US3492144A - Method of making flocked fabrics - Google Patents

Method of making flocked fabrics Download PDF

Info

Publication number
US3492144A
US3492144A US524142A US3492144DA US3492144A US 3492144 A US3492144 A US 3492144A US 524142 A US524142 A US 524142A US 3492144D A US3492144D A US 3492144DA US 3492144 A US3492144 A US 3492144A
Authority
US
United States
Prior art keywords
fabric
flock
flocked
curled
fabrics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US524142A
Inventor
Charles R Sheehan
Paul Mcdowell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Application granted granted Critical
Publication of US3492144A publication Critical patent/US3492144A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H11/00Non-woven pile fabrics

Definitions

  • This invention relates to flocked fabrics and a novel method of making same. More particularly, the invention relates to flocked fabrics that are made from long, curled sections of synthetic monofilament, which exhibit improved wear, pile resiliency, and general appearance.
  • Flocking is of great importance as a modern method of surface styling for textiles and plastics.
  • natural or synthetic dust, short fibers of different staple length and denier, or flocks of definite length and diameter are cemented by a bonding agent to the entire surface or part of it, of textiles, non-Wovens, or plastic or metal foils, and also to leather, rubber, wood, paper, glass and sheet metal/
  • flocked material always consists of basic material, bonding (agent and pile.
  • FIGURE 6 is a schematic view of a mechanical process employed for manufacturing the flocked fabrics of the invention.
  • FIGURE 7 is a schematic view of an electrostatic process employed for manufacturing the flocked fabrics of the invention.
  • FIGURE 1 flocked fabrics having relatively long, straight filament sections 12 tend to be flat on the fabric surface 10.
  • FIGURE 2 there is illustrated the remarkable advantages of using a filament section 13 in flocking a fabric.
  • a great degree of resiliency and fiber density can be tailored into the finished flocked fabric.
  • FIGURE 3 and FIGURE 4 more clearly illustrate the unexpected result of pile density and resiliency built into the flocked fabric using curled filaments.
  • FIGURE 3 illustrates the poor covering of straight, non-curled filaments and shows their'tendency to lie down on the fabric backing rather than standing perpendicular. This effect is well known in the art and is the main, reason long filaments are generally omitted from most flocking methods.
  • FIGURE 4 In contrast to the inadequate fabric of FIGURE 3, is the flocked fabric illustrated in FIGURE 4, wherein curled filaments comprise the pile surface, of the fabric. It can be seen readily that the curled fabrics tend to interlock, causing a much greater resiliency and density than is normally found in flocked fabrics using long filaments.
  • the filament sections useful for the present invention have a length of from about A to 1 /2 inch and are preferably in the range of 15 to 1250 denier, depending on choice of polymer filament.
  • filament sections are shown possessing varying curl.
  • the degree of curling was established using a /2 inch cut flock and measuring the radii of curvatures, which preferably run from' to A inch. This can be better. understood by referring to FIGURE 5e, wh e rein the dotted,
  • FIGURE 5a would of course, be inch curvature, with FIGURE 5] beof thermoplastic monofilaments and then applying the curled sections of monofilament to an adhesive coated suitable fabric backing material.
  • Flocked fabrics produced in this manner possess a pile density, resilience, durability and attractive appearance that are novel to the. flocked fabric art.
  • FIGURE 5b has inch curvature, 50 having V inch curvature, and so forth. There is a variance in'desirable degree of curl, depending on the particular properties desired in any given'flocked. fabric.
  • FIGURE 5 is merely for purposes of 'il-i lustration and is not to be construed as limiting the inven-,' tion herein.
  • FIGURE 6 there is illustrated schematically one method of manufacturing the flocked fabrics of the present invention.
  • The-method consists essentially of passing a suitable fabric material 16 onto a conveyor 24, where a suitable adhesive 19 is uniformly coatedonto fabric 16 and smoothed by a doctor blade 28.
  • the adhesive-coated fabric 20 is then conveyed beneath a flock distributing device 26 which drops the cut filament sections 25 ontothe coated fabric 20.
  • the finished fabric 30 is then conveyed on to subsequent drying and like treatments.
  • FIGURE 7 illustrates an alternative method employing electrostatic flocking, as opposed to mechanical flocking of FIGURE 6.
  • the essential steps This was flocked onto a 225 square inch sample of Woven SFM, and coated with 16 ounce per square yard of acrylic adhesive, as in Example 1, above. Flock in the amount of 2.14 grams was retained on the backing. The density of flock on the sample was 12.3 ounce per square yard,
  • EXAMPLE 1 Five grams of the same 400 denier SFM /2 inch cut was pre-curled by hot water at 210 F. for 60 minutes. 75
  • teria is a vinyi ene c loride-vinyl chloride copolymer e5 36 7 275 F., 10 t (Saran Flat Mlcrotape) of about 400 denier. Filaments is; Boiling wais l f l tl rilinutes 5 2( 2 of polypropylene, polyethylene, nylon, polyesters, acry- 5 25 15 lates, and vinyl of from 15 to 600 denler are also well adapted for use in the invention.
  • thermoplastic filament sec- F1 k d b tions There are many ways to curl thermoplastic filament sec- F1 k d b tions, such as by treating with hot air, steam and hot wa- 1 i g fg 3 g l 5 ter with or Without mechanical agitation. It has been z i g g gg z; gg i gg gg i gz O O 9 i g i i g i hot at f to metal (coated with thermoplastic such as Lurex manue or a u Pro uces a Sm a e 6.21m 35 factured by The Dow Chemical Company), polyester, treanklent at atmqsphem PresSure for about 15 to and acrylic.
  • thermoplastic such as Lurex manue or a u Pro uces a Sm a e 6.21m 35 factured by The Dow Chemical Company
  • a method of producing wear and weather resistant flocked fabrics which comprises curling relatively long 'sections of synthetic polymer filaments into arcuate segments and thereafter applying the arcuate segments of filament to an adhesive coated suitable fabric backing material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Woven Fabrics (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

Jan. '27; 1970 c. 'R. sHEHANjET A-L Filed Feb. 1, 1966 METHOD OF MAKING FLOCKED FABRICS 2 Sheets-Sheet l INVENTORS. R. 6b eeh an Char/96 BY POM/ ME 00 we// HTTQR/VE Y Jan. 27, 1970 c. R. SHE EHAN ET AL METHOD OF MAKING FLOCKED FABRICS 2 Sheets-Sheet 2 Filed Feb. 1, 1966 INVENTORS.
Char/e5 R. 6/2 eehan BY POu/ M O0We// ATTORNEY United States Patent 3,492,144 METHOD OF MAKING FLOCKED FABRICS Charles R. Sheehan, Williamsburg, and Paul McDowell, Newport News, Va., assignor to The Dow Chemical Company, Midland, Mich., a corporation of Delaware Filed Feb. 1, 1966, Ser. No. 524,142 Int. Cl. B44c 1/08 U.S. Cl. 117-33 2 Claims ABSTRACT OF THE DISCLOSURE This invention discloses and claims an improved method for making a flocked fabric which method comprises curling relatively long sections of synthetic polymer filaments and thereafter applying the curled sections of filament to an adhesive coated fabric backing material.
This invention relates to flocked fabrics and a novel method of making same. More particularly, the invention relates to flocked fabrics that are made from long, curled sections of synthetic monofilament, which exhibit improved wear, pile resiliency, and general appearance.
Flocking is of great importance as a modern method of surface styling for textiles and plastics. In this surface treatment, natural or synthetic dust, short fibers of different staple length and denier, or flocks of definite length and diameter are cemented by a bonding agent to the entire surface or part of it, of textiles, non-Wovens, or plastic or metal foils, and also to leather, rubber, wood, paper, glass and sheet metal/Hence flocked material always consists of basic material, bonding (agent and pile.
One of the basic difliculties in the flocking art is the ability to obtain a dense, resilient flocked carpet using relatively long, cut fibers. Generally, when longer fibers are used, both flock density and orientation'are poor. This is particularly true with acrylic, polyolefin and vinylidene chloride-vinyLchloridepolymer fibers. Due to their resistance to the elements, these fibers are ideal for outdoor carpet and decorative coverings. However, it has been necessary to'resort to tufted=type coverings and carpet to obtain a product that is-acceptable.
Tufting with these materials still does not solve the problem of resiliency and appearance. The fibers tend to lay flat and fail to present a fresh appearance after even limited use.
In order to overcome these and related disadvantages, it has been discovered that flocked fabrics, having improved wear, pile resiliency and appearance, can be produced by a method which com-prises curling relatively long sections .4' 1 f url isil ustra ed inEIGUREiwherein the individual sections possessing varying degrees of curl;
FIGURE 6 is a schematic view of a mechanical process employed for manufacturing the flocked fabrics of the invention; and
FIGURE 7 is a schematic view of an electrostatic process employed for manufacturing the flocked fabrics of the invention.
Referring now to the drawings and as may be best seen in FIGURE 1, flocked fabrics having relatively long, straight filament sections 12 tend to be flat on the fabric surface 10. In addition, there is poor covering and density, yielding a fabric that is both unsightly and unacceptable in the market place. However, in FIGURE 2, there is illustrated the remarkable advantages of using a filament section 13 in flocking a fabric. Depending on degree of curl and length of filament section, a great degree of resiliency and fiber density can be tailored into the finished flocked fabric.
The perspective view of FIGURE 3 and FIGURE 4 more clearly illustrate the unexpected result of pile density and resiliency built into the flocked fabric using curled filaments. FIGURE 3 illustrates the poor covering of straight, non-curled filaments and shows their'tendency to lie down on the fabric backing rather than standing perpendicular. This effect is well known in the art and is the main, reason long filaments are generally omitted from most flocking methods.
. In contrast to the inadequate fabric of FIGURE 3, is the flocked fabric illustrated in FIGURE 4, wherein curled filaments comprise the pile surface, of the fabric. It can be seen readily that the curled fabrics tend to interlock, causing a much greater resiliency and density than is normally found in flocked fabrics using long filaments.
The filament sections useful for the present invention have a length of from about A to 1 /2 inch and are preferably in the range of 15 to 1250 denier, depending on choice of polymer filament. The degree, or amount,
filament sections are shown possessing varying curl. The degree of curling was established using a /2 inch cut flock and measuring the radii of curvatures, which preferably run from' to A inch. This can be better. understood by referring to FIGURE 5e, wh e rein the dotted,
line, defining the chord, is .a measure of the radius of curvature. It can be seen readily that FIGURE 5a would of course, be inch curvature, with FIGURE 5] beof thermoplastic monofilaments and then applying the curled sections of monofilament to an adhesive coated suitable fabric backing material.
Flocked fabrics produced in this mannerpossess a pile density, resilience, durability and attractive appearance that are novel to the. flocked fabric art.
The present invention will be more readily apparent and ,easily understood by reference to the ensuing disclosureand specification taken together with figures of ing inch curvature. FIGURE 5b has inch curvature, 50 having V inch curvature, and so forth. There is a variance in'desirable degree of curl, depending on the particular properties desired in any given'flocked. fabric.
For this reason, FIGURE 5 is merely for purposes of 'il-i lustration and is not to be construed as limiting the inven-,' tion herein. Y i
Referring now to FIGURE 6, there is illustrated schematically one method of manufacturing the flocked fabrics of the present invention. The-method consists essentially of passing a suitable fabric material 16 onto a conveyor 24, where a suitable adhesive 19 is uniformly coatedonto fabric 16 and smoothed by a doctor blade 28. The adhesive-coated fabric 20 is then conveyed beneath a flock distributing device 26 which drops the cut filament sections 25 ontothe coated fabric 20. To drive the filament sections 25 into the adhesive 19 and to increase the pile density, rotation beater bars 23, located beneath the conveyor 24, vibrate the coated fabric 20, tending to drive the coated fabric 20 upward as the flock 2 5 fall s downward. There is preferably a pneumatic force applied subsequently to the flocked fabric 30 by a pneumatic device 27 so as toremove excess. loose. flock from the finished 3 fabric. The finished fabric 30 is then conveyed on to subsequent drying and like treatments.
FIGURE 7 illustrates an alternative method employing electrostatic flocking, as opposed to mechanical flocking of FIGURE 6. As can be seen, the essential steps This was flocked onto a 225 square inch sample of Woven SFM, and coated with 16 ounce per square yard of acrylic adhesive, as in Example 1, above. Flock in the amount of 2.14 grams was retained on the backing. The density of flock on the sample was 12.3 ounce per square yard,
EXAMPLE 1 EXAMPLE 2 Five grams of the same 400 denier SFM /2 inch cut was pre-curled by hot water at 210 F. for 60 minutes. 75
are the same as in FIGURE 6, except there is now a posi- Showing ppr y a 100 Percent increase in flock tive electrode grid 31 through which the curled flock 25 dens/lily resultlng from the use of pre-curled flock. is dropped, onto the moving adhesive-coated fabric 20', EXAMPLES from the flock hopper 26. There is located beneath the I coated fabric 20' a grounded electrode 29. As the curled i heat treatments were med F 400 F flock passes through grid 31, the flock becomes SFM, /2 inch cut, and subsequently applied to adhesivecharged and is fired into the adhesive coating 19, coated fabnc p1eces. In each batch of cut flock there was with flock 25 that does not stick reversing their charge a distrlbutlon of degree of curling- F P Pelow is Tiflble and being fired back to grid 31, Where the flock again I showlng the heat treatment and dlstrlbutlon of curling. reversing polarity and being fired back to the adhesive The data makes abundantly clear the relat1vely wlde var coated fabric This action occurs rapidly until the ance 1n acceptable heat treatments applicable for the presfiocked fabric Passes beyond the grids 29 and ent 1nvent1on. (Examples 3-7 were conducted with hot Preferably, excess flock is pneumatically removed by a suction device 27' following the flocking operation. ABL I.DI TRIBUTION OF- OURLIN G 0F SFM There are many suitable adhesives available commer- 20 Degree ofcuflpemm c1ally, wlth the acrylic-type adhesives belng preferred due H t t t t 2 H H H H n to their weather resistance and relatively long pot life. ea ma men s [16 3/16 4/16 6/16 8/16 The present invention can be practiced with most syn- (3) m 2 18 60 10 thetii: filaments 1agailableil. Preferably, the filamentary ma- 25 g; 12;? E1: gfiiiiiigg ii: i; III: teria is a vinyi ene c loride-vinyl chloride copolymer e5 36 7 275 F., 10 t (Saran Flat Mlcrotape) of about 400 denier. Filaments is; Boiling wais l f l tl rilinutes 5 2( 2 of polypropylene, polyethylene, nylon, polyesters, acry- 5 25 15 lates, and vinyl of from 15 to 600 denler are also well adapted for use in the invention. 3O EXAMPLES 10 22 There are many ways to curl thermoplastic filament sec- F1 k d b tions, such as by treating with hot air, steam and hot wa- 1 i g fg 3 g l 5 ter with or Without mechanical agitation. It has been z i g g gg z; gg i gg gg i gz O O 9 i g i i g i hot at f to metal (coated with thermoplastic such as Lurex manue or a u Pro uces a Sm a e 6.21m 35 factured by The Dow Chemical Company), polyester, treauflent at atmqsphem PresSure for about 15 to and acrylic. The flocked fabrics were inspected to deteronds 1s equally sultable. Equally good results are obtamed mine the number f pile fib Per square inch Samples y treatlng the fil'tfments Water at {about 200 to 210 were made with both curled and non-curled to demonfor about 5 mlllutes 1f P P y at about strate the greater fiber density of the curled flock over 210 F- f r m V ns 1n temperature and the non-curled flock. Table II, below, contains the results time can be made to obtain the desired degree of curl for of the experiment.
TABLE II Pile Flock Test Data Flock Curled Not Curled Degree Class Material Used As Flock of Curl Length No. of No. of Sample of Radius of Cut Fibers Fibers, 0. Fiber Type Dimensions Denier (in.) (in.) Oz./yd. sq. in. Oz./yd. sq. in.
10 Saran Microtap6 3rnils x 25 mils 400 0 8/16 4.2 20 d d 400 2/16 8/16 4. 2 20 400 3/16 8/16 4. 2 20 400 4/16 8/16 4. 2 20 400 6/16 8/16 4. 2 20 400 8/16 8/16 4. 2 20 225 4/16 8/16 98 o 575 4/16 8/16 128 18 do Round Diameter 2.0 mils. 14.3 4/16 8/16 149 19 Polyamide Trilobal 2.1 mils 15 4/16 8/16 104 20 Metallic Slit Film lmilx 10 mils. 4/16 8/16 5 21 Polyester do 1 milx 10 mils. 76 4/16 8/16 68 22 Acrylic Round Diameter 3.1 mils. 32.5 4/16 8/16 710 a given polymer filament section without departing from The above results clearly show that the curling, of the the spirit or scope of the present invention. 60 present invention, results in an increase in pile density of from 47 to several thousand percent. In addition, the interlocking action of the curled fibers in the finished fabric cause a greater resiliency in the fabric than heretofore known.
We claim:
1. A method of producing wear and weather resistant flocked fabrics which comprises curling relatively long 'sections of synthetic polymer filaments into arcuate segments and thereafter applying the arcuate segments of filament to an adhesive coated suitable fabric backing material.
2. The method of claim 1 wherein the synthetic polymer is a thermoplastic.
(References on following page) References Cited UNITED STATES PATENTS Rutishauser 1966 X Robbins 264168 Sisson 161177 Spence et a1 264168 X Koller 16164 X Fujita et a1. 264168 X Fenton 11733 Achterhof 117-28 Newton 16166 Lemelson 156--72 Perri 16164 WILLIAM D. MARTIN, Primary Examiner US. Cl. X.R.
US524142A 1966-02-01 1966-02-01 Method of making flocked fabrics Expired - Lifetime US3492144A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US52414266A 1966-02-01 1966-02-01

Publications (1)

Publication Number Publication Date
US3492144A true US3492144A (en) 1970-01-27

Family

ID=24087942

Family Applications (1)

Application Number Title Priority Date Filing Date
US524142A Expired - Lifetime US3492144A (en) 1966-02-01 1966-02-01 Method of making flocked fabrics

Country Status (6)

Country Link
US (1) US3492144A (en)
BE (1) BE693437A (en)
DE (1) DE1710252A1 (en)
FR (1) FR1509714A (en)
GB (1) GB1172591A (en)
NL (1) NL6701017A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904793A (en) * 1969-02-28 1975-09-09 Deering Milliken Inc Crushed pile fabric and method
US3922404A (en) * 1969-02-28 1975-11-25 Deering Milliken Inc Crushed pile fabric and method
US5700555A (en) * 1993-08-30 1997-12-23 Formtech Enterprises, Inc. Sandable and stainable plastic/wood composite

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1939846A (en) * 1930-07-14 1933-12-19 Goodrich Co B F Artificial turf and method of making the same
US1949068A (en) * 1930-07-11 1934-02-27 Goodrich Co B F Artificial turf and method of making the same
US2326174A (en) * 1939-04-22 1943-08-10 Rutishauser Georg Method and apparatus for the production of curled threads from cellulose acetate
US2377810A (en) * 1942-10-30 1945-06-05 Dow Chemical Co Crinkled polymeric vinylidene chloride fibers
US2439815A (en) * 1945-04-03 1948-04-20 American Viscose Corp Composite thermoplastic fibers
US2917806A (en) * 1957-06-05 1959-12-22 Dow Chemical Co Method for crimping acrylonitrile polymer fibers
US3024518A (en) * 1960-11-22 1962-03-13 Russell B Newton Methods of making pile fabrics
US3275487A (en) * 1963-01-07 1966-09-27 Jerome H Lemelson Method and automatic apparatus for producing pile surfaced plastic sheeting
US3314845A (en) * 1964-07-23 1967-04-18 Du Pont Method of flocking and subsequently developing latently crimpable fibers and article produced thereby
US3322606A (en) * 1963-06-24 1967-05-30 Du Pont Double-faced pile article
US3330896A (en) * 1962-07-12 1967-07-11 American Cyanamid Co Method of producing bulky yarn

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1949068A (en) * 1930-07-11 1934-02-27 Goodrich Co B F Artificial turf and method of making the same
US1939846A (en) * 1930-07-14 1933-12-19 Goodrich Co B F Artificial turf and method of making the same
US2326174A (en) * 1939-04-22 1943-08-10 Rutishauser Georg Method and apparatus for the production of curled threads from cellulose acetate
US2377810A (en) * 1942-10-30 1945-06-05 Dow Chemical Co Crinkled polymeric vinylidene chloride fibers
US2439815A (en) * 1945-04-03 1948-04-20 American Viscose Corp Composite thermoplastic fibers
US2917806A (en) * 1957-06-05 1959-12-22 Dow Chemical Co Method for crimping acrylonitrile polymer fibers
US3024518A (en) * 1960-11-22 1962-03-13 Russell B Newton Methods of making pile fabrics
US3330896A (en) * 1962-07-12 1967-07-11 American Cyanamid Co Method of producing bulky yarn
US3275487A (en) * 1963-01-07 1966-09-27 Jerome H Lemelson Method and automatic apparatus for producing pile surfaced plastic sheeting
US3322606A (en) * 1963-06-24 1967-05-30 Du Pont Double-faced pile article
US3314845A (en) * 1964-07-23 1967-04-18 Du Pont Method of flocking and subsequently developing latently crimpable fibers and article produced thereby

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904793A (en) * 1969-02-28 1975-09-09 Deering Milliken Inc Crushed pile fabric and method
US3922404A (en) * 1969-02-28 1975-11-25 Deering Milliken Inc Crushed pile fabric and method
US5700555A (en) * 1993-08-30 1997-12-23 Formtech Enterprises, Inc. Sandable and stainable plastic/wood composite

Also Published As

Publication number Publication date
BE693437A (en) 1967-07-31
DE1710252A1 (en) 1971-10-21
NL6701017A (en) 1967-08-02
FR1509714A (en) 1968-01-12
GB1172591A (en) 1969-12-03

Similar Documents

Publication Publication Date Title
US3542632A (en) Fibrillated fabrics and a process for the preparation thereof
US2737702A (en) Artificial fur product and process of manufacture
US3314845A (en) Method of flocking and subsequently developing latently crimpable fibers and article produced thereby
US3687754A (en) Method of manufacturing an elastic nonwoven fabric
US3085922A (en) Porous flexible self-supporting sheet material and method of making same
US2740239A (en) Flexible abrasive products
US3493452A (en) Apparatus and continuous process for producing fibrous sheet structures
EP0045611B1 (en) Fur-like synthetic material and process of manufacturing the same
US4756941A (en) Method and materials for manufacture of anti-static carpet and backing
US2908064A (en) Non-woven filamentary products and process
IE38453L (en) Manufacture of flocked products
US3024518A (en) Methods of making pile fabrics
US3017847A (en) Tufted fabrics and methods of making same
US3705065A (en) Method of producing crushed high-loft,nonwoven material,including card and breaker frame blending
US3822162A (en) Process for manufacturing high-loft,nonwoven fabric
US3334006A (en) Bonded pile article and process for the production thereof
US3600259A (en) Heat fusible backing fabrics and laminated fabrics made therefrom
US4617218A (en) Tightly curled, cut pile, tufted carpet
US3492144A (en) Method of making flocked fabrics
US3554824A (en) Method of making a tufted fabric
US3533892A (en) Unwoven textile surface structure and method for its production
US2456922A (en) Fabric
KR970001077B1 (en) Fur-like pile fabric
US3431875A (en) Tufted articles and method for making same
US3422615A (en) Pile fabric