US3491133A - Metal organo phosphates and amine salts thereof - Google Patents
Metal organo phosphates and amine salts thereof Download PDFInfo
- Publication number
- US3491133A US3491133A US659246A US3491133DA US3491133A US 3491133 A US3491133 A US 3491133A US 659246 A US659246 A US 659246A US 3491133D A US3491133D A US 3491133DA US 3491133 A US3491133 A US 3491133A
- Authority
- US
- United States
- Prior art keywords
- orthophosphate
- mono
- hydrocarbyl
- metal
- amine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M1/00—Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants
- C10M1/08—Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants with additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/26—Organic compounds containing phosphorus
- C10L1/2633—Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond)
- C10L1/2641—Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond) oxygen bonds only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/26—Organic compounds containing phosphorus
- C10L1/2633—Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond)
- C10L1/2658—Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond) amine salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/30—Organic compounds compounds not mentioned before (complexes)
- C10L1/301—Organic compounds compounds not mentioned before (complexes) derived from metals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/108—Residual fractions, e.g. bright stocks
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/043—Ammonium or amine salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/02—Groups 1 or 11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/08—Groups 4 or 14
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/12—Groups 6 or 16
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/14—Group 7
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/16—Groups 8, 9, or 10
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/12—Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
Definitions
- each of R, R and R" is a hydrocarbyl group having from 1 to 30 carbon atoms
- M is a metal selected from the group consisting of manganese and the metals of Groups I-B, II, IV-A, VI and VIII of the Periodic Table
- I1 is an integer from 1 to 4
- n is an integer from 0* to 3 and the total of n and n is equal to the valence of the metal M.
- the metal acid hydrocarbyl orthophosphates and their amine salts are beneficial as additives to gasoline for imparting carburetor and intake system detergency, inhibition of rust and carburetor icing, reduction in octane number requirement, and resistance to surface ignition.
- the aforesaid compounds are good anti-wear agents for use in lubricants and fuels.
- This invention relates to novel metal organo orthophosphates, novel amine salts of such orthophosphates and to hydrocarbon compositions containingthe amine salts.
- novel metal organo orthophosphates are certain metal (acid hydrocarbyl orthophosphates).
- Normally liquid hydrocarbon products such as fuels and lubricating oils contain additives for improving their performance characteristics.
- gasoline additives are employed for improving various performance characteristics such as to assist in maintaining cleanliness of the carburetor, to resist surface ignition, and to inhibit rust and carburetor icing.
- Lubricating compositions contain various additives such as those for improving viscosity index and lubricity. The additives vary in effectiveness and it is often necessary to use a number of additives in a single composition.
- novel amine salts of this invention are amine neutralization products of acid hydrocarbyl orthophosphates of. a metal selected from the group consisting of manganese and the metals of Groups I-B, II, IV-A, VI and VIII ofthe Periodic Table.
- a suitable Periodic Table is shown on page 336 of the Handbook ofChemistry and Physics, thirty-first edition (1949).
- the metal (acid hydrocarbyl orthohosphate) intermediates of this invention can be represented by the formula:
- M is a metal selected from the group consisting of manganese and the metals of Groups I-B, II, IV-A, VI and VIII; n is an integer from 1 to 4; n is an integer from 0 to 3; the total of n and n is equal to the valence of the metal M; and each of R, R and R" is a hydrocarbyl group such as one having from 1 to about 30 carbon atoms.
- the metal as represented by M in the above generic Formula I can be any metal selected from the group consisting of manganese and the metals of Groups IB, II, IV-A, VI and VIII.
- the novel'metal (acid hydrocarbyl orthophosphates) of Formula I and their corresponding amine salts are sometimes referred to herein collectively as additives.
- the amine salts are also referred to herein as ammonium derivatives or amine adducts additives, can have 1, 2, 3 or 4 acid groups (OH) per metal atom. Also, the total number of carbons can vary from about 4 to over 100, and preferably from about 4 to about 60 carbon atoms.
- R, R and R" may represent identical or different hydrocarbyl groups. While any hydrocarbyl groups having between 1 and about 30 carbon atoms and soluble to the required extent in gasoline may be used, at least one of R, R and R preferably represents a branched chain hydrocarbyl group. Branched chain alkyl groups are especially suitable. Such groups are generally more soluble in gasoline than other hydrocarbyl groups, thereby facilitating the use of the novel compounds of the present invention as gasoline additives. Since chains of more than about 30 carbon atoms are generally difiicult or impossible to dissolve in gasoline compositions, it is preferred that the hydrocarbyl groups of the additives of the present invention each have between 1 and about 30 carbon atoms.
- Typical R, R and R" groups may include, for instance, alkyl, aryl, alkylaryl, arylalkyl or alicyclic hydrocarbyl radicals.
- suitable hydrocarbyl radicals are: ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, isopentyl, hexyl, isohexyl, 2,2,4-trimethylpentyl, Z-methylpentyl, 2,2-dimethyylbutyl, 2,3-dimethylbutyl, heptyl, 2-methylhexyl, 3-methylhexyl, 3,3-dirnethylpentyl, octyl, 2,3-dimethylhexyl, 2,4- dimethylhexyl, Z-ethylhexyl, 2-ethylbutyl, nonyl, decyl, undecyl, dodec
- the intermediate compounds of Formula I i.e. the metal (acid hydrocarbyl orthophosphates) prior to mentralization of an acid group with an amine can be prepared by reacting a hydrocarbyl diacid orthophosphate which can be represented by the formula POR(OR) (OH) wherein R represents a hydrocarbyl group as in Formula I, or a mixture of a hydrocarbyl diacid orthophosphate and a di(hydrocarbyl) mono acid orthophosphate with a halide of the desired metal dispersed or dissolved in an inert organic solvent.
- the di(hydrocarbyl) mono acid orthophosphate can be represented by the formula PO(OR) (OH).
- the intermediates of this invention can also be prepared by reacting a hydroxy compound, e.g. alkanol, alkenol or phenol with a metal halide of the desired metal and phosphorus pentoxide.
- a hydroxy compound e.g. alkanol, alkenol or phenol
- a metal halide of the desired metal and phosphorus pentoxide e.g. aluminum halide
- identity of the hydrocarbyl groups present in the compounds represented by Formula I is determined by the identity of the hydrocarbyl groups present in the hydrocarbyl and phosphates or hydroxy compounds used as reactants.
- the reaction temperatures are preferably from about 10 C. to about 120 C. and particularly from about- 75 C. to about 90 C.
- About 2 or about moles of the orthophosphate are usually reacted with each mole of the halide depending on the valence of the metal.
- the molar ratio of the reactants can vary over a wide range, e.g. in reacting the tetrahalides with a diacid mono (hydrocarbyl) orthophosphate Or a mixture of the diacid and monoacicl reactants about 3 to about 5 moles of the orthophosphate can be employed per mole of the tetrahalide.
- the inert solvent is preferably a hydrocarbon such as an aliphatic or aromatic hydrocarbon, e.g.
- the inert organic solvent need not be hydrocarbon, but instead any inert organic solvent such as an ether or halogenated hydrocarbon, e.g. ethyl ether, tetrahydrofuran, carbon tetrachloride, chlorobenzene, etc. can be employed.
- an ether or halogenated hydrocarbon e.g. ethyl ether, tetrahydrofuran, carbon tetrachloride, chlorobenzene, etc.
- the phosphate reactant is a mixture containing both one and two acid groups per molecule
- at least by weight and preferably at least 40% by weight of the mixture of orthophosphates be that of diacid mono (hydrocarbyl) orthophosphate since the monoacid dihydrocarbyl orthophosphates when reacted with the metal halides give compounds without a free acid group and therefore cannot be neutralized with an amine.
- the reaction of a diacid mono(hydrocarbyl) orthophosphate with nickel dichloride to prepare a nickel di[monoacid mono (hydrocarbyl) orthophosphate] can be shown by the equation:
- R is hydrocarbon having from 1 to about 30 carbon atoms.
- reaction mixture often contains minor quantities of additional compounds not all of which have been entirely identified, including compounds wherein both acid groups of one or more of the diacid monohydrocarbyl orthophosphates become bound directly to the metal such as those of the following formula wherein one of the phosphate groups is bound to a tetravalent metal through two oxygen groups:
- nonuomoro-h M/ romn wherein M is a metal as hereinbefore described and each -R is hydrocarbyl having 1 to about 30 carbon atoms.
- the mixture of compounds produced in the reaction can be neutralized with an amine without separation of the individual metal compounds or complexes and can be employed as additives to hydrocarbon fuels, e.g. gasoline, or lubricants. Also, it is not necessary, although generally desirable, to separate the metal compounds produced in the reaction or their amine salts from the solvent prior to use.
- the amine, employed in preparing the amine additives of this invention can be any salt forming organic amine such as one having from 1 to about 30 carbon atoms.
- the amine can be primary, secondary or tertiary, aliphatic, aromatic or alicyclic.
- the cyclic amines can be carbocyclic or heterocyclic.
- the amine can be a mono-, di-, tri-, or other polyamine.
- the aliphatic amines as Well as the aromatic and alicyclic amines can be those of hydrocarbons or hydrocarbons carrying various substituents such as hydroxyl groups.
- R is hydrocarbon, each R and R is hydrogen or hydrocarbon, n is an integer from 2 to about 10 and the total number of carbon atoms in each amine is from 1 to about 30.
- R is aliphatic hydrocarbyl and each R and R is hydrogen or aliphatic hydocarbyl.
- the aliphatic hydrocarbyl is preferably alkyl or alkenyl and particularly one having from 6 to about 24 carbon atoms.
- Suitable amines for neutralizing the metal there can be mentioned: methylamine, ethylamine, diethylamine, propylamine, tripropylamine, isopropylamine, butylamine, isobutylamine, hexylamine, 2-ethylhexylamine, octylamine, dodecylamine, Z-propyldecylamine, pentadecylamine, tetradecylamine, octadecylamine, o-butyloctadecylamine, eicosamine, 6,6-dimethyl-8-propyldecylamine, 8-hexyl-10- isobutyloctadecylamine, dioctylamine, tribenzylamine, hexadecylamine, decylamine, N-hexyloctylamine, N,N-d
- the amines can also contain various substituents on the hydrocarbon portion such as hydroxyl groups, e.g. alkanol amines, such as diethanolamine, 3,3-hydroxydipropanolamine, isopropanolamine, and the like.
- hydroxyl groups e.g. alkanol amines, such as diethanolamine, 3,3-hydroxydipropanolamine, isopropanolamine, and the like.
- the hydrocarbyl radicals attached to the phosphates can be aliphatic, aromatic or cycloaliphatic, e.g. alkyl, alkenyl, aryl, aralykl, alkaryl, etc.
- the aliphatic group can be saturated or unsaturated, e.g. containing mono-, di-, or polyolefinic unsaturation.
- the hydrocarbon groups as represented by R, R and R" in Formula I can also contain various substituents such as halogen groups.
- diacid mono (hydrocarbyl) phosphates and monoacid di(hydrocarbyl) orthophosphate reactants there can be mentioned: diacid mono(octyl) orthophosphate, diacid mono(lauryl) orthophosphate, monoacid ethyl amyl orthophosphate, monoacid tertiary butyl isoamyl orthophosphate, di(Z-ethylhexyl) monoacid orthophosphate, diacid mono(2-ethylhexyl) orthophosphate, diacid mono(n-octyl) orthophosphate, diacid mono(isooctyl) orthophosphate, monoacid isoamyl isooctyl orthophosphate, diacid mono(nonyl) orthophosphate, monoacid di(nonyl) orthophosphate, monoacid methyl nonyl orthophosphate, diacid mono(cetyl) orthophosphate, diacid mono(octy
- unsaturated aliphatic orthophosphates there can be mentioned: diacid mono(oleyl) orthophosphate, mono acid di(oleyl) orthophosphate, monoacid di(linoleyl) orthophosphate, monoacid oleyl lauryl orthophosphate, diacid mono(linoleyl) orthophosphate, monoacid ethyl linoleyl orthophosphate, diacid mono (4-heptenyl) orthophosphate, diacid mono(6-decenyl) orthophosphate, and the like.
- phosphate reactants having an aryl group there can be mentioned those of phenyl, naphthyl and their substituted derivatives such as: monoacid di(benzyl) orthophosphate, diacid mono(benzyl) orthophosphate, monoacid ethyl benzyl orthophosphate, monoacid octyl phenyl orthophosphate, diacid mono(phenyl) orthophosphate, monoacid lauryl phenyl orthophosphate, monoacid di(naphthyl) orthophosphate, diacid mono (naphthyl) orthophosphate, diacid mono(cresyl) orthophosphate, monoacid di(cresyl) orthophosphate, diacid mono (xylyl) orthophosphate, diacid mono(2- ethylphenyl) orthophosphate, and the like.
- phosphate reactants having a cycloaliphatic group there can be mentioned: monoacid di(cycloheptyl) orthophosphate, diacid mono(cycloheptyl) orthophosphate, monoacid di(ethylcycloheptyl) orthophosphate, diacid monoQcyclopentyl) orthophosphate, and the like.
- the amine salts can be prepared by simply neutralizing the free acid group or groups of the metal (acid hydrocarbyl orthophosphates). Formation of the adduct can take place at room temperature although somewhat elevated temperatures such as that of about 100 F. is preferred. Preferably each of the acid groups of the orthophosphate is neutralized with basic nitrogen of the amine reactant, although this is not necessary. Neutralization can be accomplished by simply adding the amine to raise the pH from less than about 5, of the unneutralized compounds up to a pH of at least 6 or 7. Also, the neutralization can be accomplished by adding a stoichiometric quantity of the amine to the particular metal (acid hydrocarbyl orthophosphate). Illustratively in the case of using a monoamine such as oleyl amine and neutralizing all the acid groups the amine adducts of this invention can be represented by the formula:
- M is a metal selected from the group consisting of manganese and the metals of Groups I-B, H, IV-A, VI and VIII; each of R, R and R" is a hydrocarbyl having from 1 to about 30 carbon atoms; A is an amine; n is an integer from 1 to 4; n is an integer from to 3 and the total of n and n is equal to the valence of the metal M.
- novel amine salts of this invention are useful as additives in liquid hydrocarbon'compositions since they serve as lubricant additives, anti-corrosion additives, antiicing additives, detergents, anti-stall additives, and reduce octane requirement increase of gasoline.
- the hydrocarbyl portions of the orthophosphate have at least 6 carbon atoms, such as 6 to 22 carbon atoms and particularly wherein at least one hydrocarbyl group is branched, e.g., 2-ethylhexyl or 4-octylphenyl.
- the amine have at least 6 carbon atoms such as 6 to 24 carbon atoms, and particularly that the amine be that of an alkyl or alkenyl group which can be a monoor diamine.
- the quantity of the novel amine salts in various compositions can vary over a Wide range depending on the particular base stock to which they are added and their intended purpose. Thus, they can vary from about 10 parts per million by weight of the composition to over 10% by weight of the composition.
- the hydrocarbon compositions can be prepared by simply dissolving the amine salts in the hydrocarbon.
- the novel metal (acid hydrocarbyl orthophosphates) and their amine salts are especially useful as gasoline additives to impart their above described properties.
- the gasoline composition can be either leaded or unleaded. Leaded gasoline is preferred.
- a gasoline composition is provided which comprises a major portion (at least about volume percent) of leaded hydrocarbon base fuel boiling in the gasoline range and containing between about 10 to about 500 parts per million (p.p.m.) by weight, of the novel amine salts, preferably from about 20 to about 250 p.p.m.
- the novel additives can be added to other hydrocarbon fuels in minor quantities such as in diesel oil to impart antirust activity, etc. to the composition.
- gasoline hydrocarbon base fuel boiling in the gasoline range and similar terms is meant a petroleum fraction boiling in the gasoline boiling range (e.g. between about 50 F. and about 450 F.).
- leaded gasoline refers to gasoline to which there has been added a small amount, such as between 0.1 and about 6.0 ml. per gallon of a metalloorganic antiknock compound such as tetraethyl lead (TEL), tetramethyl lead (TML) tetraisopropyl, etc.
- TEL tetraethyl lead
- TTL tetramethyl lead
- gasoline compositions of this invention can include, for instance, light hydrocarbon lubricating oils having viscosities at 100 F. of between about 50 and about 200 Saybolt Universal Seconds (SUS) and viscosity indexes of between about 30 and about 120. Such oils may be present in suitable amounts such as between about 0.1 and about 1.0 percent by weight of the gasoline composition.
- SUS Saybolt Universal Seconds
- the novel additives When employed in lubricating compositions such as lubricating oils, the novel additives improve the boundary lubrication properties of the composition. Thus, lubricants containing the novel additives of this invention inhibit stick-slip sliding tendencies such as that which is often found in automatic transmission clutching surfaces.
- the amount of additive can vary over a wide range such as that of from 0.01% to about 10%, by weight, of the composition and preferably from about 0.1% to about 3%, by weight, of the composition.
- a wide variety of both mineral oil and synthetic base stocks including mixtures of the same, can be used.
- Suitable mineral oil base materials include and 200 neutral oils, light and heavy intermediate mineral oils, bright stock as well as combinations of the foregoingv If a synthetic base material is used, it can be that of diesters, polyesters, silicones, silicates, fluorocarbons, phosphates and the like.
- amine salts and the corresponding metal (acid hydrocarbyl orthophosphates) from which these salts are derived by neutralization of acid groups nickel mono [di (2-ethylhexyl) orthophosphate] mono [mono (cocoammonium) mono (2-ethylheXyl) orthophosphate], germanium tetra [mono (laurylarnmonium) mono (2 ethylhexyl) orthophosphate],
- manganese di [mono (laurylammonium) mono (2-ethylhexyl) orthophosphate] beryllium di [mono (propylammonium) mono l-octylphenyl) orthophosphate], amine adduct of N-oleyl-1,3-propylene diamine and zinc bis [Z-ethylhexyl, dibutynyl orthophosphate] bis [monoacid mono (Z-ethylhexyl) orthophosphate], amine adduct of hexamethylenediamine and chromium tri [monoacid mono (8-phenyloctyl) orthophosphate], amine adduct of ethylenediamine and stannic bis [isobutyl, octylphenyl orthophosphate] bis [monoacid mono (isobutyl) orthophosphate] iron III mono (laurylammonium) mono (2- ethylhexyl) orthophosphat
- Germanium (IV) bis [di (2-ethylhexyl) orthophosphate] bis [mono (2-ethylhexyl) monoacid orthophosphate] is obtained from the reaction of 2 moles phosphorus pentoxide and one mole of germanium tetrachloride with 6 moles of Z-ethyl-l-hexanol as shown below:
- the solution is homogeneous.
- the reactants are then heated at 98-103 C., and when evolution of hydrogen chloride moderates, dry air is passed through the solution to displace the acid gas more rapidly and to accelerate the reaction.
- the n-heptane and any unreacted octanol are removed by distillation in vacuo.
- the final temperature of the residual product in the reaction vessel is 175 at 25 mm. A product is obtained which is 99% of theory based on the metal halide.
- Example 2 In the manner described in Example 1, 142 g. (1 mole) of P 0 and g. (1 mole) of anhydrous nickel chloride are dispersed uniformly in 1500 ml. of dry octane. Four hundred and thirty grams (3.3 moles) of 2,2,4-trimethyl-l-pentanol is added. The reaction mixture is heated at 105 until evolution of HCl stops. The solvent is removed by distillation in vacuo, the final temperature being 170 at 25 mm. pressure. The product is, nickel (II) [di(2,2,4 trimethyl 1 pentyl)orthophosphate], [monoacid mono (2,2,4 trimethyl 1-pentyl)orthophosphate].
- Example 3 Phosphorus pentoxide 71.0 g. (0.5 mole) and 65.1 g. (0.25 mole) of stannic chloride are dispersed in 500 m]. of toluene.
- a blend consisting of 103 g. (0.5 mole) of octyl phenol and 74.1 g. (1 mole) of isobutanol, is added to the toluene dispersion in the manner described in Example 1.
- evolution of hydrogen chloride is completed upon heating the reaction solution at 100 C., the solvent is removed by distillation at reduced pressure.
- the product can be represented by the following formula:
- R groups are isobutyl (CH CH (CH CH and the two remaining R groups are octylphenyl 3 a z 3 2 s 5] in accordance with the stoichiometrical amounts required and used in the reaction.
- Example 4 To a well stirred and dispersed mixture of 14.2 g. (0.1 mole) of P 0 and 37.2 g. (0.1 mole) of dibenzyltin dichloride in 200 ml. of anhydrous n-heptane, there is added 18 g. (0.3 mole) of anhydrous isopropanol. When no more HCl is liberated at 98 C. the solvent is removed by distillation at reduced pressure, the final temperature being C. The product is dibenzyltin bis [mimoacid mono(isopropyl) orthophosphate] of the formu a:
- Example 9 Following the procedure of Example 1, the corresponding phenyl, 'benzyl, and cyclohexyl metal organo orthophosphates can be prepared by simply substituting the stoichiometric equivalent quantity of phenol, benzyl alcohol and cyclohexanol respectively for the 2-ethylhexanol employed in Example 1.
- Example 6 Mono (2-ethylhexyl) diacid orthophosphate 84.0 gm. is dissolved in 200 ml. of toluene and added to 19 gm. of SnCL; dissolved in 150 ml. of toluene. The mixture is heated under reflux with nitrogen bubbling therethrough for four hours. The product in the reaction mixture is stannic tetra[mono (2-ethylhexy1)monoacid orthophosphate]. A portion of the reaction mixture containing 8.8 gm. of the product can be neutralized with 2.5 gm. of oleyl amine to produce stannic tetra[mono(oleylammonium) mono (2-ethylhexyl) phosphate].
- amine salts can be prepared by simply substituting the stoichiometric equivalent quantity of isopropylamine, aniline, n-methyl cyclohexylamine, isopropanolamine, 6-hydroxyhexylamine, or 12-hydroxydodecylamine.
- gasoline compositions of the present invention are illustrative of gasoline compositions of the present invention: It should be understood that any of the other novel additive compounds contemplated by the invention, such as those described above, may be used in such gasoline compositions in place of or in addition to the additives specified below.
- Example 8 A gasoline composition affording rust inhibition, a reduction in octane requirement increase, protection against carburetor deposit buildup, suppression of surface ignition, and inhibition of carburetor icing can be prepared by dissolving germanium tetra [mono(oleylammonium) mono (2-ethylhexyl) orthophosphate] in base gasoline wherein the amine adduct is employed in a concentration of one pound for each 3,000 gallons of the composition.
- the base gasoline used in blending this and other gasoline compositions of the invention may be a gasoline having Another suitable composition is that of a suitable base gasoline containing 0.1 ml. per gallon of TML and 100 ppm. by weight of nickel di[mono(laurylammonium) mono (2-ethylhexyl) orthophosphate].
- Example 10 Another suitable composition can be prepared by dissolving two pounds of stannic bis[Z-ethylhexyl, octylphenyl orthophosphate] bis [mono(oleylammonium) mono (2-ethylhexyl) orthophosphate] in 3,000 gallons of gasoline containing 3 ml. of TEL per gallon.
- Example 11 A suitable lubricating oil composition can be prepared by dissolving one pound of tin di[di(2-ethylhexyl orthophosphate] di [mono(oleylammonium) mono (2-ethylhexyl) orthophosphate] in 12 gallons 200 neutral oil.
- Example 12 A suitable lubricating oil composition can be prepared by dissolving one pound of molybdenum tri[mono (laurylammonium) mono (2-ethylhexyl) orthophosphate] in 15 gallons of a mineral lubricating oil.
- Example 13 Another suitable gasoline composition contains 5 ml. of TEL per gallon and 500 ppm. by weight of m0lybdenum bis[di (2-ethylhexyl) orthophosphate] mono [mono (oleylammoni-um) mono (2-ethylhexyl) orthophosphate].
- Example 14 Another suitable composition in base gasoline contains 1 ml. of TEL per gallon and 250 ppm. nickel mono [di(2 ethylhexyl) orthophosphate] mono [mono (cocoammonium) mono (Z-ethylhexyl) orthophosphate].
- An amine salt of a metal (acid hydrocarbyl orthophosphate) said amine being selected from the group consisting of hydrocarbyl amines and hydroxy hydrocarbyl amines having from 1 to about 30 carbon atoms, said acid hydrocarbyl orthophosphate containing hydrocarbyl groups having from 1 to about 30 carbon atoms, and wherein the metal is selected from the groups consisting of manganese and the metals of Groups I-B, II, IV-A, VI, and VIII of the Periodic Table.
- amine being selected from the group consisting of hydrocarbyl amines and hydroxy hydrocarbyl amines and having from 1 to about 30 carbon atoms and wherein each of R, R and R" is a hydrocarbyl group having from 1 to about 30 carbon atoms, M is a metal selected from the group consisting of manganese, and the metals of 1 1 Groups I-B, II, IVA, VI and VIII of the Periodic Table, n is an integer from 1 to 4, n is an integer from O to 3 and the total of n and n is equal to the valence of the metal M.
- a salt of claim 8 wherein the amine is aliphatic hydrocarbyl amine having from about 6 to about 24 carbon atoms.
- a salt of claim 13 wherein the amine is an alkenylamine and at least one of R, R and R is a branched chain alkyl hydrocarbyl group.
- a salt of claim 13 wherein the amine is a diamine and at least one of R, R and R is a branched chain alkyl hydrocarbyl group.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Lubricants (AREA)
Description
United States Patent lgsilgligeg and this application May 23, 1967, Ser. No.
Int. Cl. C071 1/00, 3/00, 13/00 US. Cl. 260-429 15 Claims ABSTRACT OF THE DISCLOSURE An acid hydrocarbyl orthophosphate and the amine neutralization salts thereof havingthe formula:
where each of R, R and R" is a hydrocarbyl group having from 1 to 30 carbon atoms, M is a metal selected from the group consisting of manganese and the metals of Groups I-B, II, IV-A, VI and VIII of the Periodic Table, I1 is an integer from 1 to 4, n is an integer from 0* to 3 and the total of n and n is equal to the valence of the metal M. The metal acid hydrocarbyl orthophosphates and their amine salts are beneficial as additives to gasoline for imparting carburetor and intake system detergency, inhibition of rust and carburetor icing, reduction in octane number requirement, and resistance to surface ignition. Also, the aforesaid compounds are good anti-wear agents for use in lubricants and fuels.
This application is a division of application Ser. No. 419,569, filed Dec. 18, 1964, now Patent No. 3,334,978, issued Aug. 8, 1967, which is in turn a continuation-inpart of my copending application Ser. No. 350,113 filed Mar. 6, 1964 now Patent No. 3,401,184, issued Sept. 10, 1968 for process.
BACKGROUND OF THE INVENTION This invention relates to novel metal organo orthophosphates, novel amine salts of such orthophosphates and to hydrocarbon compositions containingthe amine salts. The novel metal organo orthophosphates are certain metal (acid hydrocarbyl orthophosphates).
Normally liquid hydrocarbon products such as fuels and lubricating oils contain additives for improving their performance characteristics. Thus, gasoline additives are employed for improving various performance characteristics such as to assist in maintaining cleanliness of the carburetor, to resist surface ignition, and to inhibit rust and carburetor icing. Lubricating compositions contain various additives such as those for improving viscosity index and lubricity. The additives vary in effectiveness and it is often necessary to use a number of additives in a single composition.
It has now been found that certain metal (acid hydrocarbyl orthophosphates) and their amine salts are beneficial in imparting carburetor and intake system detergency, inhibition of rust, and inhibition of carburetor icing, reduction in octane requirement increase, and resistance to surface ignition of gasoline. Also, these compounds are good anti-wear agents for use in lubricants and fuels.
SUMMARY OF THE INVENTION The novel amine salts of this invention are amine neutralization products of acid hydrocarbyl orthophosphates of. a metal selected from the group consisting of manganese and the metals of Groups I-B, II, IV-A, VI and VIII ofthe Periodic Table. A suitable Periodic Table is shown on page 336 of the Handbook ofChemistry and Physics, thirty-first edition (1949).
DESCRIPTION OF THE PREFERRED EMBODIMENTS The metal (acid hydrocarbyl orthohosphate) intermediates of this invention can be represented by the formula:
wherein M is a metal selected from the group consisting of manganese and the metals of Groups I-B, II, IV-A, VI and VIII; n is an integer from 1 to 4; n is an integer from 0 to 3; the total of n and n is equal to the valence of the metal M; and each of R, R and R" is a hydrocarbyl group such as one having from 1 to about 30 carbon atoms.
The metal as represented by M in the above generic Formula I can be any metal selected from the group consisting of manganese and the metals of Groups IB, II, IV-A, VI and VIII. The novel'metal (acid hydrocarbyl orthophosphates) of Formula I and their corresponding amine salts are sometimes referred to herein collectively as additives. The amine salts are also referred to herein as ammonium derivatives or amine adducts additives, can have 1, 2, 3 or 4 acid groups (OH) per metal atom. Also, the total number of carbons can vary from about 4 to over 100, and preferably from about 4 to about 60 carbon atoms.
In Formula I above, R, R and R" may represent identical or different hydrocarbyl groups. While any hydrocarbyl groups having between 1 and about 30 carbon atoms and soluble to the required extent in gasoline may be used, at least one of R, R and R preferably represents a branched chain hydrocarbyl group. Branched chain alkyl groups are especially suitable. Such groups are generally more soluble in gasoline than other hydrocarbyl groups, thereby facilitating the use of the novel compounds of the present invention as gasoline additives. Since chains of more than about 30 carbon atoms are generally difiicult or impossible to dissolve in gasoline compositions, it is preferred that the hydrocarbyl groups of the additives of the present invention each have between 1 and about 30 carbon atoms. Typical R, R and R" groups may include, for instance, alkyl, aryl, alkylaryl, arylalkyl or alicyclic hydrocarbyl radicals. Examples of suitable hydrocarbyl radicals are: ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, isopentyl, hexyl, isohexyl, 2,2,4-trimethylpentyl, Z-methylpentyl, 2,2-dimethyylbutyl, 2,3-dimethylbutyl, heptyl, 2-methylhexyl, 3-methylhexyl, 3,3-dirnethylpentyl, octyl, 2,3-dimethylhexyl, 2,4- dimethylhexyl, Z-ethylhexyl, 2-ethylbutyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonyldecyl, eicosyl, hencosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, triacontyl, phenyl, -naphthyl, benzyl, o-cresyl, p-cresyl, m-cresyl, dodecylphenyl, octylphenyl, ethylphenyl and diphenyl, pentadecyl, b-phenylethyl, omega phenylhexyl, cyclohexyl, cyclobutyl, cyclodecyl, cyclopentyl, etc. Corresponding unsaturated radicals may also be used.
Formula I The intermediate compounds of Formula I, i.e. the metal (acid hydrocarbyl orthophosphates) prior to mentralization of an acid group with an amine can be prepared by reacting a hydrocarbyl diacid orthophosphate which can be represented by the formula POR(OR) (OH) wherein R represents a hydrocarbyl group as in Formula I, or a mixture of a hydrocarbyl diacid orthophosphate and a di(hydrocarbyl) mono acid orthophosphate with a halide of the desired metal dispersed or dissolved in an inert organic solvent. The di(hydrocarbyl) mono acid orthophosphate can be represented by the formula PO(OR) (OH). The intermediates of this invention can also be prepared by reacting a hydroxy compound, e.g. alkanol, alkenol or phenol with a metal halide of the desired metal and phosphorus pentoxide. This process permits direct synthesis of the intermediates from raw starting materials as described in my abovementioned copending application Ser. No. 350,113. In either method of preparation, identity of the hydrocarbyl groups present in the compounds represented by Formula I is determined by the identity of the hydrocarbyl groups present in the hydrocarbyl and phosphates or hydroxy compounds used as reactants.
The reaction temperatures are preferably from about 10 C. to about 120 C. and particularly from about- 75 C. to about 90 C. About 2 or about moles of the orthophosphate are usually reacted with each mole of the halide depending on the valence of the metal. However, the molar ratio of the reactants can vary over a wide range, e.g. in reacting the tetrahalides with a diacid mono (hydrocarbyl) orthophosphate Or a mixture of the diacid and monoacicl reactants about 3 to about 5 moles of the orthophosphate can be employed per mole of the tetrahalide. The inert solvent is preferably a hydrocarbon such as an aliphatic or aromatic hydrocarbon, e.g. benzene, toluene, heptane, octane, hexane, etc. However, the inert organic solvent need not be hydrocarbon, but instead any inert organic solvent such as an ether or halogenated hydrocarbon, e.g. ethyl ether, tetrahydrofuran, carbon tetrachloride, chlorobenzene, etc. can be employed.
In the above reaction wherein the phosphate reactant is a mixture containing both one and two acid groups per molecule, it is preferred that at least by weight and preferably at least 40% by weight of the mixture of orthophosphates be that of diacid mono (hydrocarbyl) orthophosphate since the monoacid dihydrocarbyl orthophosphates when reacted with the metal halides give compounds without a free acid group and therefore cannot be neutralized with an amine. Illustratively, the reaction of a diacid mono(hydrocarbyl) orthophosphate with nickel dichloride to prepare a nickel di[monoacid mono (hydrocarbyl) orthophosphate] can be shown by the equation:
wherein R is hydrocarbon having from 1 to about 30 carbon atoms.
Use of a mixture of a diacid mono (hydrocarbyl) orthophosphate and mono acid di(hydrocarbyl) orthophosphate reactants with the metal reactants produces a mixture of products wherein some of the phosphate groups do not have four free hydroxyl groups but instead have less than four acid groups including a portion of the reaction product having no acid groups. e.g. a titanium tetra [di(hydrocarbyl) orthophosphate].
In addition to the compounds as represented by Formula I herein and those without a free acid group as can be produced by using the dihydrocarbyl orthophosphate reactant, the reaction mixture often contains minor quantities of additional compounds not all of which have been entirely identified, including compounds wherein both acid groups of one or more of the diacid monohydrocarbyl orthophosphates become bound directly to the metal such as those of the following formula wherein one of the phosphate groups is bound to a tetravalent metal through two oxygen groups:
nonuomoro-h M/ romn) wherein M is a metal as hereinbefore described and each -R is hydrocarbyl having 1 to about 30 carbon atoms. However, the mixture of compounds produced in the reaction can be neutralized with an amine without separation of the individual metal compounds or complexes and can be employed as additives to hydrocarbon fuels, e.g. gasoline, or lubricants. Also, it is not necessary, although generally desirable, to separate the metal compounds produced in the reaction or their amine salts from the solvent prior to use.
The amine, employed in preparing the amine additives of this invention can be any salt forming organic amine such as one having from 1 to about 30 carbon atoms. The amine can be primary, secondary or tertiary, aliphatic, aromatic or alicyclic. The cyclic amines can be carbocyclic or heterocyclic. The amine can be a mono-, di-, tri-, or other polyamine. The aliphatic amines as Well as the aromatic and alicyclic amines can be those of hydrocarbons or hydrocarbons carrying various substituents such as hydroxyl groups.
The following formulae illustrate various preferred amines which can be employed in accordance With this invention:
(a) R -N-P.
and
wherein R is hydrocarbon, each R and R is hydrogen or hydrocarbon, n is an integer from 2 to about 10 and the total number of carbon atoms in each amine is from 1 to about 30. Preferably R is aliphatic hydrocarbyl and each R and R is hydrogen or aliphatic hydocarbyl. The aliphatic hydrocarbyl is preferably alkyl or alkenyl and particularly one having from 6 to about 24 carbon atoms.
Illustrative of suitable amines for neutralizing the metal (acid hydrocarbyl orthophosphates) there can be mentioned: methylamine, ethylamine, diethylamine, propylamine, tripropylamine, isopropylamine, butylamine, isobutylamine, hexylamine, 2-ethylhexylamine, octylamine, dodecylamine, Z-propyldecylamine, pentadecylamine, tetradecylamine, octadecylamine, o-butyloctadecylamine, eicosamine, 6,6-dimethyl-8-propyldecylamine, 8-hexyl-10- isobutyloctadecylamine, dioctylamine, tribenzylamine, hexadecylamine, decylamine, N-hexyloctylamine, N,N-di methyldodecylamine, oleylamine, linoleylamine, 1,10-decamethylenediamine, ethylenediamine, 1,2 propylenediamine, 1,12-dodecamethylenediamine, tetramethylenediamine; 1,6-hexamethylenediamine, triethylenetetramine, 1,2-phenylenediamine, benzylamine, 3,3'-biphenyldiamine, 3-biphenylamine, l-naphthylamine, l-fiuorenamine, aniline, N-methylaniline, N,N-dimethylaniline, 1,3-phenylenediamine, Z-furanamine, piperazine, piperidine, furfuryla-mine, N-cyclohexylheptylamine, and the like. The amines can also contain various substituents on the hydrocarbon portion such as hydroxyl groups, e.g. alkanol amines, such as diethanolamine, 3,3-hydroxydipropanolamine, isopropanolamine, and the like.
The hydrocarbyl radicals attached to the phosphates can be aliphatic, aromatic or cycloaliphatic, e.g. alkyl, alkenyl, aryl, aralykl, alkaryl, etc. The aliphatic group can be saturated or unsaturated, e.g. containing mono-, di-, or polyolefinic unsaturation. The hydrocarbon groups as represented by R, R and R" in Formula I can also contain various substituents such as halogen groups.
Illustrative of the diacid mono (hydrocarbyl) phosphates and monoacid di(hydrocarbyl) orthophosphate reactants there can be mentioned: diacid mono(octyl) orthophosphate, diacid mono(lauryl) orthophosphate, monoacid ethyl amyl orthophosphate, monoacid tertiary butyl isoamyl orthophosphate, di(Z-ethylhexyl) monoacid orthophosphate, diacid mono(2-ethylhexyl) orthophosphate, diacid mono(n-octyl) orthophosphate, diacid mono(isooctyl) orthophosphate, monoacid isoamyl isooctyl orthophosphate, diacid mono(nonyl) orthophosphate, monoacid di(nonyl) orthophosphate, monoacid methyl nonyl orthophosphate, diacid mono(cetyl) orthophosphate, diacid mono(tetradecyl) orthophosphate, diacid mono(stearyl) orthophosphate, monoacid di(eicosyl) orthophosphate, and diacid mono (eicosyl) orthophosphate. Illustrative of unsaturated aliphatic orthophosphates there can be mentioned: diacid mono(oleyl) orthophosphate, mono acid di(oleyl) orthophosphate, monoacid di(linoleyl) orthophosphate, monoacid oleyl lauryl orthophosphate, diacid mono(linoleyl) orthophosphate, monoacid ethyl linoleyl orthophosphate, diacid mono (4-heptenyl) orthophosphate, diacid mono(6-decenyl) orthophosphate, and the like. Illustrative of the phosphate reactants having an aryl group there can be mentioned those of phenyl, naphthyl and their substituted derivatives such as: monoacid di(benzyl) orthophosphate, diacid mono(benzyl) orthophosphate, monoacid ethyl benzyl orthophosphate, monoacid octyl phenyl orthophosphate, diacid mono(phenyl) orthophosphate, monoacid lauryl phenyl orthophosphate, monoacid di(naphthyl) orthophosphate, diacid mono (naphthyl) orthophosphate, diacid mono(cresyl) orthophosphate, monoacid di(cresyl) orthophosphate, diacid mono (xylyl) orthophosphate, diacid mono(2- ethylphenyl) orthophosphate, and the like. Illustrative of phosphate reactants having a cycloaliphatic group there can be mentioned: monoacid di(cycloheptyl) orthophosphate, diacid mono(cycloheptyl) orthophosphate, monoacid di(ethylcycloheptyl) orthophosphate, diacid monoQcyclopentyl) orthophosphate, and the like.
The amine salts can be prepared by simply neutralizing the free acid group or groups of the metal (acid hydrocarbyl orthophosphates). Formation of the adduct can take place at room temperature although somewhat elevated temperatures such as that of about 100 F. is preferred. Preferably each of the acid groups of the orthophosphate is neutralized with basic nitrogen of the amine reactant, although this is not necessary. Neutralization can be accomplished by simply adding the amine to raise the pH from less than about 5, of the unneutralized compounds up to a pH of at least 6 or 7. Also, the neutralization can be accomplished by adding a stoichiometric quantity of the amine to the particular metal (acid hydrocarbyl orthophosphate). Illustratively in the case of using a monoamine such as oleyl amine and neutralizing all the acid groups the amine adducts of this invention can be represented by the formula:
wherein M is a metal selected from the group consisting of manganese and the metals of Groups I-B, H, IV-A, VI and VIII; each of R, R and R" is a hydrocarbyl having from 1 to about 30 carbon atoms; A is an amine; n is an integer from 1 to 4; n is an integer from to 3 and the total of n and n is equal to the valence of the metal M.
The novel amine salts of this invention are useful as additives in liquid hydrocarbon'compositions since they serve as lubricant additives, anti-corrosion additives, antiicing additives, detergents, anti-stall additives, and reduce octane requirement increase of gasoline. For such use it is preferred that the hydrocarbyl portions of the orthophosphate have at least 6 carbon atoms, such as 6 to 22 carbon atoms and particularly wherein at least one hydrocarbyl group is branched, e.g., 2-ethylhexyl or 4-octylphenyl. Also, for such use it is preferred that the amine have at least 6 carbon atoms such as 6 to 24 carbon atoms, and particularly that the amine be that of an alkyl or alkenyl group which can be a monoor diamine. The quantity of the novel amine salts in various compositions can vary over a Wide range depending on the particular base stock to which they are added and their intended purpose. Thus, they can vary from about 10 parts per million by weight of the composition to over 10% by weight of the composition. The hydrocarbon compositions can be prepared by simply dissolving the amine salts in the hydrocarbon.
The novel metal (acid hydrocarbyl orthophosphates) and their amine salts are especially useful as gasoline additives to impart their above described properties. The gasoline composition can be either leaded or unleaded. Leaded gasoline is preferred. Thus in accordance with a preferred embodimentof the invention a gasoline composition is provided which comprises a major portion (at least about volume percent) of leaded hydrocarbon base fuel boiling in the gasoline range and containing between about 10 to about 500 parts per million (p.p.m.) by weight, of the novel amine salts, preferably from about 20 to about 250 p.p.m. In addition to gasoline, the novel additives can be added to other hydrocarbon fuels in minor quantities such as in diesel oil to impart antirust activity, etc. to the composition. By the term gasoline, hydrocarbon base fuel boiling in the gasoline range and similar terms is meant a petroleum fraction boiling in the gasoline boiling range (e.g. between about 50 F. and about 450 F.). The term leaded gasoline refers to gasoline to which there has been added a small amount, such as between 0.1 and about 6.0 ml. per gallon of a metalloorganic antiknock compound such as tetraethyl lead (TEL), tetramethyl lead (TML) tetraisopropyl, etc.
In addition to the novel amine salts and optionally the lead antiknock compounds the gasoline compositions of this invention can include, for instance, light hydrocarbon lubricating oils having viscosities at 100 F. of between about 50 and about 200 Saybolt Universal Seconds (SUS) and viscosity indexes of between about 30 and about 120. Such oils may be present in suitable amounts such as between about 0.1 and about 1.0 percent by weight of the gasoline composition.
When employed in lubricating compositions such as lubricating oils, the novel additives improve the boundary lubrication properties of the composition. Thus, lubricants containing the novel additives of this invention inhibit stick-slip sliding tendencies such as that which is often found in automatic transmission clutching surfaces.
In preparing lubricant compositions with additives of ths invention it has been found that the amount of additive can vary over a wide range such as that of from 0.01% to about 10%, by weight, of the composition and preferably from about 0.1% to about 3%, by weight, of the composition. In preparing lubricant compositions a wide variety of both mineral oil and synthetic base stocks, including mixtures of the same, can be used. Suitable mineral oil base materials include and 200 neutral oils, light and heavy intermediate mineral oils, bright stock as well as combinations of the foregoingv If a synthetic base material is used, it can be that of diesters, polyesters, silicones, silicates, fluorocarbons, phosphates and the like.
Illustrative of novel additives of this invention, there can be mentioned the following amine salts and the corresponding metal (acid hydrocarbyl orthophosphates) from which these salts are derived by neutralization of acid groups: nickel mono [di (2-ethylhexyl) orthophosphate] mono [mono (cocoammonium) mono (2-ethylheXyl) orthophosphate], germanium tetra [mono (laurylarnmonium) mono (2 ethylhexyl) orthophosphate],
manganese di [mono (laurylammonium) mono (2-ethylhexyl) orthophosphate], beryllium di [mono (propylammonium) mono l-octylphenyl) orthophosphate], amine adduct of N-oleyl-1,3-propylene diamine and zinc bis [Z-ethylhexyl, dibutynyl orthophosphate] bis [monoacid mono (Z-ethylhexyl) orthophosphate], amine adduct of hexamethylenediamine and chromium tri [monoacid mono (8-phenyloctyl) orthophosphate], amine adduct of ethylenediamine and stannic bis [isobutyl, octylphenyl orthophosphate] bis [monoacid mono (isobutyl) orthophosphate] iron III mono (laurylammonium) mono (2- ethylhexyl) orthophosphate] bis [Z-ethylhexyl, octyl orthophosphate], molybdenum bis [di (2-ethylhexyl) orthophosphate] mono [mono (oleylammonium) mono (Z-ethylhexyl) orthophosphate], magnesium mono [di (Z-ethylhexyl) orthophosphate] mono [mono (laurylammonium) mono (Z-ethylhexyl) orthophosphate], cadmium mono [di (2-ethylhexyl) orthophosphate], mono [mono (stearylammonium) mono (2-ethy1hexyl) orthophosphate], ruthenium di [mono (dioctylammonium) mono (4-octylphenyl) orthophosphate], [4-octylphenyl, methylethyl orthophosphate], osmium di [mono (oleylammonium) mono (Z-ethylhexyl) orthophosphate], nickel di [mono (oleylammonium) mono (oleyl) orthophosphate], tungsten hexa [mono (benzylammonium mono (eicosyl) orthophosphate], lead tetra [mono (benzylammonium) mono (2,4-dimethyl-4-ethylheptyl) orthophosphate], calcium di [mono (oleylammonium) mono (cycloheptyl) orthophosphate], gold (III) tri [mono (laurylammonium) mono (2-ethylhexyl) orthophosphate], cobalt (HI) tri (monooleylammonium) mono (Z-ethylhexyl) orthophosphate], the amine adduct of triethylenediamine and rhodium di [monoacid mono (cetyl) orthophosphate], uranum (IV) tri [mono decylammonium) mono (naphthyl) orthophosphate] mono- [di (naphthyl) orthophosphate], barium di [mono (oleylammonium) mono (benzyl) orthophosphate], nickel (II) [mono (palmitylammonium) mono (linoleyl) orthophosphate] mono [di (linoleyl) orthophosphate], piperazine adduct of copper di [monoacid mono (4-isopropyl phenyl) orthophosphate], the diethanolamine adduct of iridium di [monoacid mono (3,4-dipropyleicosyl) orthophosphate], the aniline adduct of radium di [monoacid mono (oleyl) orthophosphate], the 1,4-phenylenediarnine adduct of platinum mono [monoacid mono (3-isopropylcyclohexyl) orthophosphate] mono [di (3-isopropylcyclohexyl) orthophosphate].
The following examples are illustrative of the preparation of the additives of the present invention:
Example 1 Germanium (IV) bis [di (2-ethylhexyl) orthophosphate] bis [mono (2-ethylhexyl) monoacid orthophosphate] is obtained from the reaction of 2 moles phosphorus pentoxide and one mole of germanium tetrachloride with 6 moles of Z-ethyl-l-hexanol as shown below:
CHCH OH wherein R is Z-ethylhexyl.
To a suitable reaction'vessel equipped with a mechanical stirrer, stoppered pressure equalizing addition funnel, thermometer, gas inlet tube, and a reflux condenser protected with a drying tube, are added 400 ml. of anhydrous n-heptane and 71.0 g. (0.5 mole) or phosphorus pentoxide. With the stirrer going at a rate to insure a uniform dispersion 53.6 g. (0.25 mole) of germanium tetrachloride is added next. Finally 215 g. (165 moles) of Z-ethyll-hexanol, contained in the pressure equalizing addition funnel, is run into the reaction vessel at a rate such that the temperature of the reactants does not rise above 60 C. When this step is completed, the solution is homogeneous. The reactants are then heated at 98-103 C., and when evolution of hydrogen chloride moderates, dry air is passed through the solution to displace the acid gas more rapidly and to accelerate the reaction. When further evolution of hydrogen chloride is no longer observed, as revealed by Congo Red indicator, the n-heptane and any unreacted octanol are removed by distillation in vacuo. The final temperature of the residual product in the reaction vessel is 175 at 25 mm. A product is obtained which is 99% of theory based on the metal halide.
Example 2 In the manner described in Example 1, 142 g. (1 mole) of P 0 and g. (1 mole) of anhydrous nickel chloride are dispersed uniformly in 1500 ml. of dry octane. Four hundred and thirty grams (3.3 moles) of 2,2,4-trimethyl-l-pentanol is added. The reaction mixture is heated at 105 until evolution of HCl stops. The solvent is removed by distillation in vacuo, the final temperature being 170 at 25 mm. pressure. The product is, nickel (II) [di(2,2,4 trimethyl 1 pentyl)orthophosphate], [monoacid mono (2,2,4 trimethyl 1-pentyl)orthophosphate].
' Example 3 Phosphorus pentoxide 71.0 g. (0.5 mole) and 65.1 g. (0.25 mole) of stannic chloride are dispersed in 500 m]. of toluene. A blend, consisting of 103 g. (0.5 mole) of octyl phenol and 74.1 g. (1 mole) of isobutanol, is added to the toluene dispersion in the manner described in Example 1. When evolution of hydrogen chloride is completed upon heating the reaction solution at 100 C., the solvent is removed by distillation at reduced pressure. The product can be represented by the following formula:
wherein four of the R groups are isobutyl (CH CH (CH CH and the two remaining R groups are octylphenyl 3 a z 3 2 s 5] in accordance with the stoichiometrical amounts required and used in the reaction.
1 Example 4 To a well stirred and dispersed mixture of 14.2 g. (0.1 mole) of P 0 and 37.2 g. (0.1 mole) of dibenzyltin dichloride in 200 ml. of anhydrous n-heptane, there is added 18 g. (0.3 mole) of anhydrous isopropanol. When no more HCl is liberated at 98 C. the solvent is removed by distillation at reduced pressure, the final temperature being C. The product is dibenzyltin bis [mimoacid mono(isopropyl) orthophosphate] of the formu a:
/Sn CsHsOHg O OH 9 Example Following the procedure of Example 1, the corresponding phenyl, 'benzyl, and cyclohexyl metal organo orthophosphates can be prepared by simply substituting the stoichiometric equivalent quantity of phenol, benzyl alcohol and cyclohexanol respectively for the 2-ethylhexanol employed in Example 1.
Example 6 Example 7 Mono (2-ethylhexyl) diacid orthophosphate 84.0 gm. is dissolved in 200 ml. of toluene and added to 19 gm. of SnCL; dissolved in 150 ml. of toluene. The mixture is heated under reflux with nitrogen bubbling therethrough for four hours. The product in the reaction mixture is stannic tetra[mono (2-ethylhexy1)monoacid orthophosphate]. A portion of the reaction mixture containing 8.8 gm. of the product can be neutralized with 2.5 gm. of oleyl amine to produce stannic tetra[mono(oleylammonium) mono (2-ethylhexyl) phosphate]. Following the above procedure the corresponding amine salts can be prepared by simply substituting the stoichiometric equivalent quantity of isopropylamine, aniline, n-methyl cyclohexylamine, isopropanolamine, 6-hydroxyhexylamine, or 12-hydroxydodecylamine.
The following examples are illustrative of gasoline compositions of the present invention: It should be understood that any of the other novel additive compounds contemplated by the invention, such as those described above, may be used in such gasoline compositions in place of or in addition to the additives specified below.
Example 8 A gasoline composition affording rust inhibition, a reduction in octane requirement increase, protection against carburetor deposit buildup, suppression of surface ignition, and inhibition of carburetor icing can be prepared by dissolving germanium tetra [mono(oleylammonium) mono (2-ethylhexyl) orthophosphate] in base gasoline wherein the amine adduct is employed in a concentration of one pound for each 3,000 gallons of the composition. The base gasoline used in blending this and other gasoline compositions of the invention may be a gasoline having Another suitable composition is that of a suitable base gasoline containing 0.1 ml. per gallon of TML and 100 ppm. by weight of nickel di[mono(laurylammonium) mono (2-ethylhexyl) orthophosphate].
Example 10 Another suitable composition can be prepared by dissolving two pounds of stannic bis[Z-ethylhexyl, octylphenyl orthophosphate] bis [mono(oleylammonium) mono (2-ethylhexyl) orthophosphate] in 3,000 gallons of gasoline containing 3 ml. of TEL per gallon.
Example 11 A suitable lubricating oil composition can be prepared by dissolving one pound of tin di[di(2-ethylhexyl orthophosphate] di [mono(oleylammonium) mono (2-ethylhexyl) orthophosphate] in 12 gallons 200 neutral oil.
Example 12 A suitable lubricating oil composition can be prepared by dissolving one pound of molybdenum tri[mono (laurylammonium) mono (2-ethylhexyl) orthophosphate] in 15 gallons of a mineral lubricating oil.
Example 13 Another suitable gasoline composition contains 5 ml. of TEL per gallon and 500 ppm. by weight of m0lybdenum bis[di (2-ethylhexyl) orthophosphate] mono [mono (oleylammoni-um) mono (2-ethylhexyl) orthophosphate].
Example 14 Another suitable composition in base gasoline contains 1 ml. of TEL per gallon and 250 ppm. nickel mono [di(2 ethylhexyl) orthophosphate] mono [mono (cocoammonium) mono (Z-ethylhexyl) orthophosphate].
I claim:
1. An acid hydrocarbyl orthophosphate of the formula:
/OR [(011) (OR) GPO-111M O P O \ORII wherein each of R, R and R is a hydrocarbyl group having from 1 to about 30 carbon atoms, M is a metal selected from the group consisting of manganese and the metals of Groups I-B, H, IV-A, VI and VIII of the Periodic Table, n is an integer from 1 to 4, n is an integer from 1 to 3 and the total of n and n is equal to the valence of the metal M.
2. An orthophosphate of claim 1, wherein at least one of R, R and R is a branched chain hydrocarbyl group.
3. An orthophosphate of claim 2 in which the metal is nickel.
4. An orthophosphate of claim 2 in which the metal is germanium.
5. An orthophosphate of claim 2 in which the metal is tin.
6. An orthophosphate of claim 2 in which each of R, R and R" is a branched chain hydrocarbyl group.
7. An amine salt of a metal (acid hydrocarbyl orthophosphate) said amine being selected from the group consisting of hydrocarbyl amines and hydroxy hydrocarbyl amines having from 1 to about 30 carbon atoms, said acid hydrocarbyl orthophosphate containing hydrocarbyl groups having from 1 to about 30 carbon atoms, and wherein the metal is selected from the groups consisting of manganese and the metals of Groups I-B, II, IV-A, VI, and VIII of the Periodic Table.
8. An amine salt of a compound of the formula:
said amine being selected from the group consisting of hydrocarbyl amines and hydroxy hydrocarbyl amines and having from 1 to about 30 carbon atoms and wherein each of R, R and R" is a hydrocarbyl group having from 1 to about 30 carbon atoms, M is a metal selected from the group consisting of manganese, and the metals of 1 1 Groups I-B, II, IVA, VI and VIII of the Periodic Table, n is an integer from 1 to 4, n is an integer from O to 3 and the total of n and n is equal to the valence of the metal M.
9. A salt of claim 8 in which the metal is nickel.
10. A salt of claim 8 in which the metal is tin.
11. A salt of claim 8 in which the metal is germanium.
12. A salt of claim 8 wherein the amine is aliphatic hydrocarbyl amine having from about 6 to about 24 carbon atoms.
13. A salt of claim 12 wherein at least one of R, R and R" is a branched chain of hydrocarbyl groups.
14. A salt of claim 13 wherein the amine is an alkenylamine and at least one of R, R and R is a branched chain alkyl hydrocarbyl group.
15. A salt of claim 13 wherein the amine is a diamine and at least one of R, R and R is a branched chain alkyl hydrocarbyl group.
References Cited UNITED STATES PATENTS 2,329,707 9/ 1943 Farrington et al 260429 2,346,155 4/1944 Denison et a1 25232 2,416,985 3/ 1947 Farrington et a1 260448 2,488,662 11/ 1949 Farrington et a1 260429 2,854,468 9/1958 Max 260461 2,992,894 7/1961 Hazen et a1. 23l47 3,294,775 12/ 1966 Wasserman 260100 DELBERT E. GANTZ, Primary Examiner A. P. DEMERS, Assistant Examiner US. Cl. X.R.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US350113A US3401184A (en) | 1964-03-06 | 1964-03-06 | Metal organo phosphate preparation process |
| US419569A US3334978A (en) | 1964-12-18 | 1964-12-18 | Hydrocarbon fuel composition |
| US65924667A | 1967-05-23 | 1967-05-23 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3491133A true US3491133A (en) | 1970-01-20 |
Family
ID=27407925
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US659246A Expired - Lifetime US3491133A (en) | 1964-03-06 | 1967-05-23 | Metal organo phosphates and amine salts thereof |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3491133A (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3678086A (en) * | 1970-03-27 | 1972-07-18 | Fmc Corp | Complexes of heavy metal salts of acid phosphate esters |
| EP0010857A3 (en) * | 1978-09-26 | 1980-08-06 | Occidental Research Corporation | Layered or amorphous organometallic inorganic polymers and their use |
| US4298723A (en) * | 1978-09-26 | 1981-11-03 | Occidental Research Corporation | Layered or amorphous acyclic organometallic inorganic polymers |
| US4299943A (en) * | 1980-03-25 | 1981-11-10 | Occidental Research Corporation | Nonaqueous preparation of layered or amorphous organometallic inorganic polymers |
| US4390690A (en) * | 1979-07-24 | 1983-06-28 | Occidental Research Corp. | Layered organophosphorous inorganic polymers containing oxygen bonded to carbon |
| US4429111A (en) | 1979-07-24 | 1984-01-31 | Occidental Research Corporation | Layered organophosphorus inorganic polymers containing mixed functional groups |
| US4487922A (en) * | 1979-07-24 | 1984-12-11 | Occidental Research Corp. | Layered organophosphorous inorganic polymers containing cyclic groups |
| EP0237658A1 (en) * | 1986-03-14 | 1987-09-23 | Ueki Giichi | An additive for increasing the rate of burning of a liquid hydrocarbon material, and a method for its manufacture |
| US4804533A (en) * | 1984-05-25 | 1989-02-14 | Kao Corporation | Metal salts of monoalkyl phosphates, preparation thereof, and cosmetic compositions comprising same |
| US5047566A (en) * | 1986-08-14 | 1991-09-10 | Minnesota Mining And Manufacturing Company | Colorless ferric alkylphosphates |
| EP1516911A4 (en) * | 2002-06-28 | 2005-09-14 | Nippon Oil Corp | LUBRICATING OIL ADDITIVE, LUBRICATING OIL COMPOSITION CONTAINING THE SAME, AND METHOD OF MANUFACTURING SAME |
| WO2020204824A1 (en) * | 2019-03-29 | 2020-10-08 | Polygel Innovations Pte. Ltd. | Sulfur-free anti-wear, extreme pressure and anti-corrosion additives, and methods for producing and uses of the additives |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2329707A (en) * | 1941-01-13 | 1943-09-21 | Standard Oil Co California | Metal organophosphates and method of preparing the same |
| US2346155A (en) * | 1942-02-23 | 1944-04-11 | Standard Oil Co | Compounded oil |
| US2416985A (en) * | 1938-10-04 | 1947-03-04 | California Research Corp | Compounded mineral oil |
| US2488662A (en) * | 1946-06-25 | 1949-11-22 | California Research Corp | Metal organo-phosphates |
| US2854468A (en) * | 1953-02-02 | 1958-09-30 | Shell Dev | Separation of alkaline earth metal salts of mono- and dialkyl acid phosphates |
| US2992894A (en) * | 1957-10-01 | 1961-07-18 | Kerr Mc Gee Oil Ind Inc | Process for concentrating copper and zinc values present in aqueous solution |
| US3294775A (en) * | 1964-02-11 | 1966-12-27 | Wasco Lab Inc | Reaction products of stabilized rosin amine and organic acid phosphate esters |
-
1967
- 1967-05-23 US US659246A patent/US3491133A/en not_active Expired - Lifetime
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2416985A (en) * | 1938-10-04 | 1947-03-04 | California Research Corp | Compounded mineral oil |
| US2329707A (en) * | 1941-01-13 | 1943-09-21 | Standard Oil Co California | Metal organophosphates and method of preparing the same |
| US2346155A (en) * | 1942-02-23 | 1944-04-11 | Standard Oil Co | Compounded oil |
| US2488662A (en) * | 1946-06-25 | 1949-11-22 | California Research Corp | Metal organo-phosphates |
| US2854468A (en) * | 1953-02-02 | 1958-09-30 | Shell Dev | Separation of alkaline earth metal salts of mono- and dialkyl acid phosphates |
| US2992894A (en) * | 1957-10-01 | 1961-07-18 | Kerr Mc Gee Oil Ind Inc | Process for concentrating copper and zinc values present in aqueous solution |
| US3294775A (en) * | 1964-02-11 | 1966-12-27 | Wasco Lab Inc | Reaction products of stabilized rosin amine and organic acid phosphate esters |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3678086A (en) * | 1970-03-27 | 1972-07-18 | Fmc Corp | Complexes of heavy metal salts of acid phosphate esters |
| EP0010857A3 (en) * | 1978-09-26 | 1980-08-06 | Occidental Research Corporation | Layered or amorphous organometallic inorganic polymers and their use |
| US4298723A (en) * | 1978-09-26 | 1981-11-03 | Occidental Research Corporation | Layered or amorphous acyclic organometallic inorganic polymers |
| US4390690A (en) * | 1979-07-24 | 1983-06-28 | Occidental Research Corp. | Layered organophosphorous inorganic polymers containing oxygen bonded to carbon |
| US4429111A (en) | 1979-07-24 | 1984-01-31 | Occidental Research Corporation | Layered organophosphorus inorganic polymers containing mixed functional groups |
| US4487922A (en) * | 1979-07-24 | 1984-12-11 | Occidental Research Corp. | Layered organophosphorous inorganic polymers containing cyclic groups |
| US4299943A (en) * | 1980-03-25 | 1981-11-10 | Occidental Research Corporation | Nonaqueous preparation of layered or amorphous organometallic inorganic polymers |
| US4804533A (en) * | 1984-05-25 | 1989-02-14 | Kao Corporation | Metal salts of monoalkyl phosphates, preparation thereof, and cosmetic compositions comprising same |
| EP0237658A1 (en) * | 1986-03-14 | 1987-09-23 | Ueki Giichi | An additive for increasing the rate of burning of a liquid hydrocarbon material, and a method for its manufacture |
| US5047566A (en) * | 1986-08-14 | 1991-09-10 | Minnesota Mining And Manufacturing Company | Colorless ferric alkylphosphates |
| EP1516911A4 (en) * | 2002-06-28 | 2005-09-14 | Nippon Oil Corp | LUBRICATING OIL ADDITIVE, LUBRICATING OIL COMPOSITION CONTAINING THE SAME, AND METHOD OF MANUFACTURING SAME |
| WO2020204824A1 (en) * | 2019-03-29 | 2020-10-08 | Polygel Innovations Pte. Ltd. | Sulfur-free anti-wear, extreme pressure and anti-corrosion additives, and methods for producing and uses of the additives |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3491133A (en) | Metal organo phosphates and amine salts thereof | |
| US3338935A (en) | Amine salts of metal organo orthophosphates | |
| US2908711A (en) | Itaconic acid-amine reaction product | |
| US3334978A (en) | Hydrocarbon fuel composition | |
| US3321506A (en) | Borate amine salt | |
| US3354189A (en) | Metal (hydrocarbyl and acid hydrocarbyl pyrophosphates) and amine adducts | |
| US3346492A (en) | Fuel and lubricant additives | |
| US2786812A (en) | Mineral oil compositions containing tincontaining dithiophosphate compounds | |
| US3535241A (en) | Lubricating oils containing polyvalent metal hydrocarbyl pyrophosphate salts and amine adducts thereof | |
| US3017357A (en) | Hydrocarbon oil composition | |
| US3509054A (en) | Liquid hydrocarbon compositions of boron esters | |
| US3303130A (en) | Lubricant compositions containing organo mercaptoalkyl borates | |
| US2777819A (en) | Lubricating compositions | |
| US3356707A (en) | Boron esters and process of preparing same | |
| US3117089A (en) | Compositions of matter having anti-rust properties | |
| US2712029A (en) | Monoamides of trihalomethanephosphonic acid monoesters | |
| US4125472A (en) | Lubricant compositions | |
| US3365477A (en) | Alkoxy metal salts of succinamic acids | |
| US3318811A (en) | Lubricating oil containing a diacid diphosphate ester | |
| US3412029A (en) | Organic compositions | |
| US3389082A (en) | Lubricating composition | |
| US3012056A (en) | Alkyl acid phosphate salt of the reaction product of epihalohydrin and amine | |
| US3533762A (en) | Hydrocarbon fuels containing polyvalent metal hydrocarbyl pyrophosphate salts and amine adducts thereof | |
| US3198826A (en) | Alkyl mercaptomethylphosphonic acids | |
| US2809162A (en) | Corrosion inhibited lubricant composition |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CITGO PETROLEUM CORPORATION, A CORP OF DE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CITIES SERVICE COMPANY;REEL/FRAME:004225/0709 Effective date: 19830830 |
|
| AS | Assignment |
Owner name: CITIES SERVICE COMPANY A CORP. OF DE. Free format text: MERGER;ASSIGNOR:CITIES SERVICE OIL COMPANY;REEL/FRAME:004561/0817 Effective date: 19781220 |