stacking apparatus
US2876815A (en) * 1957-03-22 1959-03-10 Southern Wood Preserving Co Method of and apparatus for trimming and sorting switch ties
US3292783A (en) * 1964-01-28 1966-12-20 Stetson Ross Machine Company I Lumber sorter and stacker apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848646A (en) * 1971-12-30 1974-11-19 Hines E Lumber Co Method and apparatus for cutting lumber to random or specified clear lengths
US4040459A (en) * 1974-01-14 1977-08-09 Bush Manufacturing Company Log handling system
US4069851A (en) * 1975-09-18 1978-01-24 Bilber Brothers Inc. Method and apparatus for processing logs
US4468993A (en) * 1982-06-11 1984-09-04 International Paper Company Small log bucking system
US4986407A (en) * 1987-04-07 1991-01-22 Bernhard Heuft Apparatus for controlling the path of transportation of articles
US4852029A (en) * 1987-06-17 1989-07-25 Accu-Tech Incorporated Automated material classification apparatus and method
US20080082204A1 (en) * 2006-09-29 2008-04-03 Tin, Inc. Building lumber package assembly method and system
US7826921B2 (en) 2006-09-29 2010-11-02 Tin, Inc. Building lumber package assembly method and system
US20080223767A1 (en) * 2007-03-13 2008-09-18 Robert Ahrens Selection and bundling apparatus for random length materials
US11691310B2 (en) 2017-10-20 2023-07-04 Mitek Holdings, Inc. Automated lumber cutting and delivery system
US11130642B2 (en) * 2018-07-04 2021-09-28 Ost—Ostschweizer Fachhochschule Method and device for separation of long parts

Similar Documents

Publication Publication Date Title
US3502123A (en) Lumber sorting machine
US2427223A (en) Sheet cutting and delivery means
JP2901086B2 (en) Sorting device
US3687178A (en) Lumber sorting method
JPS6050694B2 (en) Sheet lamination device
US3481598A (en) Sheet conveying,stacking and discharge equipment
US3566936A (en) Lumber sorting method
US3894625A (en) Lumber sorting system with overhead infeed
US3490764A (en) Process and device for depositing leaf or sheet material,especially veneer sheets
US3430784A (en) Apparatus for stacking and sorting panels
US2876815A (en) Method of and apparatus for trimming and sorting switch ties
US5035164A (en) Device for cutting and stacking strips of wood
US4014784A (en) Sorting apparatus
US3218066A (en) Process and apparatus for handling sheets
US3024818A (en) Apparatus for cutting and sorting lumber and method
US4221519A (en) Conveying and stacking machine
US4050591A (en) Stacking apparatus and method
US3799015A (en) Log processing machine
US4040459A (en) Log handling system
US3687260A (en) Edging picker
US3452789A (en) Machine for detecting and patching defects in plywood veneer
US3279600A (en) Lumber sorting and stacking apparatus
US3085686A (en) Automatic lumber sorter
US2938552A (en) Apparatus for trimming and sorting switch ties
US3941370A (en) Sheet glass - conveying, classifying and stacking apparatus