US3476747A - Manufacture of 1,2-bis(aryl)ethylenes - Google Patents

Manufacture of 1,2-bis(aryl)ethylenes Download PDF

Info

Publication number
US3476747A
US3476747A US499062A US3476747DA US3476747A US 3476747 A US3476747 A US 3476747A US 499062 A US499062 A US 499062A US 3476747D A US3476747D A US 3476747DA US 3476747 A US3476747 A US 3476747A
Authority
US
United States
Prior art keywords
toluene
bis
stilbene
benzoxazol
arylmethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US499062A
Inventor
Charles W Hargis
Howard S Young
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Application granted granted Critical
Publication of US3476747A publication Critical patent/US3476747A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/62Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems having two or more ring systems containing condensed 1,3-oxazole rings
    • C07D263/64Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems having two or more ring systems containing condensed 1,3-oxazole rings linked in positions 2 and 2' by chains containing six-membered aromatic rings or ring systems containing such rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • C07C2/82Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling
    • C07C2/84Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling catalytic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/20Two benzimidazolyl-2 radicals linked together directly or via a hydrocarbon or substituted hydrocarbon radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • C07D277/66Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2 with aromatic rings or ring systems directly attached in position 2
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L4/00Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
    • D06L4/60Optical bleaching or brightening
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/18Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese

Definitions

  • Diarylethylenes are manufactured by contacting an arylmethane with an inorganic oxidant such as arsenic pentoxide, antimony pentoxide, bismuth trioxide, manganese arsenate, or antimony tetroxide at an elevated temperature. Diarylethylenes have known utility as optical brightening agents or as active components in radiation measuring devices.
  • This invention relates to a novel chemical process and more particularly to a novel process for preparing 1,2- bis(aryl)ethylenes.
  • the 1,2-bis(aryl)ethylenes which can be prepared by the process of our invention generally are fluorescent compounds which find a wide variety of uses; e.g., as optical brighteners in the textile field, as active components in radiation measuring devices such as scintillation counters, etc.
  • the 1,2-bis(aryl)ethylenes are prepared in accordance with the process of our invention by contacting an arylmethane with an inorganic oxidant from the group of arsenic pentoxide, antimony pentoxide, bismuth trioxide, manganese arsenate, or antimony tetroXide at elevated temperature. If a single arylmethane is contacted with an inorganic oxidant, we obtain a symmetrical 1,2-bis(aryl)- ethylene. However, if we contact a mixture of two or more arylmethanes with the inorganic oxidant, we obtain a mixture of symmetrical and unsymmetrical 1,2-bis(aryl)ethylenes.
  • the following general equation illustrates the process of our invention:
  • each of the substituents A can be the same or different and is an aryl residue.
  • the aryl residue represented by A typically has 6 to 18 carbon atoms and preferably has 6 to about 14 carbon atoms.
  • Examples of some of the preferred aryl residues represented by A include phenyl; 4-cyanophenyl; 3-cyanopl1enyl; Z-cyanophenyl; 4-nitrophenyl; 3-nitrophenyl; 4-carboxyphenyl; 4-chlorophenyl; 3-chlorophenyl; 2-chlorophenyl; 4-bromophenyl; 3-bromophenyl; 2-bromophenyl; 4 iodophenyl; 3 iodophenyl; 2-iodophenyl; naphth-l-yl; Z-chloronaphth-l-yl; 3-bromonaphth-l-yl; 4- iodonaphth-l-yl; S-nitronaphth-l-yl; 6-cyanonaphth-l-yl; 7 chloronaphth-l-yl; 8-cyanonaphth-l-yl; naphth-Z-
  • R is preferably located meta or para to the methyl group and contains up to eight carbon atoms and is typically hydrogen, carboxy, cyano, alkoxycarbonyl, phenyl, amino, benzoxazol-Z-yl, benzimidazol-Z-yl, benzthiazol-Z-yl, etc.
  • the process of our invention is carried out by contacting an arylmethane with an inorganic oxidant from the group of arsenic pentoxide, antimony pentoxide, bismuth trioxide, manganese arsenate, or antimony tetroxide, or with a mixture of two or more of the inorganic oxidants at elevated temperature.
  • reaction temperatures of from about 200 C. to about 600 C. are suitable.
  • Our invention also includes the use as oxidants of inorganic or organic compounds which under the reaction conditions employed yield one or more of the aforementioned inorganic oxidants.
  • the process of our invention can be carried out with the arylmethane reactant in the liquid phase or in the vapor phase at the time it is contacted with the inorganic oxidant.
  • the pressure can vary widely; e.g., from about 0.1 atmosphere or lower to about 10 atmospheres or greater. In general, the pressure selected depends upon the chosen reaction temperature, the boiling point of the arylmethane, and whether the reaction is to be carried out with the arylmethane in the liquid phase or in the vapor phase. If the reaction is to be carried out in the liquid phase, the reaction pressure should be greater than the vapor pressure of the arylmethane at the chosen reaction temperature. If the reaction is to be carried out in the vapor phase, the reaction pressure should be lower than the vapor pressure of the arylmethane at the chosen reaction temperature.
  • reaction temperatures of about 200 C. to about 600 C. are suitable when our process is carried out with the arylmethane in the vapor phase and reaction temperatures of about 200 C. to about 450 C. are suitable when the processis carried out with the arylmethane in the liquid phase.
  • the arylmethane and the inorganic oxidant are contacted in a suitable reaction vessel. Stoichiometric equivalents of the arylmethane and the inorganic oxidant are often employed. However, a stoichiometric excess of either the arylmethane or the inorganic oxidant can be employed and is often preferred for reasons of economy.
  • the arylmethane is continuously passed over the inorganic oxidant. Since the inorganic oxidant enters into the reaction and is consequently reduced during the course of the reaction, it is necessary to provide means for reoxidizing the inorganic oxidant.
  • the reaction is periodically interrupted and the inorganic oxidant is then reoxidized.
  • means are provided for continuously reoxidizing the inorganic oxidant.
  • the inorganic oxidant can be maintained in an oxidized condition by continuously passing oxygen over the inorganic oxidant along with the arylmethane or a portion of the inorganic oxidant can be continuously or intermittently removed from the reaction zone, reoxidized, and the reoxidized inorganic oxidant can thereafter be continuously or intermittently returned to the reaction zone.
  • the latter procedure is particularly adapted to operations in which the inorganic oxidant is in the form of a fluidized bed or a moving bed.
  • the inorganic oxidant can be supported or unsupported.
  • Suitable supports for the inorganic oxidant include silica, titania, alumina, kieselguhr, etc.
  • 1,2-bis(ary1)ethylenes which can be prepared by the process of our invention are compounds such as:
  • the l,2-bis(aryl)ethylenes are obtained in accordance with the process of our invention as :a mixture of the cis and trans isomers of the desired product though in some instances we obtain more of the trans isomer than the cis isomer.
  • Stilbene was prepared in a semi-continuous process from toluene according to the following procedure. Toluene was continuously contacted With bismuth oxide v(Bi O in a tubular Vycor glass reactor. The reactor was 33 inches long and had an outside diameter of 25 mm. The reactor contained 50 ml. of 4 x 20 mesh Bi O The efiluent from the reactor was collected in two receivers cooled to C. and -80 C., respectively. The toluene was passed over the Bi O at the rate of about 0.093 mole per hour for a period of about 55 minutes while the reactor temperature was held at about 505 C. by means of an electrical heater.
  • the efiluent from the reactor which was collected in the receivers comprised an organic phase and an aqueous phase. Examination of the organic phase by infrared analysis disclosed the presence of the cis and trans isomers of stilbene as well as unchanged toluene.
  • Example 2 The procedure of Example 1 is repeated except that antimony pentoxide is substituted for th Bi O and the contacting of the toluene and the inorganic oxidant is carried out at a temperature of about 450 C. Infrared analysis of the organic phase of the reaction product reveals the presence of cis and trans isomers of stilbene and unreacted toluene.
  • EXAMPLE 3 An intimate mixture of 2.1 g. (0.01 mole) of 4-benzoxazol-2-yl) toluene and 1.55 g. (0.0033 mole) of Bi O was heated, under nitrogen, at 348 C. for one hour. The reaction product was extracted with benzene to remove unchanged 4-(benzoxazol-2-yl)toluene and any benezene soluble impurities. The residue remaining after extraction was dried and subjected to vacuum sublimation. Substantially pure 4,4bis(benzoxazol-Z-yl)Stilbene was obtained as the sublimate while a mixture of bismuth and Bi O remained as the residue. The identity of the 4,4'- bis(benzoxazol-2-yl)stilbene was established by comparison of its infrared spectrum with that of an authentic sample.
  • EXAMPLE 4 An intimate mixture of 2.1 g. (0.01 mole) of 4-(benzoxazol-Z-yl) toluene and 2.3 g. (0.01 mole) of arsenic pentoxide was heated, under nitrogen, at 297 C. for two and one-half hours. The reaction product was extracted with benzene to remove unreacted 4-(benzoxazol-2-yl) toluene and benzen soluble impurities, dried, and extracted with 10% aqueous sodium hydroxide to remove arsenic oxides. The residue was then washed with water and dried. Vacuum sublimation of the dried residue gave 4,4'-bis (benzoxazol-Z-yl) stilbene.
  • EXAMPLE 5 A mixture of 2.1 g. (0.01 mole) of 4-(benzoxazol-2-yl) toluene and 4.4 g. (0.01 mole) of manganese arsenate is heated, under nitrogen, at a temperature of 375 C. for about three hours. The reaction product is extracted with benzene and aqueous sodium hydroxide and washed with water as described in Example 4. Vacuum sublimation of the dried residue gives 4,4'-bis(benzoxazol-Z-yl)stilbene.
  • EXAMPLE 6 A mixture of 2.1 g. (0.01 mole) of 4-(benzoxazol-2-yl) toluene and 3.2 g. (0.01 mole) of antimony pentoxide is heated, under nitrogen, at a temperature of about 225 C. for about four and one-half hours. The residue is extracted with benzene. Vacuum sublimation of the dried residue gives 4,4'-bis(benzoxazol-Z-yl) stilbene.
  • EXAMPLE 7 A mixture of 2.1 g. (0.01 mole) of 4-(benzimidazol-2- yl)toluene and 1.55 g. (0.0033 mole) of Bi O is heated, under nitrogen, at about 325 C. for about two hours. The reaction mixture is extracted with benzene, dried and subjected to vacuum sublimation as described in Example 3. The sublimate is substantially pure 4,4-(b-enzimidazol-2- yl)stilbene.
  • EXAMPLE 8 A mixture of 2.2 g. (0.01 mole) of 4-(benzthiazol-2-yl) toluene and 1.55 g. (0.0033 mole) of Bi O is heated, under nitrogen, at about 390 C. for about one hour. The reaction mixture is extracted with benzene, dried and subjected to vacuum sublimation as described in Example 3. The sublimate is substantially pure 4,4'-bis(benzthiazol-2- yl)stilbene.
  • EXAMPLE 9 During a period of minutes, 9.6 g. of a 25% (wt.) solution of 4-cyanotoluene in benzene is contacted with 50 ml. of 4 x 20 mesh antimony tetroxide heated to 475 C. in the Vycor reactor of Example 1.
  • the aflluent from the reactor, collected as in Example 1 comprises an organic phase and an aqueous phase. Infrared analysis of the organic phase shows the presence of cis and trans 4,4'- dicyanostilbene.
  • the autoclave is closed and flushed with nitrogen and the mixture is heated under autogenous pressure for a period of one hour at 300 C.
  • the autoclave is cooled and vented.
  • the reaction product consisting of a solid and an aqueousorganic liquid is extracted with aqueous sodium hydroxide to remove arsensic oxides.
  • the remaining solid-organic liquid mixture is filtered and the filtrate contains stilbene and 4-(benzoxazol-2-yl)stilbene in addition to unchanged toluene and 4-(benzoxazol-2-yl)toluene as shown by infrared analysis.
  • the solids collected during filtration are extracted with benzene, dried and subjected to vacuum sublimation to provide substantially pure 4,4'-bis(benz oxazol-2-yl)stilbene which is identified by infrared analysis.
  • EXAMPLE 11 The sample of reduced bismuth oxide from Example 1 was reoxidized in place by heating it in air and then contacted continuously with a gaseous mixture containing 0.547 mole of toluene and 6200 ml. NTP of air at a furnace temperature of 505 C. during a period of five hours and 55 minutes. A reactor efiiuent containing water, cis and trans stilbene, and unchanged toluene, collected and identified as in Example 1, was produced continuously throughout the entire period of operation.
  • each of the substituents A is phenyl, cyanophenyl, nitrophenyl, carboxyphenyl, halophenyl, naphthylphenyl, naphthyl, cyanonaphthyl, nitronaphthyl, halonaphthyl, naphthylnaphthyl,

Description

United States Patent 3,476,747 MANUFACTURE OF 1,2-BIS(ARYL)ETHYLENES Charles W. Hargis and Howard S. Young, Kingsport,
Tenm, assignors to Eastman Kodak Company, Rochester, N.Y., a corporation of New Jersey No Drawing. Filed Oct. 20. 1965, Ser. No. 499,062 Int. Cl. C07d 85/48; C07c 121/70; D061 3/12 US. Cl. 260240 8 Claims ABSTRACT OF THE DISCLOSURE Diarylethylenes are manufactured by contacting an arylmethane with an inorganic oxidant such as arsenic pentoxide, antimony pentoxide, bismuth trioxide, manganese arsenate, or antimony tetroxide at an elevated temperature. Diarylethylenes have known utility as optical brightening agents or as active components in radiation measuring devices.
This invention relates to a novel chemical process and more particularly to a novel process for preparing 1,2- bis(aryl)ethylenes.
The 1,2-bis(aryl)ethylenes which can be prepared by the process of our invention generally are fluorescent compounds which find a wide variety of uses; e.g., as optical brighteners in the textile field, as active components in radiation measuring devices such as scintillation counters, etc.
The 1,2-bis(aryl)ethylenes are prepared in accordance with the process of our invention by contacting an arylmethane with an inorganic oxidant from the group of arsenic pentoxide, antimony pentoxide, bismuth trioxide, manganese arsenate, or antimony tetroXide at elevated temperature. If a single arylmethane is contacted with an inorganic oxidant, we obtain a symmetrical 1,2-bis(aryl)- ethylene. However, if we contact a mixture of two or more arylmethanes with the inorganic oxidant, we obtain a mixture of symmetrical and unsymmetrical 1,2-bis(aryl)ethylenes. The following general equation illustrates the process of our invention:
Inorganic Oxidant In the formulae in the preceding equation, each of the substituents A can be the same or different and is an aryl residue. The aryl residue represented by A typically has 6 to 18 carbon atoms and preferably has 6 to about 14 carbon atoms. Examples of some of the preferred aryl residues represented by A include phenyl; 4-cyanophenyl; 3-cyanopl1enyl; Z-cyanophenyl; 4-nitrophenyl; 3-nitrophenyl; 4-carboxyphenyl; 4-chlorophenyl; 3-chlorophenyl; 2-chlorophenyl; 4-bromophenyl; 3-bromophenyl; 2-bromophenyl; 4 iodophenyl; 3 iodophenyl; 2-iodophenyl; naphth-l-yl; Z-chloronaphth-l-yl; 3-bromonaphth-l-yl; 4- iodonaphth-l-yl; S-nitronaphth-l-yl; 6-cyanonaphth-l-yl; 7 chloronaphth-l-yl; 8-cyanonaphth-l-yl; naphth-Z-yl; 1- iodonaphth-Z-yl; 3-bromonaphth-2-yl; 4-nitronaphth-2-yl; S-cyanonaphth-Z-yl; 6-nitronaphth-2-yl; 7-chloronaphth-2- yl; S-iQdonaphth-Z-yl; 4-(benzoxazol-2-yl)phenyl; 3-(benzoxazol 2-yl)phenyl; Z-(benzoxazol-Z-yl)phenyl; 4- (benzimidazol 2-yl)phenyl; 3-(benzimidazol-2-yl)phenyl; 2- (benzimidazol-Z-yl)phenyl; 4-(benzthiazol-2-yl)phenyl; 3- benzimidazol 2-yl)phenyl; Z-(benzimidazol-Z-yl)phenyl; etc.
Thus, included among the preferred arylmethanes for use in the process of our invention are compounds such as:
Toluene;
4-chlorotoluene; 3-bro1'notoluene;
2-iodotoluene;
3,476,747 Patented Nov. 4 1969 ice Especially preferred among the arylmethanes for use in accordance with the process of our invention are the compounds of the formula:
in which R is preferably located meta or para to the methyl group and contains up to eight carbon atoms and is typically hydrogen, carboxy, cyano, alkoxycarbonyl, phenyl, amino, benzoxazol-Z-yl, benzimidazol-Z-yl, benzthiazol-Z-yl, etc.
The process of our invention is carried out by contacting an arylmethane with an inorganic oxidant from the group of arsenic pentoxide, antimony pentoxide, bismuth trioxide, manganese arsenate, or antimony tetroxide, or with a mixture of two or more of the inorganic oxidants at elevated temperature. In general, reaction temperatures of from about 200 C. to about 600 C. are suitable. Our invention also includes the use as oxidants of inorganic or organic compounds which under the reaction conditions employed yield one or more of the aforementioned inorganic oxidants.
The process of our invention can be carried out with the arylmethane reactant in the liquid phase or in the vapor phase at the time it is contacted with the inorganic oxidant. The pressure can vary widely; e.g., from about 0.1 atmosphere or lower to about 10 atmospheres or greater. In general, the pressure selected depends upon the chosen reaction temperature, the boiling point of the arylmethane, and whether the reaction is to be carried out with the arylmethane in the liquid phase or in the vapor phase. If the reaction is to be carried out in the liquid phase, the reaction pressure should be greater than the vapor pressure of the arylmethane at the chosen reaction temperature. If the reaction is to be carried out in the vapor phase, the reaction pressure should be lower than the vapor pressure of the arylmethane at the chosen reaction temperature.
In general, reaction temperatures of about 200 C. to about 600 C. are suitable when our process is carried out with the arylmethane in the vapor phase and reaction temperatures of about 200 C. to about 450 C. are suitable when the processis carried out with the arylmethane in the liquid phase.
When the process of our invention is carried out in a batchwise manner, the arylmethane and the inorganic oxidant are contacted in a suitable reaction vessel. Stoichiometric equivalents of the arylmethane and the inorganic oxidant are often employed. However, a stoichiometric excess of either the arylmethane or the inorganic oxidant can be employed and is often preferred for reasons of economy.
When the process of our invention is carried out in a semi-continuous or continuous manner, the arylmethane is continuously passed over the inorganic oxidant. Since the inorganic oxidant enters into the reaction and is consequently reduced during the course of the reaction, it is necessary to provide means for reoxidizing the inorganic oxidant. In a semi-continuous operation, the reaction is periodically interrupted and the inorganic oxidant is then reoxidized. In a continuous operation, means are provided for continuously reoxidizing the inorganic oxidant. For example, the inorganic oxidant can be maintained in an oxidized condition by continuously passing oxygen over the inorganic oxidant along with the arylmethane or a portion of the inorganic oxidant can be continuously or intermittently removed from the reaction zone, reoxidized, and the reoxidized inorganic oxidant can thereafter be continuously or intermittently returned to the reaction zone. The latter procedure is particularly adapted to operations in which the inorganic oxidant is in the form of a fluidized bed or a moving bed.
The inorganic oxidant can be supported or unsupported. Suitable supports for the inorganic oxidant include silica, titania, alumina, kieselguhr, etc.
Among the many valuable 1,2-bis(ary1)ethylenes which can be prepared by the process of our invention are compounds such as:
Stilbene;
4.4-dicyanostilbene;
3,4'-dicyanostilbene;
3,3 '-dicyanostilbene;
2,3 -dichlorostilbene;
2-bromo-3 -chlorostilbene;
2,2'-dibromostilbene;
3,3 '-dichlorostilbene;
4,4'-dinitrostilbene;
4,4'-bis benzoxazol-2-yl stilbene;
4,4'-bis (benzthiazol-Z-yl) stilbene;
4,4-bis (benzimid-azol-Z-yl) stilbene;
4- (benzoxazol-Z-yl -4'- (benzimidazol-2-y1) stilbene; 4- benzthiazol-2-yl)-4'-(benzthiazol-2-yl)stilbene; 4- benzthiazol-Z-yl) -4- (benzimidazol-Z-yl) stilbene; 4- (benzoxazol-Z-yl stilbene;
4- (benzimidazol-2-yl) stilbene;
4- (benzthiazol-Z-yl) stilbene;
4,4'-diphenyl stilbene; 1-naphthyl-Z-phenylethylene;
1- (naphtha-Z-yl) -2-naphthylethylene; etc.
In general, the l,2-bis(aryl)ethylenes are obtained in accordance with the process of our invention as :a mixture of the cis and trans isomers of the desired product though in some instances we obtain more of the trans isomer than the cis isomer.
The following examples illustrate the process of our invention.
EXAMPLE 1 Stilbene was prepared in a semi-continuous process from toluene according to the following procedure. Toluene was continuously contacted With bismuth oxide v(Bi O in a tubular Vycor glass reactor. The reactor was 33 inches long and had an outside diameter of 25 mm. The reactor contained 50 ml. of 4 x 20 mesh Bi O The efiluent from the reactor was collected in two receivers cooled to C. and -80 C., respectively. The toluene was passed over the Bi O at the rate of about 0.093 mole per hour for a period of about 55 minutes while the reactor temperature was held at about 505 C. by means of an electrical heater. The efiluent from the reactor which was collected in the receivers comprised an organic phase and an aqueous phase. Examination of the organic phase by infrared analysis disclosed the presence of the cis and trans isomers of stilbene as well as unchanged toluene.
EXAMPLE 2 The procedure of Example 1 is repeated except that antimony pentoxide is substituted for th Bi O and the contacting of the toluene and the inorganic oxidant is carried out at a temperature of about 450 C. Infrared analysis of the organic phase of the reaction product reveals the presence of cis and trans isomers of stilbene and unreacted toluene.
EXAMPLE 3 An intimate mixture of 2.1 g. (0.01 mole) of 4-benzoxazol-2-yl) toluene and 1.55 g. (0.0033 mole) of Bi O was heated, under nitrogen, at 348 C. for one hour. The reaction product was extracted with benzene to remove unchanged 4-(benzoxazol-2-yl)toluene and any benezene soluble impurities. The residue remaining after extraction was dried and subjected to vacuum sublimation. Substantially pure 4,4bis(benzoxazol-Z-yl)Stilbene was obtained as the sublimate while a mixture of bismuth and Bi O remained as the residue. The identity of the 4,4'- bis(benzoxazol-2-yl)stilbene was established by comparison of its infrared spectrum with that of an authentic sample.
EXAMPLE 4 An intimate mixture of 2.1 g. (0.01 mole) of 4-(benzoxazol-Z-yl) toluene and 2.3 g. (0.01 mole) of arsenic pentoxide was heated, under nitrogen, at 297 C. for two and one-half hours. The reaction product was extracted with benzene to remove unreacted 4-(benzoxazol-2-yl) toluene and benzen soluble impurities, dried, and extracted with 10% aqueous sodium hydroxide to remove arsenic oxides. The residue was then washed with water and dried. Vacuum sublimation of the dried residue gave 4,4'-bis (benzoxazol-Z-yl) stilbene.
EXAMPLE 5 A mixture of 2.1 g. (0.01 mole) of 4-(benzoxazol-2-yl) toluene and 4.4 g. (0.01 mole) of manganese arsenate is heated, under nitrogen, at a temperature of 375 C. for about three hours. The reaction product is extracted with benzene and aqueous sodium hydroxide and washed with water as described in Example 4. Vacuum sublimation of the dried residue gives 4,4'-bis(benzoxazol-Z-yl)stilbene.
EXAMPLE 6 A mixture of 2.1 g. (0.01 mole) of 4-(benzoxazol-2-yl) toluene and 3.2 g. (0.01 mole) of antimony pentoxide is heated, under nitrogen, at a temperature of about 225 C. for about four and one-half hours. The residue is extracted with benzene. Vacuum sublimation of the dried residue gives 4,4'-bis(benzoxazol-Z-yl) stilbene.
EXAMPLE 7 A mixture of 2.1 g. (0.01 mole) of 4-(benzimidazol-2- yl)toluene and 1.55 g. (0.0033 mole) of Bi O is heated, under nitrogen, at about 325 C. for about two hours. The reaction mixture is extracted with benzene, dried and subjected to vacuum sublimation as described in Example 3. The sublimate is substantially pure 4,4-(b-enzimidazol-2- yl)stilbene.
EXAMPLE 8 A mixture of 2.2 g. (0.01 mole) of 4-(benzthiazol-2-yl) toluene and 1.55 g. (0.0033 mole) of Bi O is heated, under nitrogen, at about 390 C. for about one hour. The reaction mixture is extracted with benzene, dried and subjected to vacuum sublimation as described in Example 3. The sublimate is substantially pure 4,4'-bis(benzthiazol-2- yl)stilbene.
EXAMPLE 9 During a period of minutes, 9.6 g. of a 25% (wt.) solution of 4-cyanotoluene in benzene is contacted with 50 ml. of 4 x 20 mesh antimony tetroxide heated to 475 C. in the Vycor reactor of Example 1. The aflluent from the reactor, collected as in Example 1, comprises an organic phase and an aqueous phase. Infrared analysis of the organic phase shows the presence of cis and trans 4,4'- dicyanostilbene.
EXAMPLE A mixture of 46 g. (0.5 mole) of toluene, 21 g. (0.1 mole of 4-(benzoxazol-2-yl)toluene, and 23 g. (0.1 mole) of arsenic pentoxide is charged to a 250 ml. titaniumlined autoclave. The autoclave is closed and flushed with nitrogen and the mixture is heated under autogenous pressure for a period of one hour at 300 C. At the end of the reaction period the autoclave is cooled and vented. The reaction product, consisting of a solid and an aqueousorganic liquid is extracted with aqueous sodium hydroxide to remove arsensic oxides. The remaining solid-organic liquid mixture is filtered and the filtrate contains stilbene and 4-(benzoxazol-2-yl)stilbene in addition to unchanged toluene and 4-(benzoxazol-2-yl)toluene as shown by infrared analysis. The solids collected during filtration are extracted with benzene, dried and subjected to vacuum sublimation to provide substantially pure 4,4'-bis(benz oxazol-2-yl)stilbene which is identified by infrared analysis.
EXAMPLE 11 The sample of reduced bismuth oxide from Example 1 was reoxidized in place by heating it in air and then contacted continuously with a gaseous mixture containing 0.547 mole of toluene and 6200 ml. NTP of air at a furnace temperature of 505 C. during a period of five hours and 55 minutes. A reactor efiiuent containing water, cis and trans stilbene, and unchanged toluene, collected and identified as in Example 1, was produced continuously throughout the entire period of operation.
We claim:
1. The process which comprises contacting an arylmethane of the formula ACH with an inorganic oxidant selected from arsenic pentoxide, antimony pentoxide, bismuth trioxide, manganese arsenate or antimony tetraoxide at an elevated temperature of about 200 C. to about 600 C. to obtain at least one 1,2-diarylethylene of the formula ACH=CHA in which each of the substituents A is phenyl, cyanophenyl, nitrophenyl, carboxyphenyl, halophenyl, naphthylphenyl, naphthyl, cyanonaphthyl, nitronaphthyl, halonaphthyl, naphthylnaphthyl,
benzoxazolylphenyl, benzimadazolylphenyl or benzothiazolylphenyl.
2. The process of claim 1 in which the arylmethane, in the vapor phase, is contacted with the inorganic oxidant.
3. The process (if claim 1 in which the arylmethane, in the liquid phase, is contacted with the inorganic oxidant at a temperature of about 200 C. to about 450 C.
4. The process of claim 1 in which the arylmethane is from the group of:
(a) toluene;
(b) 4-(benzoxazol-2-yl)toluene;
(c) 4-(benzimidazol 2 yl)toluene;
(d) 4-(benzthiazol-2-yl)toluene; or
(e) 4-cyanotoluene.
5. The process of claim 4 in which an arylmethane, in the vapor phase; is contacted with an organic oxidant.
6. The process of claim 5 in which the arylmethane is 4-(benzoxazol-2-yl)toluene and the 1,2 bis(aryl)ethylene is 4,4'-bis(benzoXazol-Z-yl)stilbene.
7. The process 'of'claim 4 in which an arylmethane, in the liquid phase, is contacted with the inorganic oxidant at a temperature of about 200 C. to about 450 C.
8. The process of-claim 7 in which the arylmethane is 4-(benzoxazol-2-yl)toluene and the 1,2 bis(aryl)ethy1- ene is 4,4'-bis(benzoxazol-Z-yl)stilbene.
' References Cited UNITED STATES PATENTS 2,483,392 10 1949 Meyer et a1. 260-240 3,336,408 8/1967 Capp et a1 260-669 FOREIGN PATENTS 1,415,048 9/1965 France.
861,240 2/ 1961 England.
OTHER REFERENCES Toland et al.: J. Am. Chem. Soc., vol. 75, pp. 2263 to 2264 (1953).
JOHN D. RANDOLPH, Primary Examiner US. Cl. X.R.
F UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3, 7 7 7 Dated November 1. 1963 lnvemods) Charles W. Hargis and Howard S. Young It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 6, Claim 4, subparagraph (c), "4-(benzimidazol 2 yl) toluene" should read L-(benzimidazol-Q-yl)toluene Column 6, Claim 5, gcorresponding to original Claim 7 in the application) 'organic' should read inorganic SIGNED AN SEALED MAY 2 61970 (SEAL) Attest: m
WILLIAM E. 'SYCIHUYLER, Edwa Fletcher' Commissioner of Patents Attesting Off TEC 0261
US499062A 1965-10-20 1965-10-20 Manufacture of 1,2-bis(aryl)ethylenes Expired - Lifetime US3476747A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US49906265A 1965-10-20 1965-10-20

Publications (1)

Publication Number Publication Date
US3476747A true US3476747A (en) 1969-11-04

Family

ID=23983664

Family Applications (1)

Application Number Title Priority Date Filing Date
US499062A Expired - Lifetime US3476747A (en) 1965-10-20 1965-10-20 Manufacture of 1,2-bis(aryl)ethylenes

Country Status (2)

Country Link
US (1) US3476747A (en)
GB (1) GB1164648A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761536A (en) * 1971-12-16 1973-09-25 Gulf Research Development Co Process for coupling propylene and isobutylene
DE2500023A1 (en) * 1974-01-02 1975-07-10 Monsanto Co METHOD FOR MANUFACTURING STILBEN AND STYRENE
US3965206A (en) * 1974-01-02 1976-06-22 Monsanto Company Production of stilbene and styrene
US4091044A (en) * 1976-10-27 1978-05-23 Monsanto Company Dehydrocoupling process
US4104318A (en) * 1977-05-27 1978-08-01 Gulf Research & Development Company Process for removing organic oxygen-containing impurities from an organic composition in the presence of steam
US4108887A (en) * 1975-02-05 1978-08-22 Sandoz Ltd. Divinyl stilbenes as optical brighteners
US4117021A (en) * 1977-05-27 1978-09-26 Gulf Research & Development Company Process for removing organic oxygen-containing impurities from an organic composition
US4183828A (en) * 1976-10-27 1980-01-15 Monsanto Company Catalyst for dehydrocoupling process
US4196229A (en) * 1975-02-05 1980-04-01 Sandoz Ltd. Substituted divinyl stilbenes as optical brighteners
US4243825A (en) * 1979-12-10 1981-01-06 Monsanto Company Dehydrocoupling of toluene
US4247727A (en) * 1979-12-10 1981-01-27 Monsanto Company Dehydrocoupling of toluene
US4254293A (en) * 1979-12-10 1981-03-03 Monsanto Company Dehydrocoupling of toluene
US4255603A (en) * 1979-12-10 1981-03-10 Monsanto Company Dehydrocoupling of toluene
US4255602A (en) * 1979-12-10 1981-03-10 Monsanto Company Stilbene formation by means of toluene dehydrocoupling using a cobalt-lanthanide catalyst
US4255604A (en) * 1979-12-10 1981-03-10 Monsanto Company Dehydrocoupling of toluene
US4268704A (en) * 1979-12-10 1981-05-19 Monsanto Company Dehydrocoupling of toluene
US4268703A (en) * 1979-12-10 1981-05-19 Monsanto Company Dehydrocoupling of toluene
US4278825A (en) * 1979-12-10 1981-07-14 Monsanto Company Dehydrocoupling of toluene
US4278824A (en) * 1979-12-10 1981-07-14 Monsanto Company Dehydrocoupling of toluene
US4278826A (en) * 1979-12-10 1981-07-14 Monsanto Company Dehydrocoupling of toluene
EP0031654B1 (en) * 1979-12-10 1983-02-16 Monsanto Company Dehydrocoupling of toluene
US4460705A (en) * 1981-12-29 1984-07-17 Kureha Kagaku Kogyo Kabushiki Kaisha Catalyst for oxidative dimerization
US4921964A (en) * 1989-03-01 1990-05-01 Eastman Kodak Company Process for the preparation of stilbene derivatives
CN102070551A (en) * 2010-12-29 2011-05-25 河北星宇化工有限公司 Method for preparing 2,2'-(1,2-Ethenediyldi-4,1-phenylene)bisbenzoxazole
WO2016036265A1 (en) * 2014-09-07 2016-03-10 Uniwersytet Jagielloński Use of 2-(4-styrylphenyl)benzoxazole and plastic scintillator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2483392A (en) * 1949-10-04 Substituted ethylenes and process
GB861240A (en) * 1958-03-14 1961-02-15 Sterling Drug Inc Process for the preparation of 4,4-bis(benzimidazol-2-yl) stilbene
FR1415048A (en) * 1963-11-14 1965-10-22 Ciba Geigy New bis-oxazolyl-stilbenic derivatives, their preparation process and their use
US3336408A (en) * 1963-08-13 1967-08-15 Distillers Co Yeast Ltd Production of alkenyl benzenes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2483392A (en) * 1949-10-04 Substituted ethylenes and process
GB861240A (en) * 1958-03-14 1961-02-15 Sterling Drug Inc Process for the preparation of 4,4-bis(benzimidazol-2-yl) stilbene
US3336408A (en) * 1963-08-13 1967-08-15 Distillers Co Yeast Ltd Production of alkenyl benzenes
FR1415048A (en) * 1963-11-14 1965-10-22 Ciba Geigy New bis-oxazolyl-stilbenic derivatives, their preparation process and their use

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761536A (en) * 1971-12-16 1973-09-25 Gulf Research Development Co Process for coupling propylene and isobutylene
DE2500023A1 (en) * 1974-01-02 1975-07-10 Monsanto Co METHOD FOR MANUFACTURING STILBEN AND STYRENE
US3965206A (en) * 1974-01-02 1976-06-22 Monsanto Company Production of stilbene and styrene
US4108887A (en) * 1975-02-05 1978-08-22 Sandoz Ltd. Divinyl stilbenes as optical brighteners
US4196229A (en) * 1975-02-05 1980-04-01 Sandoz Ltd. Substituted divinyl stilbenes as optical brighteners
US4091044A (en) * 1976-10-27 1978-05-23 Monsanto Company Dehydrocoupling process
FR2369233A1 (en) * 1976-10-27 1978-05-26 Monsanto Co DEHYDROCOUPLAG PROCESS
US4183828A (en) * 1976-10-27 1980-01-15 Monsanto Company Catalyst for dehydrocoupling process
US4104318A (en) * 1977-05-27 1978-08-01 Gulf Research & Development Company Process for removing organic oxygen-containing impurities from an organic composition in the presence of steam
US4117021A (en) * 1977-05-27 1978-09-26 Gulf Research & Development Company Process for removing organic oxygen-containing impurities from an organic composition
US4255602A (en) * 1979-12-10 1981-03-10 Monsanto Company Stilbene formation by means of toluene dehydrocoupling using a cobalt-lanthanide catalyst
US4278824A (en) * 1979-12-10 1981-07-14 Monsanto Company Dehydrocoupling of toluene
US4254293A (en) * 1979-12-10 1981-03-03 Monsanto Company Dehydrocoupling of toluene
US4255603A (en) * 1979-12-10 1981-03-10 Monsanto Company Dehydrocoupling of toluene
US4243825A (en) * 1979-12-10 1981-01-06 Monsanto Company Dehydrocoupling of toluene
US4255604A (en) * 1979-12-10 1981-03-10 Monsanto Company Dehydrocoupling of toluene
US4268704A (en) * 1979-12-10 1981-05-19 Monsanto Company Dehydrocoupling of toluene
US4268703A (en) * 1979-12-10 1981-05-19 Monsanto Company Dehydrocoupling of toluene
US4278825A (en) * 1979-12-10 1981-07-14 Monsanto Company Dehydrocoupling of toluene
US4247727A (en) * 1979-12-10 1981-01-27 Monsanto Company Dehydrocoupling of toluene
US4278826A (en) * 1979-12-10 1981-07-14 Monsanto Company Dehydrocoupling of toluene
EP0031654B1 (en) * 1979-12-10 1983-02-16 Monsanto Company Dehydrocoupling of toluene
US4460705A (en) * 1981-12-29 1984-07-17 Kureha Kagaku Kogyo Kabushiki Kaisha Catalyst for oxidative dimerization
US4517397A (en) * 1981-12-29 1985-05-14 Kureha Kaguku Kogyo Kabushiki Kaisha Oxidative dimerization of toluene
US4921964A (en) * 1989-03-01 1990-05-01 Eastman Kodak Company Process for the preparation of stilbene derivatives
CN102070551A (en) * 2010-12-29 2011-05-25 河北星宇化工有限公司 Method for preparing 2,2'-(1,2-Ethenediyldi-4,1-phenylene)bisbenzoxazole
CN102070551B (en) * 2010-12-29 2012-06-20 河北星宇化工有限公司 Method for preparing 2,2'-(1,2-Ethenediyldi-4,1-phenylene)bisbenzoxazole
WO2016036265A1 (en) * 2014-09-07 2016-03-10 Uniwersytet Jagielloński Use of 2-(4-styrylphenyl)benzoxazole and plastic scintillator
US10329481B2 (en) * 2014-09-07 2019-06-25 Uniwersytet Jagiellonski Use of 2-(4-styrylphenyl)benzoxazole and plastic scintillator

Also Published As

Publication number Publication date
GB1164648A (en) 1969-09-17

Similar Documents

Publication Publication Date Title
US3476747A (en) Manufacture of 1,2-bis(aryl)ethylenes
US3262929A (en) 2-styrylbenzoxazole compounds
NO121015B (en)
US3407196A (en) Benzoxazolylstilbenes
US4032558A (en) Para-phenyl stilbene derivatives
DE60115080T2 (en) PROCESS FOR PREPARING BIS-BENZAZOLYL COMPOUNDS
US2774758A (en) Morpholine derivative
US3773751A (en) Synthesis of nitroaromatic-azophenols
US3176017A (en) Aroylalkyl derivatives of diazabicyclo-nonanes and-decanes
US4327209A (en) Process for the production of dibenzazolyl compounds
US3095421A (en) Bis-azolyl-tetrahydrothiophene compounds
US3901883A (en) Azole compounds
GB861472A (en) N-arylmaleamic acids and the manufacture of ª‡:ª‰-di-(arylazolyl)-ethylene derivatives
US3127416A (en) New chlorinated dicarboxylic acid dichloride and process for its manufacture
US4179578A (en) Para-phenyl stilbene derivatives
US2691019A (en) O-hydroxyaryl dihalotkiazines
US3728339A (en) Styryl compounds
US2658893A (en) Preparation of halodiaminotriazines
JPS61254670A (en) Production of linear quinacridon
DE1594835A1 (en) New tolane derivatives and their use as optical brightening agents
US3546217A (en) Novel symmetrical heterocyclicly substituted stilbenes and process therefor
US3860584A (en) 4,4{40 -Bis-{8 benzoxazolyl-(2){9 -stilbenes
US2708670A (en) Preparation of a thiadiazole compound
US3186998A (en) 3, 4-disubstituted-1, 2, 5-thiadiazolidine-1, 1-dioxide compounds
RU2802966C1 (en) Method for obtaining 3-hetaryl-7-aminocumarins