US3502093A - Multifunction logical jet element - Google Patents
Multifunction logical jet element Download PDFInfo
- Publication number
- US3502093A US3502093A US520146A US3502093DA US3502093A US 3502093 A US3502093 A US 3502093A US 520146 A US520146 A US 520146A US 3502093D A US3502093D A US 3502093DA US 3502093 A US3502093 A US 3502093A
- Authority
- US
- United States
- Prior art keywords
- jet
- jets
- port
- ports
- inlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 description 8
- 238000010276 construction Methods 0.000 description 1
- KEUKAQNPUBYCIC-UHFFFAOYSA-N ethaneperoxoic acid;hydrogen peroxide Chemical compound OO.CC(=O)OO KEUKAQNPUBYCIC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15C—FLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
- F15C1/00—Circuit elements having no moving parts
- F15C1/14—Stream-interaction devices; Momentum-exchange devices, e.g. operating by exchange between two orthogonal fluid jets ; Proportional amplifiers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15C—FLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
- F15C1/00—Circuit elements having no moving parts
- F15C1/18—Turbulence devices, i.e. devices in which a controlling stream will cause a laminar flow to become turbulent ; Diffusion amplifiers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
- Y10T137/2164—Plural power inputs to single device
- Y10T137/2169—Intersecting at interaction region [e.g., comparator]
Definitions
- the present invention relates to multi-function jet logical elements by means of which numerous complex logical functions can be realized.
- Hitherto known jet logical elements with free jets employed open chambers in the Walls of which there were ports for letting through the jets of fluid, i.e., of gas or of liquid.
- the ports were situated relative to one another in such a manner that the element could be passed through by one main fluid jet directed through one inlet port to the opposite port from which the outlet signal was received. If the flow of the main jet remained undisturbed, pressure appeared at the outlet.
- the remaining ports of such an element were used for the introduction of fluid jets disturbing directly the flow of the main jet. Such a disturbance gave rise to a pressure fall in the outlet port of the element.
- the multijet logical element according to the present invention which employs an open chamber provided at least with three inlet ports and at least with one outlet port the axis of which is an extension of the axis of one of said inlet ports.
- the element according to the invention is distinguished by having the inlet ports situated in relation to one another in such a manner that the fluid jets flowing out of said ports form at least a one-cascade system, i.e., one in which the jet flowing out of one of the inlet ports can be disturbed by another jet flowing out of another inlet port and in which the last mentioned jet can be disturbed by still another fluid jet flowing out of a third inlet port.
- the element according to the invention contains more than three inlet ports, they may be directed toward one another in such a manner that the jets of fluid flowing out of these ports can form a multi cascade system.
- FIG. 1 illustrates in a plane a system of jets occurring in known logical elements having no cascade jet system
- FIGS. 2 to 7 show, also in a plane, a number of possible cascade jet systems provided in accordance with the invention.
- FIG. 8 is a perspective, partially section view, of a logical element constructed in accordance with the inven* tion.
- FIGS. l-7 the corresponding inlet jets are indicated by the numbers 1 to 7, while number 14 refers to the outlet.
- FIG. 2 The simplest one-cascade jet system is shown in FIG. 2.
- the flow of the inlet jet 1 to the outlet 14 can be disturbed by the action of inlet jet 2 which in turn can be disturbed by the inlet jet 3.
- FIGS. 3 and 4 show further examples of one-cascade jet systems.
- the jets 1, 2, 3 act just as the jets 1, 2, 3 in the simplest one-cascade jet system (FIG. 2).
- the additional inlet jet 4 increases the number of inlet signals.
- the jets 4, 5, 6 and 7 increase the number of inlet signals, without changing the monocascade function of the jets produced by the jets 1, 2 and 3 (FIG. 4) acting just as the jets 1, 2 and 3 (FIG. 2).
- FIG. 5 The simplest two-cascade jet system is shown in FIG. 5.
- the run of the inflow jet 1 to the outlet 14 can be disturbed by the action of the inflow jet 2 which in turn can be disturbed by the action of the inflow jet 3 and the latter can be disturbed by the action of the inflow jet 4.
- FIG. 6 An example of a more developed two-cascade jet system is shown in FIG. 6.
- the additional jets 5, 6, and 7 increase the number of inlet signals. Jets 1, 2, 3 and 4 act just as jets l, 2, 3 and 4 in the simplest two-cascade jet system (FIG. 5).
- FIG. 7 A simplest three-cascade jet system is shown in FIG. 7.
- the run of the inflow jet 1 to the outlet 14 can be disturbed by the action of inflow jet 2 which in turn can be disturbed by the action of inflow jet 3, and the latter can be disturbed by the action of inflow jet 4.
- Inflow jet 4 can be disturbed by the action of inflow jet 5.
- the number of inlets in the three-cascade system can be likewise increased as in the oneand two-cascade systems. It is obvious that there exists an infinite number of possible multi-cascade systems.
- the ports 1 and 14 are disposed in the logical element in such a manner that the jet flowing out of the port 1 to the port 14 from which the pressure is to be received, may meet on its way with three jets proceeding from the ports 13, 4 and 7.
- Port 7 is located so that the jet proceeding therefrom can be disturbed either by the jet proceeding from port 6 or by the jet proceeding from port 9.
- Port 4 is located so that its jet can be disturbed either by the jet proceeding from port 2 or by that proceeding from port 5.
- Port 13 is located in the element so that its jet can be disturbed either by the jets proceeding from ports 3 and 8 or by the jet proceeding from port 11.
- ports 2 and 12 The location of ports 2 and 12 is made so that their jets can disturb the jet proceeding from port 3 or they can be disturbed themselves by the jets proceeding from ports 8 and 3.
- Ports 9 and '10 are located in such a manner that their jets can disturb the jet proceeding from port 8 or they can be disturbed themselves by the jet proceeding either from port 3 or from port 8.
- immovable screens e.g., screen 16
- a jet flowing out of one of the inlet ports is intersected by another 15 jet flowing out of another inlet port, the latter jet being intersected by a fluid jet flowing out of a third of said inlet ports, each jet intersecting with another jet having 4 a free path of flow to the latter said jet, and immovable screens mounted in the chamber for eliminating vortexes of said jets.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Radiation-Therapy Devices (AREA)
- Jet Pumps And Other Pumps (AREA)
- Cleaning By Liquid Or Steam (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL107221A PL58367B1 (enrdf_load_stackoverflow) | 1965-02-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3502093A true US3502093A (en) | 1970-03-24 |
Family
ID=19944652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US520146A Expired - Lifetime US3502093A (en) | 1965-02-02 | 1966-01-12 | Multifunction logical jet element |
Country Status (5)
Country | Link |
---|---|
US (1) | US3502093A (enrdf_load_stackoverflow) |
CH (1) | CH451563A (enrdf_load_stackoverflow) |
CS (1) | CS151439B2 (enrdf_load_stackoverflow) |
DE (1) | DE1523582A1 (enrdf_load_stackoverflow) |
GB (1) | GB1068457A (enrdf_load_stackoverflow) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3628551A (en) * | 1970-01-05 | 1971-12-21 | Bendix Corp | Confined jet amplifier having a receiver characterized by having a plurality of flow openings |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3124160A (en) * | 1964-03-10 | zilberfarb | ||
US3174497A (en) * | 1962-09-04 | 1965-03-23 | Sperry Rand Corp | Fluid power amplifier not-gate |
US3175569A (en) * | 1961-12-28 | 1965-03-30 | Sperry Rand Corp | Pure fluid pulse generator |
US3186422A (en) * | 1962-12-31 | 1965-06-01 | Gen Electric | Fluid amplifier |
US3234955A (en) * | 1962-10-01 | 1966-02-15 | Raymond N Auger | Fluid amplifiers |
US3258023A (en) * | 1963-04-12 | 1966-06-28 | Romald E Bowles | Pneumatic eye |
US3279489A (en) * | 1963-09-30 | 1966-10-18 | Johnson Service Co | Fluid control |
US3283767A (en) * | 1963-05-31 | 1966-11-08 | Ibm | Jet fluid amplifier |
US3319659A (en) * | 1964-12-31 | 1967-05-16 | Sperry Rand Corp | Fluid pulse attenuator |
-
1966
- 1966-01-12 US US520146A patent/US3502093A/en not_active Expired - Lifetime
- 1966-01-24 CS CS452A patent/CS151439B2/cs unknown
- 1966-01-26 GB GB3506/66A patent/GB1068457A/en not_active Expired
- 1966-01-27 DE DE19661523582 patent/DE1523582A1/de active Pending
- 1966-02-02 CH CH142466A patent/CH451563A/fr unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3124160A (en) * | 1964-03-10 | zilberfarb | ||
US3175569A (en) * | 1961-12-28 | 1965-03-30 | Sperry Rand Corp | Pure fluid pulse generator |
US3174497A (en) * | 1962-09-04 | 1965-03-23 | Sperry Rand Corp | Fluid power amplifier not-gate |
US3234955A (en) * | 1962-10-01 | 1966-02-15 | Raymond N Auger | Fluid amplifiers |
US3186422A (en) * | 1962-12-31 | 1965-06-01 | Gen Electric | Fluid amplifier |
US3258023A (en) * | 1963-04-12 | 1966-06-28 | Romald E Bowles | Pneumatic eye |
US3283767A (en) * | 1963-05-31 | 1966-11-08 | Ibm | Jet fluid amplifier |
US3279489A (en) * | 1963-09-30 | 1966-10-18 | Johnson Service Co | Fluid control |
US3319659A (en) * | 1964-12-31 | 1967-05-16 | Sperry Rand Corp | Fluid pulse attenuator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3628551A (en) * | 1970-01-05 | 1971-12-21 | Bendix Corp | Confined jet amplifier having a receiver characterized by having a plurality of flow openings |
Also Published As
Publication number | Publication date |
---|---|
DE1523582A1 (de) | 1969-01-30 |
CS151439B2 (enrdf_load_stackoverflow) | 1973-10-19 |
CH451563A (fr) | 1968-05-15 |
GB1068457A (en) | 1967-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3124999A (en) | Fluid oscillator | |
US3148691A (en) | Fluid controlled device | |
US3470894A (en) | Fluid jet devices | |
US3238959A (en) | Differentiator comparator | |
US3515158A (en) | Pure fluidic flow regulating system | |
US3362421A (en) | Bounded free jet fluid amplifier with turbulent attachment | |
US3537466A (en) | Fluidic multiplier | |
US3233621A (en) | Vortex controlled fluid amplifier | |
US3513865A (en) | Fluid vortex valve | |
US3209774A (en) | Differential fluid amplifier | |
US3515160A (en) | Multiple input fluid element | |
US3495253A (en) | Planar fluid amplifier | |
US3468326A (en) | Triggerable flip-flop fluid device | |
US3563260A (en) | Power transmission | |
US3336931A (en) | Fluid logic vortex apparatus | |
US3448752A (en) | Fluid oscillator having variable volume feedback loops | |
US3502093A (en) | Multifunction logical jet element | |
US3238958A (en) | Multi-channel fluid elements | |
US3417772A (en) | Rocket motor propellant injection system | |
US3313313A (en) | Fluid pressure reference | |
US3486521A (en) | Flowing probe vortex device | |
US3176703A (en) | Pulsed fluid amplifier | |
US3486520A (en) | Deflector fluidic amplifier | |
US3261372A (en) | Fluid control element | |
US3424182A (en) | Vortex valve |