US3473238A - Rotary cylinder dryer - Google Patents

Rotary cylinder dryer Download PDF

Info

Publication number
US3473238A
US3473238A US540295A US3473238DA US3473238A US 3473238 A US3473238 A US 3473238A US 540295 A US540295 A US 540295A US 3473238D A US3473238D A US 3473238DA US 3473238 A US3473238 A US 3473238A
Authority
US
United States
Prior art keywords
dryer
shell
removal
nozzles
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US540295A
Other languages
English (en)
Inventor
James E Talley Jr
Wilbur A Spraker Jr
Richard L Elderkin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimberly Clark Tissue Co
Original Assignee
Scott Paper Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scott Paper Co filed Critical Scott Paper Co
Application granted granted Critical
Publication of US3473238A publication Critical patent/US3473238A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F5/00Dryer section of machines for making continuous webs of paper
    • D21F5/02Drying on cylinders
    • D21F5/10Removing condensate from the interior of the cylinders

Definitions

  • a rotary cylinder dryer which has an improved condensate removal system which makes possible the drying of webs at even higher speeds than heretofore attainable with increased drying uniformity and with no increase in steam requirements.
  • a particular relationship is disclosed between structural elements of the dryer which enables the above advantages to be attained.
  • the radially outermost ends of the removal nozzles are closely spaced from the inner surface of the dryer shell by a distance of less than a predetermined maximum spacing of /8 inch.
  • This invention relates to a rotary cylinder dryer and, more particularly, to dryer drums used in paper machines of the type normally referred to as Yankee dryers, and to an improved condensate removal system for use there-
  • Traditional Yankee dryers generally consists of a cylindrical shell, spaced heads extending radially across the shell to close the open ends thereof, journals for rotata'bly carrying the shell, and means for introducing steam into the interior of the shell and for withdrawing condensate therefrom.
  • the present invention relates to improvements in both of the above areas and, furthermore, surprisingly accomplishes these improvements while utilizing substantially the same steam volume as before and, in some instances, even less than before. Even more surprising is the fact that a web can be dried under the above improved conditions at a slightly higher web speed than previously experienced. It can be seen that all of these advances in quality and output are important and especially so in a business where machines require such a large capital investment and operate substantially continuously and at the highest capacity possible.
  • the layer of condensate upon the shell is often not uniform in coverage and thickness, and therefore, differentially insulates portions of the dryer shell, preventing optimum and uniform heat transfer from the steam to the outer surface of the shell. This results in uneven drying of the paper web upon the shell and the creation of noticeable hot spots on the shell surface which mark and physically degrade the paper Web. In other instances, cold spots are created in the surface of the dryer shell between hotter areas, and the resulting paper web will have damp spots left in it where the paper web overlying the cold spots was insufi'iciently dried.
  • the present invention involves the application of the principle that to achieve uniform drying, the areas of the inside surface of the dryer shell in which substantial differential steam velocity is experienced must be reduced to fall within a certain critical relationship with other design parameters of a dryer shell.
  • the present invention removes condensate from the inner surface of the shell generally in the conventional manner, that is, by sweeping it toward and into removal nozzles by steam flow
  • the removal nozzles of the invention are designed and constructed and positioned relative to the inner surface of the dryer shell in a particular manner.
  • their design parameters fall Within a certain critical relationship relative to their distance from the inner surface of the shell and the thickness of the shell, whereupon the advantageous features of the invention are achieved.
  • the outer cross-sectional major axis or diametric measurement of the radial- 1y outermost end of the removal nozzles has a predetermined relationship to the thickness of the dryer shell so that the area of the inner surface of the dryer shell directly radially outward from the outer end of each removal nozzle is of restricted size.
  • These areas represent the regions where the velocity of the steam is substantially differentially increased from other portions of the dryer.
  • Another feature of the invention is the distribution of removal nozzles within the dryer chamber. It is believed that the use of more closely spaced nozzles in dryers according to the invention is one factor which improves dryer efiiciency and uniformity of operation. Thus, the increased removal nozzle concentration, both axially and circumferentially, not only reduces the thickness of the condensate layer overall, but also insures a more uniformly thick condensate layer. This is due to the removal action of many relatively small cross-sectional area removal nozzles rather than of fewer relatively large crosssectional area removal nozzles.
  • FIGURE 1 is an elevation view of a dryer of the invention
  • FIGURE 2 is a sectional view of the dryer shown in FIGURE 1, taken along lines 22 of FIGURE 1.
  • FIGURE 3 is a greatly enlarged sectional view of the header support means taken along line 33 of FIG- URE 1.
  • FIGURE 4 is a greatly enlarged sectional view of a typical condensate removal nozzle constructed and arranged relative to a dryer shell in accordance with the invention and illustrating some of the relationship involved,
  • FIGURE 5 is a greatly enlarged sectional view of a relatively conventional condensate removal nozzle and a portion of a dryer shell, schematically illustrating the manner in which isothermals propagate through the shell with this arrangement,
  • FIGURE 6 is a greatly enlarged sectional view of a condensate removal nozzle of the invention and a portion of a dryer shell, schematically illustrating the manner in which isothermals propagate through the shell with this arrangement, and
  • FIGURES 7 and 8 are greatly enlarged sectional views of alternative arrangements of condensate removal nozzles and headers relative to a dryer shell in accordance with the invention.
  • FIG. 1 of the drawings there is shown a dryer drum 10 of the invention, only the lower half being shown in section and only one header unit and associated nozzles being shown for simplification of description of the instant invention.
  • the dryer drum 10 includes a cylindrical shell 11 having open ends closed by annular heads 12 and 13, secured to the ends of the shell 11, as by bolts as is well known, and extending radially across the ends of the shell 11.
  • the shell 11 and the spaced apart heads 12 and 13 define an interior chamber 14 within the dryer 10.
  • Journals 16 and 17 are attached to the heads 12 and 13 respectively, and extend axially outwardly therefrom to be received by suitable bearings (not shown) for rotatably mounting the dryer drum 10.
  • each of the journals 16 and 17 is provided with an axial bore 18 and 19, respectively, which extends into the chamber 14 through the heads 12 and 13 of the dryer drum 10.
  • a source of steam (not shown) is connected by means of a conduit 20 to the axial bore 18 within journal 16 which extends through head 12 and opens into the chamber 14 allowing the flow of steam into the dryer chamber. It will be apparent that many types and arrangements of steam supply nozzles could be used to accomplish the function of inserting steam into the dryer chamber with varying effects and degrees of success, largely unimportant to the instant invention.
  • a header 22, comprising an elongate hollow pipe closed at both ends adjacent the heads 12 and 13 of the dryer drum 10 is disposed adjacent to but spaced from the outer periphery of the chamber 14 defined by the inner surface of cylindrical shell 11.
  • the header 22 is slightly spaced radially inwardly from the inner surface of the cylindrical shell and is substantially parallel to the cylindrical axis of the dryer drum 10.
  • the header 22 has a plurality of removal nozzles 23 opening into its interior and extending from header 22 to a position less remotely spaced from the inside surface of the cylindrical shell 11.
  • the interior of the header 22 is connected by means of a conduit 24 to the axial bore 19 of an inwardly extending end of the journal 17 passing through the head 13 of the dryer drum 10.
  • the chamber 14 is connected by means of the removal nozzles 23, header 22, conduit 24 and inwardly extending journal 17 to a point exterior of the cham' ber 14 and the dryer shell 11 so as to allow outward fluid flow of condensate and steam from within the chamber 14 of the dryer drum 10.
  • header 22 andconduit 24 have been shown in FIGURE 1 for purposes of clarity and simplification, it should be clearly understood the use of a plurality of such headers 22 spaced in a manner to be subsequently described and each being connected to the exterior by a conduit 24 is contemplated in dryers according to the invention. Furthermore, more than one conduit 24 can be employed for each header 22 and different arrangements of removal nozzles 23 can be utilized successfully. A typical arrangement of removal nozzles 23, headers 22, conduits 24, etc., is shown more clearly by FIGURE 2.
  • the header could be of a substantially different design but primarily serves as a primary collection chamber into which a group of removal nozzles feed condensate and steam. As shown in FIGURES 7 and 8, a single header could be used as the collection chamber for several circumferentially spaced elongate groups of nozzles.
  • the nozzles may be arranged in axial alignment with each other in each elongate group, as shown in FIGURES 1 and 2.
  • the nozzles may be arranged in elongate groups extending axially across the dryer, but not in axial alignment.
  • the nozzles 23 comprise cylindrical tubes but the term tubes is intended to include any duct member or conduit which will serve to convey steam and condensate from the surface to header 22.
  • the cross-section may be any configuration and need not be necessarily circular.
  • each of the removal nozzles employed had a relatively large inside diameter adjacent the radially outermost ends thereof to accommodate the relatively large share of the total steam and condensate flow required to be carried per nozzle.
  • Drum dryers of the invention employ a much greater number of removal nozzles 23, each having a smaller inside diameter, thereby balancing and providing the capacity to handle the total steam flow of the dryer.
  • these smaller nozzles are spaced much more closely together, in accordance with the in vention, to more evenly control and more closely restrict the thickness of the condensate layer.
  • the use of such nozzles and such a distribution pattern adjacent a cylindrical dryer shell has surprisingly resulted in the additional benefit and advantage of reducing or eliminating hot spots on the outside surface of the dryer shell.
  • the removal nozzles 23 should be spaced apart from each other in an axial direction across the dryer shell by a distance of no more than 12 inches.
  • the more preferred spacing is a distance of no more than 6 inches, while the most preferred spacing is a distance of no more than 3 inches.
  • the nozzles 23 are arranged in rows, and aligned along the length of each header. However, they may be staggered from header 22 to header 22 or may be arranged differently, but preferably are arranged in spaced axially aligned elongate groups across the cylindrical dryer drum.
  • the headers 22 also have a desired circumferential spacing from each other around the inner periphery of the shell 11 and the chamber 14.
  • the headers should be circumferentially spaced from each other by a distance of no more than 36 inches.
  • the more preferred spacing is a distance of no more than 24 inches, while the most preferred spacing is a distance of no more than 18 inches.
  • FIG- URE 3 illustrates the manner in which headers 22 are supported on the dryer shell 11 and adjustably moved toward or away from the inner surface thereof.
  • a plurality of internally threaded bosses 27 depend radially outwardly from the sidewall of each cylindrical header 22 along an axially aligned segment of its periphery.
  • a threaded support member 28 is threaded into each boss 27 and has a lock nut 29 for maintaining it in the finally selected position. The opposite end of member 28 extends into contact with a support boss 30 on the inner surface of the shell 11 to firmly position the header 22 within the chamber.
  • conduits 24 allows radially outward and inward movement of headers 22 upon adjustment and rotation of support member 28 within bosses 27. This can be facilitated by arranging conduits 24, between headers 22 and journal 17, in a manner other than radial and perpendicular to the axis of the dryer drum 10 and journal 17 as shown in FIGURES l and 2. Centrifugal force tends to hold headers 22 in position in contact with the inner surface of shell 11 during rotation of dryer drum 10. In some instances, the ends of headers 22 are slidably attached to and supported by heads 12 and 13 to insure support of the headers 22 when rotation of the dryer drum 10 ceases.
  • the radially outermost open ends 25 of removal nozzles 23 are spaced from the inner surface of shell 11 by a lesser distance than has been the case in dryers of the prior art.
  • the cross-sectional area of the passage through the removal nozzles should preferably be greater than the area represented by the outside circumference of the radially outermost end 25 of the removal nozzle 23 multiplied by the distance between the surface of a condensate layer directly outward from such outermost end 25. That latter area represents the minimum area through which the steam and condensate are forced to pass and, therefore, represents the area where the greatest velocity is attained by the steam causing it to pick up condensate.
  • FIGURE 4 is an enlarged diagrammatic sectional view illustrating the above principle and the manner in which it is advantageously applied to a dryer of the invention.
  • a condensate layer 32 is shown as it appears on the inner surface of the cylindrical shell 11.
  • the shell thickness is indicated by the reference character T while the thickness of the condensate layer directly beneath the outermost end 25 of removal nozzle 23 is represented by t.
  • the inside diameter of removal nozzle 23 is represented by d
  • D the outside diameter of the outermost end 25 of removal nozzle 23
  • the distance between the outermost end 25 of removal nozzle 23 and the surface of condensate layer 32 directly radially outward from the nozzle is represented by s.
  • the total distance between the inner surface of the shell 11 and the outermost end 25 of removal nozzle 23 is represented by S.
  • the cross-sectional area of the nozzle equal to 7rd /4, should generally be greater than the value of the circumference of the nozzle 1rD, multiplied by s. This insures that the space where the greatest steam velocity occurs is between the outermost end 25 of the nozzle 23 and the inner surface of shell 11. Be cause of this velocity, the steam picks up condensate here and sweeps and carries it upward through the removal nozzle and into header 22.
  • Another preferred relationship which should be maintained in a dryer of the invention, involves the relationship of the area on the inner surface of shell 11 which is directly beneath the outer end 25 of each removal nozzle 23, and the thickness of the shell T. It has been found that this relationship can be expressed as a ratio of D to T and should be between about 1:4 and about 1:10. Thus, the greater the value of T is in proportion to D, the greater is the tendency for a higher temperature area on the inner surface of the dryer shell to dissipate and distribute itself in the dryer shell before propagating through the shell to the outer surface thereof and forming a hot spot. The temperature difference between any hot spot which does form and the adjacent portion of the dryer surface is much less. Also, the area of any hot spot which does occur is much smaller.
  • the preferred ratio of D to T is between about 1:6 and about 1:10. The significance of this ratio can be more clearly seen by referring to FIGURES 5 and 6.
  • FIGURE 5 is a greatly enlarged sectional view of a condensate removal nozzle of conventional size relative to the thickness of shell 11 and illustrates the manner in which heat is propagated or transferred through the shell 11.
  • the ratio of D to T is approximately 1:2 and the lines 33, representing isothermal lines within the shell 11, illustrate the formation of a hot spot on the exterior surface of shell 11.
  • FIGURE 5 indicates the formation of hot spots which could create temperature differentials in approximately circular areas having a diameter equal to or greater than D of 30 F. or more. As described above, such hot spots cause degradation of the paper being dried on the dryer.
  • FIGURE 6 illustrates a similar diagrammatic view incorporating a removal nozzle 23 spaced closer to the inner surface 38 of shell 11.
  • the relationship of D to T in this diagram is approximately 1:6 and a similar temperature difference is maintained generally between inner surface 38 and the outer surface 39.
  • An analysis of the isothermal lines 40, again representing 10 F. temperature differentials, illustrates the relatively small area of the hot spot created on the outer surface 39 of shell 11. Additionally, and even more significantly it should be noted that the hot spot in this arrangement not only has a greatly reduced diameter but, furthermore, has a temperature which does not exceed the temperature of other portions of outer surface 39 by more than 10 F.
  • FIGURES 7 and 8 illustrate different arrangements of nozzles in accordance with the invention.
  • This arrangement provides a means to limit the length of circumferential path which condensate must follow to reach a removal nozzle and, accordingly, results in a reduction in condensate layer thickness.
  • a cylindrical shell a head closing each end of said shell, said shell and said heads defining a chamber
  • means for supplying steam into said chamber through one of said heads a plurality of spaced apart removal nozzles disposed adjacent the inside surface of said shell, said tubes having a circular cross-section and an inside diameter no greater than about inch at the radially outermost end portions thereof, the outermost open ends of said tubes being spaced radially inwardly from the inner surface of said shell by a distance no greater than about inch and being spaced apart from each other in an axial direction across said dryer shell by a distance of no more than about 3 inches
  • means connecting said removal nozzles with the exterior of said shell through one of said heads for removing steam and condensate from said chamber including a plurality of headers extending longitudinally across the axial width of said dryer and disposed about the periphery of said chamber in positions spaced from and adjacent to the inner surface of said dryer shell, said tubes being arranged to terminate within said

Landscapes

  • Drying Of Solid Materials (AREA)
  • Paper (AREA)
US540295A 1966-04-05 1966-04-05 Rotary cylinder dryer Expired - Lifetime US3473238A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US54029566A 1966-04-05 1966-04-05

Publications (1)

Publication Number Publication Date
US3473238A true US3473238A (en) 1969-10-21

Family

ID=24154842

Family Applications (1)

Application Number Title Priority Date Filing Date
US540295A Expired - Lifetime US3473238A (en) 1966-04-05 1966-04-05 Rotary cylinder dryer

Country Status (4)

Country Link
US (1) US3473238A (US20070167479A1-20070719-C00034.png)
BE (1) BE690198A (US20070167479A1-20070719-C00034.png)
DE (1) DE1629069B1 (US20070167479A1-20070719-C00034.png)
GB (1) GB1121577A (US20070167479A1-20070719-C00034.png)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069594A (en) * 1975-08-06 1978-01-24 Sulzer Brothers Limited Drying cylinder
US4232455A (en) * 1977-12-03 1980-11-11 Beloit Corporation Dryer drum condensate removal apparatus
US4691452A (en) * 1986-07-18 1987-09-08 Duff Norton Company Articulable siphon tube assembly for dryer drum
US5537756A (en) * 1993-07-01 1996-07-23 Voith Sulzer Papiermaschinen Gmbh Device for evacuating condensate from a fluted drying cylinder by means of condensate evacuation pipes
EP0784046B2 (de) 1996-01-12 2005-04-06 Basf Aktiengesellschaft Verfahren zur Herstellung von Acrylsäure und deren Estern
US20070245588A1 (en) * 2006-04-21 2007-10-25 Haurie Osvaldo R Cylindrical dryer having conduits for heating medium
US20070289156A1 (en) * 2005-01-05 2007-12-20 Rainer Kloibhofer Device and method for producing and/or finishing a fibrous material
US20110067257A1 (en) * 2009-09-21 2011-03-24 Richard Fearnside Yankee dryer having centrifugally assisted condensate collection
US8127462B2 (en) 2006-04-21 2012-03-06 Osvaldo Ricardo Haurie Cylindrical dryer having conduits provided within a plurality of holding plates

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3022047A (en) * 1957-11-04 1962-02-20 Swaney Robert Casper Stabil-heat drier
US3169050A (en) * 1961-01-25 1965-02-09 Scott Paper Co Rotary cylinder drying drum with stress relieving expansion means
US3299530A (en) * 1965-03-11 1967-01-24 Kimberly Clark Co Papermaking machine
US3299531A (en) * 1964-08-21 1967-01-24 Kimberly Clark Co Papermaking machine
US3325910A (en) * 1964-03-17 1967-06-20 Waertsilae Oy Ab Drying cylinder for drying the wet material web for instance in paper and cellulose machines

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2521371A (en) * 1946-05-08 1950-09-05 Beloit Iron Works Dipper for grooved drier drums

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3022047A (en) * 1957-11-04 1962-02-20 Swaney Robert Casper Stabil-heat drier
US3169050A (en) * 1961-01-25 1965-02-09 Scott Paper Co Rotary cylinder drying drum with stress relieving expansion means
US3325910A (en) * 1964-03-17 1967-06-20 Waertsilae Oy Ab Drying cylinder for drying the wet material web for instance in paper and cellulose machines
US3299531A (en) * 1964-08-21 1967-01-24 Kimberly Clark Co Papermaking machine
US3299530A (en) * 1965-03-11 1967-01-24 Kimberly Clark Co Papermaking machine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069594A (en) * 1975-08-06 1978-01-24 Sulzer Brothers Limited Drying cylinder
US4232455A (en) * 1977-12-03 1980-11-11 Beloit Corporation Dryer drum condensate removal apparatus
US4691452A (en) * 1986-07-18 1987-09-08 Duff Norton Company Articulable siphon tube assembly for dryer drum
US5537756A (en) * 1993-07-01 1996-07-23 Voith Sulzer Papiermaschinen Gmbh Device for evacuating condensate from a fluted drying cylinder by means of condensate evacuation pipes
EP0784046B2 (de) 1996-01-12 2005-04-06 Basf Aktiengesellschaft Verfahren zur Herstellung von Acrylsäure und deren Estern
US20070289156A1 (en) * 2005-01-05 2007-12-20 Rainer Kloibhofer Device and method for producing and/or finishing a fibrous material
US20070245588A1 (en) * 2006-04-21 2007-10-25 Haurie Osvaldo R Cylindrical dryer having conduits for heating medium
US7614161B2 (en) * 2006-04-21 2009-11-10 Osvaldo Ricardo Haurie Cylindrical dryer having conduits for heating medium
US8127462B2 (en) 2006-04-21 2012-03-06 Osvaldo Ricardo Haurie Cylindrical dryer having conduits provided within a plurality of holding plates
US20110067257A1 (en) * 2009-09-21 2011-03-24 Richard Fearnside Yankee dryer having centrifugally assisted condensate collection

Also Published As

Publication number Publication date
GB1121577A (en) 1968-07-31
BE690198A (US20070167479A1-20070719-C00034.png) 1967-05-25
DE1629069B1 (de) 1970-11-12

Similar Documents

Publication Publication Date Title
US3473238A (en) Rotary cylinder dryer
US3724094A (en) Rotary drying drum
US3169050A (en) Rotary cylinder drying drum with stress relieving expansion means
KR860001629B1 (ko) 제지기계용 건조기기구
US2420824A (en) Fluid removal device for drying drums
US3359647A (en) Rotary drum drier with improved condensate withdrawal means
US3416237A (en) Method and apparatus for drying flexible material such as paper and board formed from cellulosic fibrous material
USRE25927E (en) Drying drum amd method
US3553849A (en) Rotary dryer drum having closed internal channels
US4155177A (en) Condensate control for dryer drum
US5090135A (en) Device for removal of condensate from a steam-heated drying cylinder
US2486719A (en) Drier
US3481050A (en) Rotary pressure vessel
US2844887A (en) Dryer
US3224110A (en) Rotary cylinder dryer
US2677899A (en) Jacketed steam drier
US2909849A (en) Drum drier mechanism
US3936953A (en) Air impingement system
US4081913A (en) Pulp and paper drying apparatus and method
US3264754A (en) Papermaking machine
US3230636A (en) Heat transfer method and means
US3242583A (en) Method of drying a running web of sheet material
US2902774A (en) Tempered turbulence roll-type drier
US3299531A (en) Papermaking machine
US3492741A (en) Paper machine dryer drum