US3481824A - Expansible packing with metal mesh core - Google Patents

Expansible packing with metal mesh core Download PDF

Info

Publication number
US3481824A
US3481824A US3481824DA US3481824A US 3481824 A US3481824 A US 3481824A US 3481824D A US3481824D A US 3481824DA US 3481824 A US3481824 A US 3481824A
Authority
US
United States
Prior art keywords
packing
jacket
core
tube
metal mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Emil Jacob Poltorak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acadia Elastomers Corp
Johns Manville
Original Assignee
Johns Manville
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johns Manville filed Critical Johns Manville
Application granted granted Critical
Publication of US3481824A publication Critical patent/US3481824A/en
Anticipated expiration legal-status Critical
Assigned to J. M. CLIPPER CORPORATION, A CORP. OF DE. reassignment J. M. CLIPPER CORPORATION, A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: JOHNS-MANVILLE CORPORATION
Assigned to HOUSEHOLD COMMERCIAL FINANCIAL SERVICES, INC., A CORP. OF DE reassignment HOUSEHOLD COMMERCIAL FINANCIAL SERVICES, INC., A CORP. OF DE SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JM CLIPPER POLYMERS CORPORATION A CORP. OF DE
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0053Producing sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/18Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings
    • F16J15/20Packing materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/26Sealing devices, e.g. packaging for pistons or pipe joints
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/92Fire or heat protection feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2915Rod, strand, filament or fiber including textile, cloth or fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2936Wound or wrapped core or coating [i.e., spiral or helical]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • Fluid heater cleaners or soot blowers of the long retracting type are adapted to be mounted exteriorly of a wall of heat exchanger apparatus such as steam boiler.
  • the soot blower is provided with an extensible lance tube that is adapted to be moved from a retracted position to an advanced position within the interior of the heat exchanger apparatus and -for discharging a pressurized cleaning medium such as air or steam toward the heat exchanger surfaces to remove the accumulations of deposits therefrom.
  • the cleaning medium is usually introduced as a swirling stream from a series of ports at the forward end of the lance tube as the tube is rotated and advanced from the retracted position.
  • a carriage assembly provides means for advancing and retracting the blower lance and contains a packing gland for the telescoping blower lance and feed tubes. It is with this packing gland or seal that this invention is particularly concerned. Since the blower lance is operated on an intermittent basis, it would be particularly advantageous to provide a seal that would respond to elevated temperatures under operating conditions, that would not acquire a permanent set normal operating conditions, and that would accommodate and seal against some off-center rotary motion as well as reciprocating motion of the blower lance.
  • a preferred embodiment of this invention contemplates a packing comprising a core including resilient metal mesh,
  • This invention is an improvement over prior art braided packings in that better sealing engagement is obtained by providing a compressible but non-collapsible inner filling.
  • one of the important features of the present invention contemplates the expansion of the flexible jacket by virtue of the expansion of the air entrapped within the jacket when the packing is subjected to elevated temperature conditions.
  • FIG. l is a perspective view of a seal packing ring constructed in accordance with this invention, with a portion broken away to illustrate in more detail its construction;
  • FIG. 2 is an enlarged fragmentary view of the ring shown in FIG. l;
  • FIG. 3 is an enlarged cross-sectional view of a feed tube/lance tube joint illustrating the position of a set of 4packings forming a part of this invention
  • FIG. 4' is a flow diagram schematically illustrating steps employed in forming the packing of this invention.
  • FIG. 5 is a cross-sectional elevational view of a braider illustrating a manner of applying cement to the stock at the time of braiding.
  • FIG. 1 there is shown a packing 10 adapted for general purposes but particularly suited for use in conjunction with moving mechanical elements such as shafts, piston rods, and soot blower lance tubes.
  • the positioning of the packing in relation to an element to be sealed is more clearly shown in FIG. 3, where a set of packing rings 10 and a header ring 12 are shown in conjunction with the feed tube 14 of a soot blower, generally designated by the numeral 16.
  • a resilient, flexible, compressible packing inner core filling 18 is fashioned, preferably from knitted metal mesh.
  • the filling 18 is formed from stainless steel and most preferably from metal known as Inconel.
  • a strip of fabric knitted from metallic strands may be cut from a tubular knitted metal mesh stocking, as produced by conventional knittling machines employed in the metal textile industry.
  • the stocking may be flattened and rolled on itself, along its longitudinal extent, to comprise plural layers of the fabric.
  • jacket 20 Surrounding the inner or center filling 18 and forming therewith the core of the packing 10, is jacket 20 cornprising elastomer material preferably formulated and compounded in a manner hereinafter to be described.
  • the jacket 20 is preferably formed by direct extrusion over the mesh filling 18 in a cross-head extruder 40, as schematically illustrated in FIG. 4.
  • the forming nozzle 42 of the extruder together with forming pin 44 define an orifice 46 which will permit the extrusion of the jacket 20 in tubular form having an internal diameter corresponding substantially tothe diameter of the core filling 18.
  • the elastomer compound Upon discharge through the orifice 46 the elastomer compound will swell slightly to hug the filling 18 and draw the filling 18 upon continued extrusion.
  • the jacket 20 is preferably extruded to provide an outer surface 22 which is disrupted or diverted from a regular line and more preferablyl to provide a series of relatively thin protuberances in the form of fins 24.
  • the extruded tube stock with the mesh insert is suitably cured as by steam in an autoclave.
  • the tubular jacket 20 is covered with a heat resistant sheath 30 such as by braiding inorganic yarns 32 treated with a lubricant.
  • the sheath 30 is formed by braiding wire reinforced asbestos yarn which is subsequently treated lwith flaked graphite.
  • the wire mesh filling 18 prevents collapsing of the tubular jacket 20 during the braiding operations. Since the yarns 32 are braided under tension the relatively thin jacket 20 might otherwise deform or collapse to such an extent as to block the center core passage 26.
  • the thin fin protuber ances 24 also serve as bights into which the yarns 32 may be embedded and thus more firmly secure the braided sheath 30 to the jacket tube 20.
  • a suitable cement may be additionally employed to secure or bond the sheath 30 to the tube 20.
  • the braided stock is suitably coated with a lubricant such as flaked graphite. Subsequently, the stock is cut to the desired length and further pressed into the final ring configuration. The rings are further cured in a steam autoclave and then dusted with flaked graphite.
  • a packing having a tubular core filled with metal mesh exhibits better sealing engagement over an extended life, particularly in conjunction with mechanical elements that are operated on an intermittent basis than the packings heretofore employed.
  • the prior art packings have been of the type embodying a solid core which core rigidifies and which loses its resiliency during service. Consequently, upon take-up such packings lose some of their sealing effectiveness.
  • the hollow inner chamber collapses and the packing is deformed to such an extent that it loses its sealing effectiveness.
  • the instant invention provides a filled hollow core but yet defines a fluid pervious chamber.
  • the filling of metal mesh imparts resiliency and compressibility to the packing and also deters collapsing of the packing upon take-up. Some air is always entrapped and retained in the fluid pervious chamber or passage 26 even under high loading on the packing gland. In service, the high temperature of the fluid being sealed will heat and expand the entrapped air. The expanding air urges the tubing wall 28 to exert pressure on the outer sheath 30 to maintain sealing engagement 'with the machine elements to be sealed.
  • a continuous length of mesh is knitted from metal wire to provide a strand 18 approximately Ms" in diameter.
  • the mesh is fed into a cross-head extruder 40 for drawing with an extrudable compound, comprising elastomers to form an extruded jacket 20 over the mesh.
  • 'Ihe jacket 20 may be extruded from a compound having the following general formulation, wherein the indicated percentages are by weight:
  • Percent Chlorinated elastomer such as Neoprene WB 20-35 Chlorosulfonated polyethylene elastomer such as Hypalon No. 40 20-35 Fillers, lubricants, Vulcanizing agents 30-60
  • the ingredients are rnill mixed, blended and sheeted to form batch stock.
  • the batch stock is extruded as a tube over the mesh core 18 in the cross-head extruder 40 through a die 42 having the desired configuration.
  • a preferred configuration of the tube 20 has an internal diameter corresponding substantially to the diameter (1a") of the mesh strand 18 and a series of bi'ghts 24 on the outside surface.
  • the temperature of the extruder barrel 48 is preferably maintained at 100 F. and the temperature of the extruder head 50 is preferably maintained at F.
  • the tube 20 As the tube 20 is extruded through the die 42, it will swell slightly and hug and draw the mesh core 18 through the head 50 of the extruder as additional material is extruded.
  • the extruded material is sufficiently viscous to retain its tubular shape and not fill all of the interstices of the metal mesh 18.
  • the tube 20 defines a chamber or passage 26 filled with metal mesh 18.
  • the extruded jacket 18 is subsequently fed to a braider 60 where a cement 62 is applied to the jacket 18 prior to its reaching the braiding point 64.
  • the cement 62 is generally of the following composition, where the ingredient designated as elastomer compound is one of the elastomer formulations from which the jacket tube is extruded and
  • the sheath 30 is then braided over the cement coated jacket 20.
  • the braided sheath 30 is preferably formed from asbestos yarn ASTM designation 1031 and from ASTM Grade AAA asbestos.
  • the braided stock is dried and first drawn through a cement, which may be of the same composition as described above, and then through aked graphite. The graphited stock is then cut inl lengths to provide the desired circumferences of the final rings.
  • the stock may be calendered prior to cutting.
  • the graphited stock lengths are then pressed into the desired final configuration.
  • the stock is cut into lengths having biased ends 11a and 11b and pressed into a final form which is slightly oversize on both the internal diameter and the outside diameter to provide a better overlap for the jointed ends when the packing 10 is installed, for example, where the arrangement is ysuch to call for a standard size packing having an internal diameter of 2.383 inches and outside diameter of 3.093 inches, the packing of this invention is formed with an internal diameter of 2.420 inches and an outside diameter of 3.130 inches.
  • the packings 10 of this invention may be installed in a soot blower 16 by unbolting the packing follower 70 and removing the old packing circumposing the feed tube 14.
  • a lance tube 72 surrounds a forward position of feed tube 14 and is mounted for reciprocable and rotating movement along the axial extent of and about tube 14 by means of joint mechanism 74, shown in phantom lines.
  • the packings 10 are adapted to seal against the loss of the fluid medium, fed through tube 14 and into lance tube 72, through the juncture 76 formed between the joint mechanism 74 and feed tube 14.
  • a header ring 12, which may be of the same material as the braided sheath 30 of ring lil, may be iirst installed in the packing well 78 formed between the joint mechanism 74 and feed tube 14.
  • the header ring 12 is primarily employed to prevent extrusion of the packing rings upon subsequent take-up and hence need not employ the inner core construction of the rings 10.
  • a packing comprising:
  • a ilexible jacket comprising elastomer material surrounding said mesh forming an expansible tube including therein an air entrapping chamber which expands when air entrapped therein is subjected to heat;
  • said sheath is braided fabric from wire reinforced asbestos strands.
  • said flexible jacket is extruded from an elastomer composition
  • an elastomer composition comprising; by weight:
  • said sheath is impregnated with a composition comprising the elastomer compound, corresponding to that from which said jacket is composed, dissolved in suitable solvents, and a low friction synthetic resinous material.
  • a packing comprising:
  • a iiexible jacket comprising heat resistant elastomer material surrounding said metal fabric core extruded to form an expansible tube including therein an air entrapping chamber which expands when air entrapped therein is subjected to heat;
  • v.(c) a sheath braided over and surrounding said jacket said sheath comprising inorganic brous material impregnated with heat resistant material and coated with a lubricant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sealing Devices (AREA)
  • Gasket Seals (AREA)

Description

Dec. 2, 1969 E. J. PoL'i'oRAK 3,481,824
EXPANSIBLE PACKING WITH METAL MESH CORE Filed Dec. 23, 1965 2 Sheets-Sheet 1 INVENTOR. .5f/L ma Rxmq( g/@zj Arran/EP Dec. 2, 1969 E. J. PoL'roRAK EXPANSIBLE PACKING WITH METAL MESH CORE Filed Dec. 25, 1965 2 Sheets-Sheet 2 BRA'DEQ CEMENT MESH CUT
r QRAPHH'E CEMENT DRY I'MDE @Fuss .Illl
INVENTOR. 5m. daw Humm/ BY Armen/sv Curas PRESS LQRQPHITE United States Patent O 3,481,824 EXPANSIBLE PACKING WITH METAL MESH CORE Emil Jacob Poltorak, Somerville, NJ., assignor to Johns- Manville Corporation, New Yok, N.Y., a corporation of New York Filed Dec. 23, 1965, Ser. No. 515,891 Int. Cl. D02g 3/02; B32b 9/06, 15/04 U.S. Cl. 161-175 5 Claims ABSTRACT F THE DISCLOSURE This invention relates to a novel packing adapted to provide an effective seal against fluid passage and having an extended life.
The invention has particular application to soot blowers and will be described in connection therewith. It will be apparent however that other applications for the packing are possible. Fluid heater cleaners or soot blowers of the long retracting type are adapted to be mounted exteriorly of a wall of heat exchanger apparatus such as steam boiler. The soot blower is provided with an extensible lance tube that is adapted to be moved from a retracted position to an advanced position within the interior of the heat exchanger apparatus and -for discharging a pressurized cleaning medium such as air or steam toward the heat exchanger surfaces to remove the accumulations of deposits therefrom. The cleaning medium is usually introduced as a swirling stream from a series of ports at the forward end of the lance tube as the tube is rotated and advanced from the retracted position. A carriage assembly provides means for advancing and retracting the blower lance and contains a packing gland for the telescoping blower lance and feed tubes. It is with this packing gland or seal that this invention is particularly concerned. Since the blower lance is operated on an intermittent basis, it would be particularly advantageous to provide a seal that would respond to elevated temperatures under operating conditions, that would not acquire a permanent set normal operating conditions, and that would accommodate and seal against some off-center rotary motion as well as reciprocating motion of the blower lance.
It is accordingly a principal object of this invention to provide a novel packing which has the property of improved resilience and retains this property substantially indefinitely, and which is unaffected by the temperature and pressure conditions within the ranges normally encountered.
It is a yfurther object of this invention to provide a seal which has an extended life and which thus promotes the economy of operation of the device in which the seal is installed.
It is a still further object of this invention to provide a seal that will maintain its sealing effectiveness even during intermittent operation of the device within which it is installed.
Toward the attainment of the foregoing objects, a preferred embodiment of this invention contemplates a packing comprising a core including resilient metal mesh,
3,481,824 Patented Dec. 2, 1969 ice and a flexible jacket comprising elastomer material and covering said mesh, and a treated heat resistant fabric sheath, surrounding said jacket.
This invention is an improvement over prior art braided packings in that better sealing engagement is obtained by providing a compressible but non-collapsible inner filling. Instead of relying mainly upon the compressibility of a completely hollow core, one of the important features of the present invention contemplates the expansion of the flexible jacket by virtue of the expansion of the air entrapped within the jacket when the packing is subjected to elevated temperature conditions.
The invention will be further explained in the following description taken in connection with the accompanying drawing.
FIG. l is a perspective view of a seal packing ring constructed in accordance with this invention, with a portion broken away to illustrate in more detail its construction;
FIG. 2 is an enlarged fragmentary view of the ring shown in FIG. l;
FIG. 3 is an enlarged cross-sectional view of a feed tube/lance tube joint illustrating the position of a set of 4packings forming a part of this invention;
FIG. 4' is a flow diagram schematically illustrating steps employed in forming the packing of this invention;
and
FIG. 5 is a cross-sectional elevational view of a braider illustrating a manner of applying cement to the stock at the time of braiding.
Referring to FIG. 1, there is shown a packing 10 adapted for general purposes but particularly suited for use in conjunction with moving mechanical elements such as shafts, piston rods, and soot blower lance tubes. The positioning of the packing in relation to an element to be sealed is more clearly shown in FIG. 3, where a set of packing rings 10 and a header ring 12 are shown in conjunction with the feed tube 14 of a soot blower, generally designated by the numeral 16. In accordance with this invention, a resilient, flexible, compressible packing inner core filling 18 is fashioned, preferably from knitted metal mesh. In a preferred embodiment, the filling 18 is formed from stainless steel and most preferably from metal known as Inconel. In forming such a filling 18, a strip of fabric knitted from metallic strands may be cut from a tubular knitted metal mesh stocking, as produced by conventional knittling machines employed in the metal textile industry. The stocking may be flattened and rolled on itself, along its longitudinal extent, to comprise plural layers of the fabric.
Surrounding the inner or center filling 18 and forming therewith the core of the packing 10, is jacket 20 cornprising elastomer material preferably formulated and compounded in a manner hereinafter to be described. The jacket 20 is preferably formed by direct extrusion over the mesh filling 18 in a cross-head extruder 40, as schematically illustrated in FIG. 4. The forming nozzle 42 of the extruder together with forming pin 44 define an orifice 46 which will permit the extrusion of the jacket 20 in tubular form having an internal diameter corresponding substantially tothe diameter of the core filling 18. Upon discharge through the orifice 46 the elastomer compound will swell slightly to hug the filling 18 and draw the filling 18 upon continued extrusion. The jacket 20 is preferably extruded to provide an outer surface 22 which is disrupted or diverted from a regular line and more preferablyl to provide a series of relatively thin protuberances in the form of fins 24. The extruded tube stock with the mesh insert is suitably cured as by steam in an autoclave.
The tubular jacket 20 is covered with a heat resistant sheath 30 such as by braiding inorganic yarns 32 treated with a lubricant. In a preferred embodiment, the sheath 30 is formed by braiding wire reinforced asbestos yarn which is subsequently treated lwith flaked graphite. The wire mesh filling 18 prevents collapsing of the tubular jacket 20 during the braiding operations. Since the yarns 32 are braided under tension the relatively thin jacket 20 might otherwise deform or collapse to such an extent as to block the center core passage 26. The thin fin protuber ances 24 also serve as bights into which the yarns 32 may be embedded and thus more firmly secure the braided sheath 30 to the jacket tube 20. A suitable cement may be additionally employed to secure or bond the sheath 30 to the tube 20. The braided stock is suitably coated with a lubricant such as flaked graphite. Subsequently, the stock is cut to the desired length and further pressed into the final ring configuration. The rings are further cured in a steam autoclave and then dusted with flaked graphite.
A packing having a tubular core filled with metal mesh, in accordance with this invention, exhibits better sealing engagement over an extended life, particularly in conjunction with mechanical elements that are operated on an intermittent basis than the packings heretofore employed. Generally, the prior art packings have been of the type embodying a solid core which core rigidifies and which loses its resiliency during service. Consequently, upon take-up such packings lose some of their sealing effectiveness. In other packings of the so-called hollow core type, upon take-up the hollow inner chamber collapses and the packing is deformed to such an extent that it loses its sealing effectiveness. The instant invention provides a filled hollow core but yet defines a fluid pervious chamber. The filling of metal mesh imparts resiliency and compressibility to the packing and also deters collapsing of the packing upon take-up. Some air is always entrapped and retained in the fluid pervious chamber or passage 26 even under high loading on the packing gland. In service, the high temperature of the fluid being sealed will heat and expand the entrapped air. The expanding air urges the tubing wall 28 to exert pressure on the outer sheath 30 to maintain sealing engagement 'with the machine elements to be sealed.
To provide a further disclosure of this invention, an exemplary procedure and a formulation for a preferred embodiment will now be described.
A continuous length of mesh is knitted from metal wire to provide a strand 18 approximately Ms" in diameter. The mesh is fed into a cross-head extruder 40 for drawing with an extrudable compound, comprising elastomers to form an extruded jacket 20 over the mesh.
'Ihe jacket 20 may be extruded from a compound having the following general formulation, wherein the indicated percentages are by weight:
Ingredient: Percent Chlorinated elastomer such as Neoprene WB 20-35 Chlorosulfonated polyethylene elastomer such as Hypalon No. 40 20-35 Fillers, lubricants, Vulcanizing agents 30-60 Ingredient: Percent Chlorinated elastomer-chloro-butadiene 28-29 Chlorosulfonated polyethylene elastomer 28-29 Pulverized magnesium silicate (Miston vapor) inorganic filler 24-25 Stearic acid .2-.6 Powdered graphite 6-7 4 Ingredient: Percent Parafiin wax F.-melting point) 2-3 Seal grease 2-3 Vulcanizing agent for chlorinated elastomerred lead 8-9 Vulcanizing agent for chlorosulfonated elastomer dipentamethylene thiuram tetrasulfide (Tetrone A) .2-.6
The ingredients are rnill mixed, blended and sheeted to form batch stock. The batch stock is extruded as a tube over the mesh core 18 in the cross-head extruder 40 through a die 42 having the desired configuration. A preferred configuration of the tube 20 has an internal diameter corresponding substantially to the diameter (1a") of the mesh strand 18 and a series of bi'ghts 24 on the outside surface. The temperature of the extruder barrel 48 is preferably maintained at 100 F. and the temperature of the extruder head 50 is preferably maintained at F.
As the tube 20 is extruded through the die 42, it will swell slightly and hug and draw the mesh core 18 through the head 50 of the extruder as additional material is extruded. The extruded material is sufficiently viscous to retain its tubular shape and not fill all of the interstices of the metal mesh 18. Thus the tube 20 defines a chamber or passage 26 filled with metal mesh 18.
'I'he extruded jacket 18 is then coiled and placed in an autoclave for steam curing (60# steam) for 30 minutes.
The extruded jacket 18 is subsequently fed to a braider 60 where a cement 62 is applied to the jacket 18 prior to its reaching the braiding point 64. The cement 62 is generally of the following composition, where the ingredient designated as elastomer compound is one of the elastomer formulations from which the jacket tube is extruded and The sheath 30 is then braided over the cement coated jacket 20. The braided sheath 30 is preferably formed from asbestos yarn ASTM designation 1031 and from ASTM Grade AAA asbestos. The braided stock is dried and first drawn through a cement, which may be of the same composition as described above, and then through aked graphite. The graphited stock is then cut inl lengths to provide the desired circumferences of the final rings. Optionally, the stock may be calendered prior to cutting. After cutting, the graphited stock lengths are then pressed into the desired final configuration. Preferably, the stock is cut into lengths having biased ends 11a and 11b and pressed into a final form which is slightly oversize on both the internal diameter and the outside diameter to provide a better overlap for the jointed ends when the packing 10 is installed, for example, where the arrangement is ysuch to call for a standard size packing having an internal diameter of 2.383 inches and outside diameter of 3.093 inches, the packing of this invention is formed with an internal diameter of 2.420 inches and an outside diameter of 3.130 inches.
The packings 10 of this invention may be installed in a soot blower 16 by unbolting the packing follower 70 and removing the old packing circumposing the feed tube 14. A lance tube 72 surrounds a forward position of feed tube 14 and is mounted for reciprocable and rotating movement along the axial extent of and about tube 14 by means of joint mechanism 74, shown in phantom lines. The packings 10 are adapted to seal against the loss of the fluid medium, fed through tube 14 and into lance tube 72, through the juncture 76 formed between the joint mechanism 74 and feed tube 14. A header ring 12, which may be of the same material as the braided sheath 30 of ring lil, may be iirst installed in the packing well 78 formed between the joint mechanism 74 and feed tube 14. The header ring 12 is primarily employed to prevent extrusion of the packing rings upon subsequent take-up and hence need not employ the inner core construction of the rings 10.
In service, as steam or other heated iiuid medium is fed through feed tube 14, the air entrapped in passage 26 of tubular jacket will expand and tend to expand jacket 20 and thereby urge sheath 30 into better sealing engagement with joint mechanism 74.
Having provided a complete description of the invention in a manner to distinguish it from other inventions, and having provided a description of the best modes presently contemplated of carrying out the invention, the.,
scope of patent protection to be granted is defined by the following claims.
What I claim is:
1. A packing comprising:
(a) a resilient core including metal mesh;
(b) a ilexible jacket comprising elastomer material surrounding said mesh forming an expansible tube including therein an air entrapping chamber which expands when air entrapped therein is subjected to heat; and
(c) a heat resistant fabric sheath of inorganic fibrous material secured to and surrounding said flexible jacket.
2. A packing as described in claim 1, wherein:
said sheath is braided fabric from wire reinforced asbestos strands.
3. A packing as described in claim 1, wherein:
said flexible jacket is extruded from an elastomer composition comprising; by weight:
Percent Chloro-butadiene 28-30 Chlorosulfonated polyethylene 28-30 Inorganic iillers 24-25 Lubricants 10-11 Vulcanizing agents 8-9 4. A packing as described in claim 1, wherein:
said sheath is impregnated with a composition comprising the elastomer compound, corresponding to that from which said jacket is composed, dissolved in suitable solvents, and a low friction synthetic resinous material.
S. A packing comprising:
(a) a resilient compressible core including a knitted metal fabric;
(b) a iiexible jacket comprising heat resistant elastomer material surrounding said metal fabric core extruded to form an expansible tube including therein an air entrapping chamber which expands when air entrapped therein is subjected to heat; and
v.(c) a sheath braided over and surrounding said jacket said sheath comprising inorganic brous material impregnated with heat resistant material and coated with a lubricant.
References Cited UNITED STATES PATENTS 868,136 10/1907 Shields 277-228 1,203,762 l l/l916 Mastin 277-230 1,659,984 2/1922 Steele 277-230 22,376,039 4/1945 Driscoll 277-230 2,698,269 12/1954 Sussenbach 277-229 2,924,471 2/ 1960 Poltorak et al 277-230 3,223,676 12/ 1965 Rucker.
3,361,432 l/1968 Usher 277-229 ROBERT F. BURNETT, Primary Examiner J. D. FOSTER, Assistant Examiner U.S. Cl. X.R.
US3481824D 1965-12-23 1965-12-23 Expansible packing with metal mesh core Expired - Lifetime US3481824A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US51589165A 1965-12-23 1965-12-23

Publications (1)

Publication Number Publication Date
US3481824A true US3481824A (en) 1969-12-02

Family

ID=24053201

Family Applications (1)

Application Number Title Priority Date Filing Date
US3481824D Expired - Lifetime US3481824A (en) 1965-12-23 1965-12-23 Expansible packing with metal mesh core

Country Status (1)

Country Link
US (1) US3481824A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3751219A (en) * 1971-10-28 1973-08-07 Steel Corp Annealing furnace seal
US3761055A (en) * 1971-11-08 1973-09-25 Okano Valve Seizo Kk Freeze seal for sodium valves
US4042356A (en) * 1976-03-03 1977-08-16 Industrial Clean Air, Inc. Bag house cell plate and filter bag attachment thereto
US4119323A (en) * 1976-05-18 1978-10-10 Herbert Meister And Co. Heat and solvent resistant flexible gasket means and process for production thereof
US4244718A (en) * 1976-04-15 1981-01-13 Albany International Corp. Reverse gas-flow bag filter
US4441726A (en) * 1981-12-14 1984-04-10 Shan-Rod, Inc. Heat and vibration resistant seal
US4468043A (en) * 1982-06-11 1984-08-28 Brazel Patrick J High temperature seal
US4607851A (en) * 1977-11-30 1986-08-26 Metex Corporation Method of making composite wire mesh seal
US5225262A (en) * 1991-04-29 1993-07-06 A. W. Chesterton Co. Braided high-temperature packing comprising a core of folded flexible graphite sheet
US5370405A (en) * 1991-08-30 1994-12-06 Nippon Pillar Packing Co., Ltd. Packing
US5493951A (en) * 1994-05-05 1996-02-27 Harrison; Curtis W. Lubrication and seal ring assembly for pump
US5615896A (en) * 1986-02-25 1997-04-01 Morvant; John D. Rubber encapsulated vee ring seal
US5804316A (en) * 1993-09-17 1998-09-08 Rm Engineered Products, Inc. Baked packing for sealing shafts and valve stems
US20050225038A1 (en) * 2002-06-13 2005-10-13 Commissariat A L'energie Atomique Flexible graphite sealing joint with metal jacket for high temperature
WO2013173498A1 (en) * 2012-05-15 2013-11-21 Teadit N.A., Inc. Compressible packing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US868136A (en) * 1907-03-12 1907-10-15 James W Shields Packing.
US1203762A (en) * 1915-08-14 1916-11-07 Charles I E Mastin Gasket.
US1659984A (en) * 1925-01-12 1928-02-21 Lawrence C Steele Wiper for coating machines
US2376039A (en) * 1943-04-09 1945-05-15 Johns Manville Packing
US2698269A (en) * 1949-07-15 1954-12-28 Presstite Engineering Company Compressible packing
US2924471A (en) * 1954-06-24 1960-02-09 Johns Manville Gaskets
US3223676A (en) * 1960-07-07 1965-12-14 Johns Manville Process for producing a molded gasket from polytetrafluoroethylene and a butadiene-acrylonitrile elastomer
US3361432A (en) * 1965-06-15 1968-01-02 Gen Cable Corp Mechanical packing ring with a knitted wire core

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US868136A (en) * 1907-03-12 1907-10-15 James W Shields Packing.
US1203762A (en) * 1915-08-14 1916-11-07 Charles I E Mastin Gasket.
US1659984A (en) * 1925-01-12 1928-02-21 Lawrence C Steele Wiper for coating machines
US2376039A (en) * 1943-04-09 1945-05-15 Johns Manville Packing
US2698269A (en) * 1949-07-15 1954-12-28 Presstite Engineering Company Compressible packing
US2924471A (en) * 1954-06-24 1960-02-09 Johns Manville Gaskets
US3223676A (en) * 1960-07-07 1965-12-14 Johns Manville Process for producing a molded gasket from polytetrafluoroethylene and a butadiene-acrylonitrile elastomer
US3361432A (en) * 1965-06-15 1968-01-02 Gen Cable Corp Mechanical packing ring with a knitted wire core

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3751219A (en) * 1971-10-28 1973-08-07 Steel Corp Annealing furnace seal
US3761055A (en) * 1971-11-08 1973-09-25 Okano Valve Seizo Kk Freeze seal for sodium valves
US4042356A (en) * 1976-03-03 1977-08-16 Industrial Clean Air, Inc. Bag house cell plate and filter bag attachment thereto
US4244718A (en) * 1976-04-15 1981-01-13 Albany International Corp. Reverse gas-flow bag filter
US4119323A (en) * 1976-05-18 1978-10-10 Herbert Meister And Co. Heat and solvent resistant flexible gasket means and process for production thereof
US4607851A (en) * 1977-11-30 1986-08-26 Metex Corporation Method of making composite wire mesh seal
US4441726A (en) * 1981-12-14 1984-04-10 Shan-Rod, Inc. Heat and vibration resistant seal
US4468043A (en) * 1982-06-11 1984-08-28 Brazel Patrick J High temperature seal
US5615896A (en) * 1986-02-25 1997-04-01 Morvant; John D. Rubber encapsulated vee ring seal
US20050156385A1 (en) * 1990-02-08 2005-07-21 Nippon Pillar Packing Co., Ltd. Packing
US8297624B2 (en) * 1990-02-08 2012-10-30 Nippon Pillar Packing Co., Ltd. Packing
US5225262A (en) * 1991-04-29 1993-07-06 A. W. Chesterton Co. Braided high-temperature packing comprising a core of folded flexible graphite sheet
US5339520A (en) * 1991-04-29 1994-08-23 Leduc Robert D Braided high-temperature packing
US5370405A (en) * 1991-08-30 1994-12-06 Nippon Pillar Packing Co., Ltd. Packing
US5804316A (en) * 1993-09-17 1998-09-08 Rm Engineered Products, Inc. Baked packing for sealing shafts and valve stems
US5493951A (en) * 1994-05-05 1996-02-27 Harrison; Curtis W. Lubrication and seal ring assembly for pump
US20050225038A1 (en) * 2002-06-13 2005-10-13 Commissariat A L'energie Atomique Flexible graphite sealing joint with metal jacket for high temperature
US7255353B2 (en) * 2002-06-13 2007-08-14 Commissariat A L'energie Atomique Flexible graphite sealing joint with metal jacket for high temperature
WO2013173498A1 (en) * 2012-05-15 2013-11-21 Teadit N.A., Inc. Compressible packing
EP2850345A4 (en) * 2012-05-15 2016-02-17 Teadit N A Inc Compressible packing

Similar Documents

Publication Publication Date Title
US3481824A (en) Expansible packing with metal mesh core
US3866633A (en) Hose structure
US3341211A (en) Packing rings and method of making them
US2564602A (en) Flexible hose
US2874411A (en) Apparatus for coating and impregnating tubular fabrics
US3604461A (en) Composite tubing
US4189985A (en) Fabric-lined epoxy resin cylinder with lubricant retaining grooves
US2396059A (en) Flexible tube
US3073353A (en) Abrasion-resistant ventilating jacket for jet engine starter hoses
US2570259A (en) Method of and apparatus for the manufacture of flexible conduits
US4153080A (en) Fire hose and method of making it
US2461594A (en) Steam hose
US4298562A (en) Method for manufacturing sealing rings
US2833313A (en) Double jacketed fire hose
US2371991A (en) Reinforced tube
US3558754A (en) Process of manufacturing hose pipes
US4385018A (en) Method and apparatus for making insulated, reinforced flexible hose
US3120960A (en) Packing ring with load bearing body and process for making same
US3809590A (en) Jet engine starter hose and method of making it
US2776154A (en) Plastic packing
US3403603A (en) Tubular rolling diaphragms
US3361432A (en) Mechanical packing ring with a knitted wire core
US3639187A (en) Method of forming a resilient and heat-resistant packing
US3032812A (en) Continuous vulcanizing apparatus
US2692782A (en) Reinforced flexible expansion joint for pipe lines

Legal Events

Date Code Title Description
AS Assignment

Owner name: J. M. CLIPPER CORPORATION, A CORP. OF DE.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:JOHNS-MANVILLE CORPORATION;REEL/FRAME:005161/0022

Effective date: 19890630

AS Assignment

Owner name: HOUSEHOLD COMMERCIAL FINANCIAL SERVICES, INC., A

Free format text: SECURITY INTEREST;ASSIGNOR:JM CLIPPER POLYMERS CORPORATION A CORP. OF DE;REEL/FRAME:005836/0109

Effective date: 19910724