US3463158A - Polyglycolic acid prosthetic devices - Google Patents
Polyglycolic acid prosthetic devices Download PDFInfo
- Publication number
- US3463158A US3463158A US608068A US3463158DA US3463158A US 3463158 A US3463158 A US 3463158A US 608068 A US608068 A US 608068A US 3463158D A US3463158D A US 3463158DA US 3463158 A US3463158 A US 3463158A
- Authority
- US
- United States
- Prior art keywords
- absorbable
- pga
- tissue
- polyglycolic acid
- filaments
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920000954 Polyglycolide Polymers 0.000 title description 101
- 239000004633 polyglycolic acid Substances 0.000 title description 101
- 210000001519 tissue Anatomy 0.000 description 40
- 239000004744 fabric Substances 0.000 description 33
- 239000000463 material Substances 0.000 description 26
- 210000000988 bone and bone Anatomy 0.000 description 23
- 238000000034 method Methods 0.000 description 17
- 239000000203 mixture Substances 0.000 description 13
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 12
- 210000001367 artery Anatomy 0.000 description 12
- 210000004204 blood vessel Anatomy 0.000 description 12
- 239000000835 fiber Substances 0.000 description 12
- 239000007943 implant Substances 0.000 description 12
- 229920004934 Dacron® Polymers 0.000 description 11
- 241001465754 Metazoa Species 0.000 description 11
- 239000005020 polyethylene terephthalate Substances 0.000 description 11
- 230000003014 reinforcing effect Effects 0.000 description 11
- -1 polyethylene Polymers 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 9
- 102000008186 Collagen Human genes 0.000 description 9
- 108010035532 Collagen Proteins 0.000 description 9
- 229920001436 collagen Polymers 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 7
- 210000002414 leg Anatomy 0.000 description 7
- 230000007704 transition Effects 0.000 description 7
- 210000000689 upper leg Anatomy 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 6
- 229960004275 glycolic acid Drugs 0.000 description 6
- 210000005003 heart tissue Anatomy 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 231100000241 scar Toxicity 0.000 description 6
- 208000010392 Bone Fractures Diseases 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 230000035876 healing Effects 0.000 description 5
- 210000003709 heart valve Anatomy 0.000 description 5
- 210000005036 nerve Anatomy 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 230000008439 repair process Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 4
- 210000001185 bone marrow Anatomy 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000003628 erosive effect Effects 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 210000000501 femur body Anatomy 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 210000000944 nerve tissue Anatomy 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229920001281 polyalkylene Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 102000009123 Fibrin Human genes 0.000 description 2
- 108010073385 Fibrin Proteins 0.000 description 2
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 210000000702 aorta abdominal Anatomy 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 2
- 229960001826 dimethylphthalate Drugs 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229950003499 fibrin Drugs 0.000 description 2
- 230000003176 fibrotic effect Effects 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- VUBOQPNQIMKEKI-UHFFFAOYSA-N 3,8-dithiatricyclo[5.1.0.02,4]oct-5-en-4-ol Chemical compound C12SC2C=CC2(O)C1S2 VUBOQPNQIMKEKI-UHFFFAOYSA-N 0.000 description 1
- 229910000619 316 stainless steel Inorganic materials 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 206010011906 Death Diseases 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 206010019909 Hernia Diseases 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010021620 Incisional hernias Diseases 0.000 description 1
- 229920004459 Kel-F® PCTFE Polymers 0.000 description 1
- 229920000339 Marlex Polymers 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 210000003815 abdominal wall Anatomy 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229940124326 anaesthetic agent Drugs 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 230000003872 anastomosis Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229940064004 antiseptic throat preparations Drugs 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002729 catgut Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- 229940106681 chloroacetic acid Drugs 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical compound FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 210000000527 greater trochanter Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007757 hot melt coating Methods 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- RMIODHQZRUFFFF-UHFFFAOYSA-N methoxyacetic acid Chemical compound COCC(O)=O RMIODHQZRUFFFF-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 210000002254 renal artery Anatomy 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000003206 sterilizing agent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 210000004876 tela submucosa Anatomy 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- 230000017423 tissue regeneration Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/62—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
- D01F6/625—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters derived from hydroxy-carboxylic acids, e.g. lactones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L17/00—Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
- A61L17/06—At least partially resorbable materials
- A61L17/10—At least partially resorbable materials containing macromolecular materials
- A61L17/12—Homopolymers or copolymers of glycolic acid or lactic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00004—(bio)absorbable, (bio)resorbable or resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/20—Tampons, e.g. catamenial tampons; Accessories therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/551—Packaging before or after use
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00089—Wound bandages
- A61F2013/00157—Wound bandages for burns or skin transplants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00089—Wound bandages
- A61F2013/00217—Wound bandages not adhering to the wound
- A61F2013/00221—Wound bandages not adhering to the wound biodegradable, non-irritating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2929—Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
Definitions
- polyglycolic acid also called polyglycolic acid (PGA)
- PGA polyglycolic acid
- the polyglycolic acid can form a single or bicomponent fabric, either mixed uniformly, or in discrete areas with non-absorbable fibers. In either form, on implantation, in living mammalian tissue, the polyglycolic acid is absorbed, and replaced by living tissue. Fabric structures of an intermixture of PGA and non-absorable material are particularly useful in tissue repair or replacement so that living tissue mechanically unites about the non-absorbable fiber structure, locking it into place.
- This invention relates to absorbable surgical elements of polyhydroxyacetic ester hereafter called polyglycolic acid (PGA).
- PGA polyglycolic acid
- U.S.P. 2,836,181, I. S. Tapp, Flexible Nylon Tube and Method for Preparing Same shows a braided heat crimped formic acid treated nylon tube spliced into a blood vessel, with the crimp permitting a desired degree of flexibility.
- U.S.P. 3,099,016, M. L. Edwards, Heart Valve shows a plastic cardiac valve, in which a fabric is emplaced in a ring around the valve, and sutured to the heart tissue, to permit the heart tissue to grow to such fabric, and hold the valve in position in the heart.
- a filament is a single, long, thin flexible structure of a non-absorable or absorbable material. It may be continuous or staple.
- Staple is used to designate a group of shorter filaments which are usually twisted together to form a long, continuous thread.
- Non-absorbable surgically acceptable filaments include filaments of polyalkylenes, such as polyethylene, preferably linear polyethylene with a density of about 0.94 or higher, or polypropylene, preferably isotactic polypropylene; or a polyamide, such as nylon; or a polyester, such as Dacron; or a polyacrylonitrile, such as Orlon or Creslan; or a halogenated polyalkylene, such as polytetrafluorethylene, such as Teflon, or other halogenated polyalkylene, such as Kel-F or FEP; or cotton, or silk, or linen; or a metal such as stainless steel, tantalum, silver, gold, or platinum.
- Any non-absorbable material which is essentially inert in living mammalian tissue, particularly human tissue, is usable as a non-absorbable filament. Those materials having a comparatively high tensile strength and flexibility are preferred.
- An absorbable filament is one which is absorbed, that is digested or dissolved, in living mammalian tissue.
- a thread is a plurality of filaments, either continuous or staple, twisted together.
- a strand is a plurality of filaments or threads twisted, plaited, braided, or laid parallel to form a unit for further construction into a fabric, or used per se, or a monofilament of such size as to be Woven or used independently.
- a bi-component filament is a filament composed of two separate materials. As used herein, the term is limited to a filament having one non-absorbable component and one absorbable component. The components may be adjacent.
- the most easily formed and preferred bi-component filament is a sheathed filament with an internal nonabsorbable material coated, or sheathed, approximately concentrically, with an absorbable component.
- a bi-component thread includes a thread of bi-component filaments or a blend of different separate monofilament components twisted together, or both.
- a bi-component strand is a strand of one or more bicomponent filaments, or two different filament materials, or both, at least one component of which is absorbable.
- a bi-component fabric is a woven, knitted, felted, adhesively united, or otherwise formed fabric of at least two dimensions, or fabric tube having separate strands of bicomponent materials or strands of two separate components, at least one component of which is absorbable.
- a coated fabric is a fabric which is coated with a substantially continuous sheet of a second material, as for example by hot melt coating, or coating from a solvent system, or with coating rolls, the base fabric of which may be wholly nonabsorbable, although it may contain an absorbable component.
- a living tissue absorbable coating of PGA is considered as the coating layer.
- a solid prosthetic device is a thin solid sheet, or plate, or tube, which may be split, or bar, or nail, or screw, or pin or other solid shape which has inherent mechanical strength to act as a solid discrete surgical reinforcing element, and has at least one dimension greater than 2 millimeters, and which may have a dimension as great as about 200 millimeters, or as required, to furnish mechanical support and reinforcement to a bone, or bones, or gland, or organ, for support during a healing process.
- the support may be in par-t directive of growth, as for example in nerve tissue, which grows slowly, and as a result has regeneration impaired by the more rapid growth of scar tissue which can block the growth of the nerve tissue.
- a wrap-around sheath of PGA sheet, or a split or solid tube used to support, place, hold and protect regeneration of nerve tissue and function is greatly aided.
- Other factors may inhibit regeneration of nerve tissue or function, but with the exclusion of scar tissue, such other factors may be separately treated; PGA is particularly useful in splicing nerves because'PGA is completely dissolved in tissue and leaves minimal or no residual scar tissue from the PGA.
- a graded transition section is a portion of bi-component fabric, or bi-component strand, which by selection of strands for the fabric, or components for the strand or strands, has a changing composition, over a short distance, of 1 mm. to 15 mm. or more, so that a fabric or strand changes in composition from non-absorbable material, or substantially non-absorbable material, to predominantly or completely absorbable material, whereby living tissue can replace the absorbable component and a gradual transition accomplished between the nonabsorbable reinforcing prosthesis and the adjacent living tissue.
- an arterial implant for instance, a past cause of trouble has been the line of juncture between the implant and the natural artery wall.
- an absorbable prosthesis should have as high a portion of its original strength as possible for at least three days, and sometimes as much as fifteen days or more, and preferably should be completely absorbed by muscular tissue within from fortyfive to ninety days or more depending on the mass of the cross-section.
- the rate of absorption in other tissues may vary even more.
- the requirements are not absolute and the rate of absorption as well as the short-term strength requirement varies from patient to patient and at different locations within the body, as well as with the thickness of the section of PGA.
- the PGA maybe formed as tubes or sheets for surgical repair and may also be spun as thin filaments and woven or felted to form absorbable sponges or absorbable gauze, or used in conjunction with other structures as prosthetic devices, within the body of a human or animal where it is desirable that the structure have short-term strength, but be absorbable.
- the useful embodiments include tubes, including branched tubes or Ts, for artery, vein or intestinal repair, nerve splacing, tendon splicing, sheets for tying up and supporting damaged kidney, liver and other intestinal organs, protecting damaged surface areas such as abrasions, particularly major abrasions, or areas where the skin and underlying tissues are damaged or surgically removed.
- PGA prostheses The most convenient method of sterilizing PGA prostheses is by heat under such conditions that any microorganisms or deleterious materials are rendered inactive.
- a second common method is to sterilize using a gaseous sterilizing agent such as ethylene oxide.
- Other methods of sterilizing include radiation by X-rays, gamma rays, neutrons, electrons, etc., or high intensity ultrasonic vibrational energy or combinations of these methods.
- the present materials have such physical characteristics that they may be sterilized by any of these methods.
- PGA can be considered as essentially a product of polymerization of glycolic acid, that is hydroxyacetic acid, which in simplified form is shown by the equation:
- n is such that the molecular weight is in the range of 10,000 or more. Above 500,00 the polymer is difficult to mold.
- the polymer has a melt viscosity at 245 C. of between about 400 and about 27,000 poises. Because the PGA is from a synthetic and controllable source, with a controlled molecular weight and controlled small percentage of comonomer, the abisiorbability, stiffness, and other characteristics can be modi- Among several methods by which PGA can be prepared, one preferred route involves the polymerization of glycolide,
- the cyclic dimeric condensation product formed by dehydrating hydroxyacetic acid. During polymerization of glycolide, the ring is broken and straight-chain polymerization occurs.
- small quantities of other materials may be present in the chain, as for example, de-lactic acid, its optically active forms, homologs, and analogs.
- plasticizers tend to interfere with crystallinity, orientation, etc. and weaken fibers, but are useful for sponges and films.
- Other substances may be present, such as dyes, antibiotics, antiseptics, anaesthetics, and antioxidants.
- the surfaces of the fabric can 'be coated with a silicone, beeswax, and the like to modify the handling or absorption rate.
- glycolide occcurs by heating with or without a catalyst, or may be induced by radiation such as X-rays, gamma rays, electron beams, etc. Polymers may also be obtained by condensing glycolic acid or chloroacetic acid with or without a catalyst under a variety of conditions. Good moldable objects or fibers are most readily obtained when the melt viscosity at 245 C. is about 400 to about 27,000 poises.
- Polyhydroxyacetic esters have been described in United States Patent 2,668,162, Lowe, Preparation of High Molecular Weight Polyhydroxyacetic Ester, and United States Patent 2,676,945, Higgins, Condensation Polymers of Hydroxyacetic Acid.
- Additives such as triphenylphosphite or Santo- Nox, a disulfide aromatic phenol, can be added as color stabilizers.
- FIGURE 1 shows a cross section of a bi-component filament of about 25 percent non-absorbable material coated with about 75 percent absorbable polymer.
- FIGURE 2 shows a cross section of a bi-component filament of about 50 percent non-absorbable material coated with about 50 percent absorbable polymer.
- FIGURE 3 shows a cross section of a bi-component filament with about 75 percent non-absorbable material coated with about 25 percent absorbable polymer.
- FIGURE 4 shows a fiber of a non-absorbable filament.
- FIGURE 5 shows a cross section of a polyfilamentary strand of 3 nou-a'bsorbable filaments and absorbable filaments.
- FIGURE 6 shows a cross section of a polyfilamentary strand with 6 non-absorbable filaments and 7 absorbable filaments.
- FIGURE 7 shows a crosssection of a polyfilamentary strand with 4 absorbable filaments and 9 non-absorbable filaments.
- FIGURE 8 shows a woven fabric the central portion of non-absorbable strands graded in both warp and woof into a 75 percent non-absorbable, then 50 percent nonabsorbable, then 25 percent non-absorbable strands.
- FIGURE 9 shows a knitted fabric graded from a 100 percent non-absorbable strand through a 75 percent nona-bsorbable strand, then a 50 percent non-absorbable strand, to a 25 percent non-absorbable strand.
- FIGURE 10 shows a spliced artery having an internal sleeve with slightly tapered ends, with a sewn splice.
- FIGURE 11 is a cross section of a spliced artery having an internal sleeve with expanded ends.
- FIGURE 12 shows a prosthetic sleeve formed of a unitary coupling of solid polyglycolic acid with slightly expanding ends to aid in holding a blood vessel about the sleeve.
- FIGURE 13 shows the sleeve of FIGURE 12 in use in which an external spring clip of solid polyglycolic acid holds the ends of the blood vessel together.
- FIGURE 14 shows the sleeve of FIGURE 12 in which two expandable annular clips are used to hold the ends of the blood vessel approximated.
- FIGURE 15 is a portion of a woven tube of certain individual strands which are at least in part absorbable.
- FIGURE 16 shows a portion of a heart valve emplaced in heart tissue using a fabric in part composed of polyglycolic acid to aid in holding the valve in place.
- FIGURE 17 shows a broken bone, the ends of which are held together by a solid bar of polyglycolic acid held to the bone by polyglycolic acid screws.
- FIGURE 18 shows a broken bone, the ends of which are held in position by an internal fluted pin of polyglycolic acid.
- EXAMPLE 1 100 parts of recrystallized glycolide (melting point 85.0 to 85.5 C.) are intimately mixed with 0.02 part of methoxyacetic acid, 0.03 part of phenoldisulfide (Santo- Nox), and 0.03 part antimony trifiuoride. Separate glass tubes are each charged with approximately 20 grams of the mixture, deoxygenated by repeated evacuation and argon purging, then sealed under vacuum and heated to 185 to 190 C. for 4 /2 hours. On cooling a white opaque tough PGA is produced in a 97.5% yield with a melt viscosity at 245 C. of 5,000 poises. The polymer is reheated and spun into filaments at a temperature of about 230 C. at a speed of about 150 feet per minute. The filaments produced are cooled, then drawn at about 55 C. When drawn to five times the original length a strong tough filament is produced. The dry filaments are in condition for use.
- EXAMPLE 2 The polymer of the preceding example is formed into a plurality of smaller filaments, seven of which are twisted into a polyfilamentary strand, which is sterilized and used following the techniques of Example 1.
- the distillate which weighed about 238 parts is dissolved in a minimum amount of hot ethyl acetate, and after decolorizing and purifying with active carbon, the distillate is recrystallized from the above solution to provide 160 parts of product having a melting point of about 82.5-84.0 C.
- the infrared spectrum confirms that the product is substantially pure glycolide.
- the glycolide thus prepared is polymerized in the presence of an alcohol free of non-benzenoid unsatura tion and free of any reactive groups other than alcoholic hvdroxy groups and in the presence of SnCl -2H O.
- a heavy walled glass tube having a bore of about and sealed at one end is charged with 3 parts of the substantially pure glycolide composition, 0.04 part of a 0.1% ether solution of SnCl -2H O (about 0.0013% of SnCl -2H Q based on the weight of the substantially pure glycolide composition), 0.0166 part of lauryl alcohol (0.346 mole percent based on the moles of the substantially pure glycolide composition), and a magnetic steel ball 2 in diameter.
- the tube is evacuated and purged with argon.
- the tube is evacuated again to a vacuum of less than 1 mm. of Hg and the top is sealed.
- the reaction tube is.
- the viscosity of the reaction mixture is measured by raising the steel ball by means of a magnet and measuring the rate of the fall of the ball in sec./in.
- the ball drop time is 550 sec./in. or about 7200 poises, and after minutes, the ball drop time is 580 sec./in. or about 7600 poises.
- the PGA thus produced is spun into .002 inch diameter fibers and used to form bi-component strands.
- Additional PGA similarly produced is used to coat Dacron filaments, in varying weight ratios to form bi-component strands which are braided into tubular arterial implants to splice into sections of arteries.
- Additional PGA similarly produced is used to form sheets. These sheets are wrapped around nerves, traumatically severed, to protect such nerves from invasive scar tissue growth, while the nerve is regenerating.
- a bi-component filament 23 was formed by dipping a non-absorbable filament 21 of Dacron into a PGA melt forming a PGA coating 22 on the surface of the non-absorbable Dacron 21.
- the dip was such that approximately 25% of the cross section was of Dacron and 75% of PGA.
- FIGURE 2 the structure is the same except that the relative proportions are changed to approximately 50% of each material.
- FIGURE 3 the structure is the same except that the proportions are changed such that approximately 75% of the cross section is of Dacron and about 25% on the surface is of PGA.
- FIGURE 4 a Dacron monofilament is shown.
- FIGURE 5 a cross section of a bi-component thread.
- the bi-component thread consists of 3 nonabsorbable filaments 25 of Dacron and 10 absorbable filaments 24 of PGA.
- FIGURE 6 is a similar bi-component thread except that the composition is changed to 6 non-absorbable filaments and 7 PGA filaments.
- FIGURE 7 shows a cross section of a bi-component thread having 9 non-absorbable Dacron filaments, and 4 PGA filaments.
- either the bi-component filaments or the bi-component threads may change by discrete increments or gradually from a completely non-absorbable material to the completely absorbable PGA.
- the size of bicomponent filaments and the size of bi-component threads are a matter of choice depending upon the location in which the resultant prosthetic device is to be used.
- FIGURE 8 shows a woven fabric in which each of the warp and the woof are constructed, starting in the center, with a 100% non-absorbable material 33, such as Dacron, and changing by 25% increments in discrete zones 34, until the outer set of threads 36 in each direction is 25 non-absorbable and 75% PGA.
- a 100% non-absorbable material 33 such as Dacron
- Such a construction permits the use of Dacron or linear polyethylene or isotactic polypropylene in the construction of a repair patch, such as shown in Usher, supra, but in which gradation from the fully reinforcing, non-absorbable material to absorbable material is gradual.
- the spacing between the threads in the fabric can be chosen for a particular application.
- a comparatively widely spaced weave is desired. If used for an area in which liquid retention is critical, such as an artery or vein, the weave is much closer.
- FIGURE 9 is shown a knitted fabric 27, in which the respective strands are 100% non-absorbable 28, followed by two rows of 75 non-absorbable 25 PGA 29 followed by two rows of 50% non-absorbable 50% PGA 30, followed by two rows of 25 non-absorbable 75% PGA 31.
- the rate of change with distance or the number of rows of a particular composition are adjusted to fit the desired use.
- the width of each proportion of components is smaller than for large potches.
- FIGURE 10 is shown an artery 37 which is joined together over a tapered end PGA tube 38 which forms a stent about which the ends of the artery wall are joined by a suture splice 39.
- the tapered end is easier to insert in the artery.
- FIGURE 11 the artery walls 40 are joined together over a flared end PGA tube 41 and the ends are joined by a suture splice 42.
- FIGURE 12 shows the flared end PGA tube 41.
- FIGURE 13 is shown a blood vessel 43, the ends of which are each separately placed over the end of a flared PGA tube and which blood vessel is held in place with the ends adjacent to permit healing by a PGA spring clip 44.
- PGA such as produced in the above Example 3, shows an Izod impact strength of 0.14 ft. lb. per inch width or greater. It may be heated and formed into a desired shape which shape is retained on cooling, and by shaping as a flat spring clip, can be used to hold together the walls of a blood vessel 43 until natural regeneration takes place.
- FIGURE 14 is shown a similar splice of a blood vessel 45 but in which the ends are held together by an annular clip 46 of molded PGA.
- annular clips are well known for the attachment of radiator hoses to radiators in automobiles and the attachment of other flexible tubing to connectors.
- the radial compression at all points about the periphery may be caused to be approximately uniform and within a desired range. This is important in the splicing of blood vessels as it is desired to hold the blood vessel in position during regeneration, but yet not hold the vessels so tightly that necrosis sets in because of an impaired blood supply to the vessel walls.
- FIGURE 15 shows a section of a woven tube having bi-component strands 48 in the periphery.
- a woven tube is conveniently used as a prosthetic device.
- Tapp, supra, shOWS a nylon tube for such purpose.
- FIGURE 16 shows a heart valve 49 such as shown by Edwards, supra, with a bi-component fabric 50 surrounding the heart valve and sewn into the heart tissue 51.
- a bi-component fabric 50 surrounding the heart valve and sewn into the heart tissue 51.
- FIGURE 17 shows a broken bone 52 joined by a PGA splice bar 53 which is held to the bone by PGA screws 54.
- FIGURE 18 shows a different type of splice for a broken bone in which a broken bone 55 is jointed by a PGA fluted pin 57 inserted into the bone marrow 56.
- the pin is chosen of such size and shape as to fill the hollow in the bone and give mechanical strength and prevent motion at the break.
- Absorbable splices or bone pins hold the bone in place until it has an opportunity to knit and then gradually dissolve.
- metallic reinforcing elements have frequently been used. Such metallic elements add weight to the body, and perhaps cause inflammation by their physical presence, or must be removed at a separate subsequent operation.
- a bone pin is used internally of a bone, the volume of bone marrow is markedly reduced. When the PGA bone pin dissolves, no scar tissue remains and bone marrow is regenerated through the bone permitting the bone marrow to accomplish its organic functions.
- polyglycolic acid abbreviated PGA
- PGA polyglycolic acid
- PGA is not a protein, has no amino acids, and has given no evidence of allergic reactions in thousands of implants. With the present PGA prostheses, the PGA is completely absorbed, and a minimal or no trace of the inserted matter remains after a comparatively short period. This complete absorption, without residual fibrotic tissue, is unique, and an important contribution to surgery.
- EXAMPLE 4 Absorbable intermedullary rod Longitudinal incisions were made on the superior surface of the hind legs of anesthetized rabbits to expose the upper end of the femur, close to the point of attachment to the hip. At a point about 1" from the neck portion, the shaft of the femur was out completely through by means of a small circular saw attached to an air drill. A hole about A; inch in diameter was drilled through the bony process known as the greater trochanter vertically into the narrow cavity of the shaft portion of the femur.
- the cut ends of the femur shaft were approximated and while they were held firmly in place a medullary rod of polyglycolic acid about two inches in length and about inch in diameter was driven through the hole in the trochanter into the marrow cavity past the point at which the shaft of the femur had been parted.
- the effect of the medullary rod was to hold the cut ends of the femur shaft firmly in place.
- the top end of the medullary pin was flush with the surface of the trochanter.
- the parted soft tissues were approximated with sutures, the injured legs were splinted with wooden tongue depressors affixed to the leg with adhesive tape and the animals were returned to their cages. X-rays were taken of the injured legs at weekly intervals and the progress of new bone formation was observed. Animals were sacrificed at the end of 6, l2, l8, and 24- weeks and the femurs which had been operated upon were dissected out and examined. These femurs were compared with similarly resected femurs which had been repaired with Type 316 stainless steel pins'of equivalent size to those made of PGA.
- EXAMPLE 5 Absorbable bone plate affixed with absorbable pins Femurs of the hind legs of rabbits were bisected as described in Example 4. The cut ends were reapproximated and immobilized by use of an internal support made from a sheet of polyglycolic acid approximately inch thick 4" wide and 1 inch long, shaped to conform generally to the bone by softening the plastic with heat and premolding it about a metal rod of suitable diameter. The premolded plate was centrally located over the cut bone and while held in position, small holes were drilled through the plate and completely through the bone with a inch drill, two holes on each side of the bone break.
- the nails also showed signs of breakdown, and the plate could be moved in relation to the bone.
- the nails were so weakened and the holes in the PGA plate so enlarged that the remains of the plate could be easily separated from the bone.
- the plate was almost completely absorbed
- the bone was covered by the normal periosteal membrane and where absorption was complete there was nothing to indicate that the PGA had ever been present.
- EXAMPLE 6 Arterial prosthesis made of a mixture of polyester and polyglycolic acid fibers Yarn containing a mixture of polyglycolic acid monofilaments and polyester (polymer of ethylene glycol and terephthalic acid) monofilaments was made by combining sufficient monofilaments of PGA with a polyester yarn to make about 25% of the weight of the yarn polyglycolic acid. This yarn was converted into a tightly woven cloth which was in turn formed into a tube by wrapping cut pieces of suitable size about a mandrel and sewing together the open sides with polyester thread.
- the tubes were only V in diameter.
- the abdominal aorta was exposed by incision through the ventral wall; two clamps separated by about 1 /2 inches were placed on the abdominal aorta just distal to the renal artery.
- the approximately 1 inch of the abdorni nal aorta between the clamps was resected and a comparable length of prosthetic tubing made as described above was sewn in place.
- the clamps were removed, and the animal was observed closely until blood seepage had stopped.
- the abdomen was then closed and the animal returned to its cage. Sacrifices were made at the end of 1, 3, 6, l2, and 18 weeks and the prosthetic implant and the neighboring tissue was examined. After the first week there was little change in the prosthesis.
- the pores of the fiber were closed with fibrin and some new cell growth was noticeable at the cut ends of the blood vessel.
- fibrin clots had been partially replaced by new cells which represented the partial development of a pseudo intimal lining extending from the ends of the original vessel.
- the polyglycolic acid filaments were still intact but were showing indications of surface erosion on microscopic examination.
- the pseudo intimal lining was complete. Blood vessels were beginning to develop in this tissue layer. Growth of cells was occurring through the pores of the prosthesis which were now substantially enlarged by the obvious diminution in size of the PGA filaments which were no longer continuous.
- a surgical prosthesis comprising non-absorable filaments shaped as a living tissue reinforcing element, and mixed with an coacting with said non-absorable filaments, in at least a part of the element, a structure consisting essentially of polyglycolic acid, whereby on implantation in living tissue, the polyglycolic acid structure is absorbed by the living tissue which replaces the polyglycolic acid and interlocks with the non-absorable filaments, said prosthesis being sterile at time of implantation.
- the reinforcing element comprises a non-absorbable strand fabric mesh section, and interwoven and graded thereinto, bi-component strands in a graded transition portion, the individual strands of which are of proportionately increasing polyglycolic acid composition and decreasing non-absorb able filament composition, at increasing distances from said non-absorable strand fabric mesh section.
- non-absorbable reinforcing element is a tubular fabric graft with a graded transition from a section of nonabsorable strands to a section in which at least a pre- 12 dominant portion, by weight, of the strands consist of polyglycolic acid.
- a bi-component strand for the fabrication or attachment of a surgical prosthesis comprising at least one filament of a non-absorbable material and united therewith polyglycolic acid.
- each filament of non-absorable material is coated, approximately concentrically, with polyglycolic acid.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Vascular Medicine (AREA)
- Surgery (AREA)
- Materials Engineering (AREA)
- Dermatology (AREA)
- Textile Engineering (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Description
Aug. 26, 1969 E. SCHMITT ET AL 3,463,158
. POLYGLYCOLIC ACID PROSTHETIC DEVICES Filed Jan. 9. 1967 4 Sheets-Sheet 1 2l-N0/V-A BSORBA EL .5 22-4 BSORBA BL E F-r- 7-2- 'FE'F-z Fr -,1,
1:1 /00 NON- ABSORBABLE m 75 NON-ABSORBABL 25 PGA m 50 NON-ABSORBABLE- 50% PGA IE- 25% NON-ABSORBABLE-75 PGA INVENTORS. EDWARD EM/L SCHM/TT ROCICO ALBERT POL/.ST/NA ATTORNEY Aug. 26, 1969 E. E. SCHMITT ET AL 3,463,158
POLYGLYCOLIC ACID PROSTHETIC DEVICES Filed Jan. 9. 1967 4 Sheets-Sheet 5 INVENTORS, EDWARD EM/L .SCHM/TT ROCCO ALBERT POL/STl/VA ATTORNEY Aug. 26, 1969 E. E. SCHMITT ET AL 3,463,158
POLYGLYCOLIC ACID PROSTHBTIC DEVICES Filed Jan. 9, 1967 4 Sheets-Sheet 4 HEART -5 TISSUE EDWARD EM/L SCHM/TT ROCCO ALBERT POL/ST/NA .1 g ZE INVENTORS.
WMM
ATTORNEY United States Patent us. (:1. 128-334 8 Claims ABSTRACT OF THE DISCLOSURE Polyhydroxyacetic ester, also called polyglycolic acid (PGA), has surgically useful mechanical properties as a solid prosthesis, such as reinforcing pins, screws, plates, or thin sheets. The polyglycolic acid can form a single or bicomponent fabric, either mixed uniformly, or in discrete areas with non-absorbable fibers. In either form, on implantation, in living mammalian tissue, the polyglycolic acid is absorbed, and replaced by living tissue. Fabric structures of an intermixture of PGA and non-absorable material are particularly useful in tissue repair or replacement so that living tissue mechanically unites about the non-absorbable fiber structure, locking it into place.
CROSS REFERENCES This application is a continuation-in-part of application Ser. No. 320,543, filed Oct. 31, 1963 now US. Patent 3,297,033, Jan. 10, 1967, Surgical Sutures.
Field of invention This invention relates to absorbable surgical elements of polyhydroxyacetic ester hereafter called polyglycolic acid (PGA).
Prior art The use of subrnucosal tissue and ribbons therefrom internally is described in such patents as United States Patent 2,167,251, Rogers, Surgical Tape of Sumucosa Tissue, July 25, 1939, United States Patent 2,143,910, Didusch, Ribbon Gut and Method of Using the Same, an. 17, 1939, and United States Patent 2,127,903, Bowen, Tube for Surgical Purposes and Methods of Preparing and Using the Same, Aug. 23, 1938.
U.S.P. 2,836,181, I. S. Tapp, Flexible Nylon Tube and Method for Preparing Same shows a braided heat crimped formic acid treated nylon tube spliced into a blood vessel, with the crimp permitting a desired degree of flexibility.
U.S.P. 3,099,016, M. L. Edwards, Heart Valve shows a plastic cardiac valve, in which a fabric is emplaced in a ring around the valve, and sutured to the heart tissue, to permit the heart tissue to grow to such fabric, and hold the valve in position in the heart.
U.S.P. 3,054,406, F. C. Usher, Surgical Mesh, Sept. 18, 1962, shows the use of a polyethylene woven mesh fabric implanted in the human abdominal wall for reinforcing and healing defects.
U.S.P. 3,108,357, W. J. Liebig, Compound Absorbable Prosthetic Implants, Fabrics and Yarns Therefor shows flexible fabrics of mixed absorbable and non-absorbable textile fibers for implantation, and reinforcement of tissue.
U.S.P. 3,124,136, F. C. Usher, Method of Repairing Body Tissue, Mar. 10, 1964, shows the use of knitted linear polyethylene mesh attached to each side of a tissue defect. The polyethylene is non-absorbable and permanently reinforces the tissue at the site of the defect. Additional details appear in Usher, Ochsner and Tuttle Use of Marlex Mesh in the Repair of Incisional Hernias, The American Surgeon 24, 116-121 (December 1958).
U.S.P. 3,155,095, A. M. Brown Anastomosis Method and Means shows an internal and external asorbable coupling for the joining of vascular vessels.
United States Patents 3,272,204, Absorbable Collagen Prosthetic Implant With Non-Absorbable Reinforcing Strands, Artandi and Bechtol, Sept. 13, 1966, 3,284,557, Process For Crimping An Artificial Implant For Use In An Animal Body," Seymour Polansky, Nov. 8, 1966, and 3,276,448, Collagen Coated Fabric Prosthesis, Richard L. Kronethal, Oct. 4, 1966, each disclose collagen in combination with non-absorbable fibers as surgical prostheses.
SUMMARY Definitions in the textile trades are frequently somewhat ambiguous. For purposes of the present application, certain terms are defined:
A filament is a single, long, thin flexible structure of a non-absorable or absorbable material. It may be continuous or staple.
Staple is used to designate a group of shorter filaments which are usually twisted together to form a long, continuous thread.
Non-absorbable surgically acceptable filaments include filaments of polyalkylenes, such as polyethylene, preferably linear polyethylene with a density of about 0.94 or higher, or polypropylene, preferably isotactic polypropylene; or a polyamide, such as nylon; or a polyester, such as Dacron; or a polyacrylonitrile, such as Orlon or Creslan; or a halogenated polyalkylene, such as polytetrafluorethylene, such as Teflon, or other halogenated polyalkylene, such as Kel-F or FEP; or cotton, or silk, or linen; or a metal such as stainless steel, tantalum, silver, gold, or platinum. The above are illustrative. Any non-absorbable material which is essentially inert in living mammalian tissue, particularly human tissue, is usable as a non-absorbable filament. Those materials having a comparatively high tensile strength and flexibility are preferred.
An absorbable filament is one which is absorbed, that is digested or dissolved, in living mammalian tissue.
A thread is a plurality of filaments, either continuous or staple, twisted together.
A strand is a plurality of filaments or threads twisted, plaited, braided, or laid parallel to form a unit for further construction into a fabric, or used per se, or a monofilament of such size as to be Woven or used independently.
A bi-component filament is a filament composed of two separate materials. As used herein, the term is limited to a filament having one non-absorbable component and one absorbable component. The components may be adjacent. The most easily formed and preferred bi-component filament is a sheathed filament with an internal nonabsorbable material coated, or sheathed, approximately concentrically, with an absorbable component.
A bi-component thread includes a thread of bi-component filaments or a blend of different separate monofilament components twisted together, or both.
A bi-component strand is a strand of one or more bicomponent filaments, or two different filament materials, or both, at least one component of which is absorbable.
A bi-component fabric is a woven, knitted, felted, adhesively united, or otherwise formed fabric of at least two dimensions, or fabric tube having separate strands of bicomponent materials or strands of two separate components, at least one component of which is absorbable.
A coated fabric is a fabric which is coated with a substantially continuous sheet of a second material, as for example by hot melt coating, or coating from a solvent system, or with coating rolls, the base fabric of which may be wholly nonabsorbable, although it may contain an absorbable component. For the present invention, only a living tissue absorbable coating of PGA is considered as the coating layer.
A solid prosthetic device is a thin solid sheet, or plate, or tube, which may be split, or bar, or nail, or screw, or pin or other solid shape which has inherent mechanical strength to act as a solid discrete surgical reinforcing element, and has at least one dimension greater than 2 millimeters, and which may have a dimension as great as about 200 millimeters, or as required, to furnish mechanical support and reinforcement to a bone, or bones, or gland, or organ, for support during a healing process.
The support may be in par-t directive of growth, as for example in nerve tissue, which grows slowly, and as a result has regeneration impaired by the more rapid growth of scar tissue which can block the growth of the nerve tissue. With a wrap-around sheath of PGA sheet, or a split or solid tube used to support, place, hold and protect; regeneration of nerve tissue and function is greatly aided. Other factors may inhibit regeneration of nerve tissue or function, but with the exclusion of scar tissue, such other factors may be separately treated; PGA is particularly useful in splicing nerves because'PGA is completely dissolved in tissue and leaves minimal or no residual scar tissue from the PGA.
A graded transition section is a portion of bi-component fabric, or bi-component strand, which by selection of strands for the fabric, or components for the strand or strands, has a changing composition, over a short distance, of 1 mm. to 15 mm. or more, so that a fabric or strand changes in composition from non-absorbable material, or substantially non-absorbable material, to predominantly or completely absorbable material, whereby living tissue can replace the absorbable component and a gradual transition accomplished between the nonabsorbable reinforcing prosthesis and the adjacent living tissue. With an arterial implant, for instance, a past cause of trouble has been the line of juncture between the implant and the natural artery wall. With a gradual transition, no sharp line of demarkation exists, and hence, failures between the prosthesis and tissue are minimized. With implants of the types shown by Usher, supra, the edges of the reinforcing element could cause difficulties. With a gradual transition, a line of potential risk is eliminated.
For different purposes and in different types of tissue the rate of absorption may vary but in general an absorbable prosthesis should have as high a portion of its original strength as possible for at least three days, and sometimes as much as fifteen days or more, and preferably should be completely absorbed by muscular tissue within from fortyfive to ninety days or more depending on the mass of the cross-section. The rate of absorption in other tissues may vary even more.
In commo with many biological systems, the requirements are not absolute and the rate of absorption as well as the short-term strength requirement varies from patient to patient and at different locations within the body, as well as with the thickness of the section of PGA.
The PGA maybe formed as tubes or sheets for surgical repair and may also be spun as thin filaments and woven or felted to form absorbable sponges or absorbable gauze, or used in conjunction with other structures as prosthetic devices, within the body of a human or animal where it is desirable that the structure have short-term strength, but be absorbable. The useful embodiments include tubes, including branched tubes or Ts, for artery, vein or intestinal repair, nerve splacing, tendon splicing, sheets for tying up and supporting damaged kidney, liver and other intestinal organs, protecting damaged surface areas such as abrasions, particularly major abrasions, or areas where the skin and underlying tissues are damaged or surgically removed.
The synthetic character and hence predictable formability and consistency in characteristics obtainable from a controlled process are highly desirable.
The most convenient method of sterilizing PGA prostheses is by heat under such conditions that any microorganisms or deleterious materials are rendered inactive. A second common method is to sterilize using a gaseous sterilizing agent such as ethylene oxide. Other methods of sterilizing include radiation by X-rays, gamma rays, neutrons, electrons, etc., or high intensity ultrasonic vibrational energy or combinations of these methods. The present materials have such physical characteristics that they may be sterilized by any of these methods.
PGA can be considered as essentially a product of polymerization of glycolic acid, that is hydroxyacetic acid, which in simplified form is shown by the equation:
Preferably n is such that the molecular weight is in the range of 10,000 or more. Above 500,00 the polymer is difficult to mold.
In these molecular weight ranges the polymer has a melt viscosity at 245 C. of between about 400 and about 27,000 poises. Because the PGA is from a synthetic and controllable source, with a controlled molecular weight and controlled small percentage of comonomer, the abisiorbability, stiffness, and other characteristics can be modi- Among several methods by which PGA can be prepared, one preferred route involves the polymerization of glycolide,
the cyclic dimeric condensation product formed by dehydrating hydroxyacetic acid. During polymerization of glycolide, the ring is broken and straight-chain polymerization occurs.
Small quantities of other materials may be present in the chain, as for example, de-lactic acid, its optically active forms, homologs, and analogs. In general, plasticizers tend to interfere with crystallinity, orientation, etc. and weaken fibers, but are useful for sponges and films. Other substances may be present, such as dyes, antibiotics, antiseptics, anaesthetics, and antioxidants. The surfaces of the fabric can 'be coated with a silicone, beeswax, and the like to modify the handling or absorption rate.
The polymerization of glycolide occcurs by heating with or without a catalyst, or may be induced by radiation such as X-rays, gamma rays, electron beams, etc. Polymers may also be obtained by condensing glycolic acid or chloroacetic acid with or without a catalyst under a variety of conditions. Good moldable objects or fibers are most readily obtained when the melt viscosity at 245 C. is about 400 to about 27,000 poises.
Polyhydroxyacetic esters have been described in United States Patent 2,668,162, Lowe, Preparation of High Molecular Weight Polyhydroxyacetic Ester, and United States Patent 2,676,945, Higgins, Condensation Polymers of Hydroxyacetic Acid.
The processes described in the above two patents can be used for producing PGA from which prostheses may be made. Additives such as triphenylphosphite or Santo- Nox, a disulfide aromatic phenol, can be added as color stabilizers.
DRAWINGS FIGURE 1 shows a cross section of a bi-component filament of about 25 percent non-absorbable material coated with about 75 percent absorbable polymer.
FIGURE 2 shows a cross section of a bi-component filament of about 50 percent non-absorbable material coated with about 50 percent absorbable polymer.
FIGURE 3 shows a cross section of a bi-component filament with about 75 percent non-absorbable material coated with about 25 percent absorbable polymer.
FIGURE 4 shows a fiber of a non-absorbable filament.
FIGURE 5 shows a cross section of a polyfilamentary strand of 3 nou-a'bsorbable filaments and absorbable filaments.
FIGURE 6 shows a cross section of a polyfilamentary strand with 6 non-absorbable filaments and 7 absorbable filaments.
FIGURE 7 shows a crosssection of a polyfilamentary strand with 4 absorbable filaments and 9 non-absorbable filaments. I
FIGURE 8 shows a woven fabric the central portion of non-absorbable strands graded in both warp and woof into a 75 percent non-absorbable, then 50 percent nonabsorbable, then 25 percent non-absorbable strands.
FIGURE 9 shows a knitted fabric graded from a 100 percent non-absorbable strand through a 75 percent nona-bsorbable strand, then a 50 percent non-absorbable strand, to a 25 percent non-absorbable strand.
FIGURE 10 shows a spliced artery having an internal sleeve with slightly tapered ends, with a sewn splice.
FIGURE 11 is a cross section of a spliced artery having an internal sleeve with expanded ends.
FIGURE 12 shows a prosthetic sleeve formed of a unitary coupling of solid polyglycolic acid with slightly expanding ends to aid in holding a blood vessel about the sleeve. I 9
FIGURE 13 shows the sleeve of FIGURE 12 in use in which an external spring clip of solid polyglycolic acid holds the ends of the blood vessel together.
FIGURE 14 shows the sleeve of FIGURE 12 in which two expandable annular clips are used to hold the ends of the blood vessel approximated.
FIGURE 15 is a portion of a woven tube of certain individual strands which are at least in part absorbable.
FIGURE 16 shows a portion of a heart valve emplaced in heart tissue using a fabric in part composed of polyglycolic acid to aid in holding the valve in place.
FIGURE 17 shows a broken bone, the ends of which are held together by a solid bar of polyglycolic acid held to the bone by polyglycolic acid screws.
FIGURE 18 shows a broken bone, the ends of which are held in position by an internal fluted pin of polyglycolic acid.
PGA for the construction of the prostheses shown in the drawings can be produced as set forth in the following examples, in which parts are by weight, unless otherwise clearly indicated:
EXAMPLE 1 100 parts of recrystallized glycolide (melting point 85.0 to 85.5 C.) are intimately mixed with 0.02 part of methoxyacetic acid, 0.03 part of phenoldisulfide (Santo- Nox), and 0.03 part antimony trifiuoride. Separate glass tubes are each charged with approximately 20 grams of the mixture, deoxygenated by repeated evacuation and argon purging, then sealed under vacuum and heated to 185 to 190 C. for 4 /2 hours. On cooling a white opaque tough PGA is produced in a 97.5% yield with a melt viscosity at 245 C. of 5,000 poises. The polymer is reheated and spun into filaments at a temperature of about 230 C. at a speed of about 150 feet per minute. The filaments produced are cooled, then drawn at about 55 C. When drawn to five times the original length a strong tough filament is produced. The dry filaments are in condition for use.
EXAMPLE 2 The polymer of the preceding example is formed into a plurality of smaller filaments, seven of which are twisted into a polyfilamentary strand, which is sterilized and used following the techniques of Example 1.
Because it is a synthetic polymer the methods of forming are more versatile than in starting with naturally occurring materials.
6 EXAMPLE 3 Into a suitable reaction vessel there is charged 400 parts of a commercial glycolic acid which is then heated from room temperature to about 200 C. over a period of about four hours. When the pot temperature has reached 185 C., the pressure of the system is reduced from atmospheric pressure to 15 mm. of Hg, causing the water of condensation and/or esterification to distill off. The residue is allowed to cool and is pulverized into about 280 parts of a powder which is then added in small increments to a suitable pyrolysis chamber maintained at a temperature of about 250-280 C. at a pressure of less than 15 mm. of Hg. The distillate which weighed about 238 parts is dissolved in a minimum amount of hot ethyl acetate, and after decolorizing and purifying with active carbon, the distillate is recrystallized from the above solution to provide 160 parts of product having a melting point of about 82.5-84.0 C. The infrared spectrum confirms that the product is substantially pure glycolide.
The glycolide thus prepared is polymerized in the presence of an alcohol free of non-benzenoid unsatura tion and free of any reactive groups other than alcoholic hvdroxy groups and in the presence of SnCl -2H O.
Into a heavy walled glass tube having a bore of about and sealed at one end is charged with 3 parts of the substantially pure glycolide composition, 0.04 part of a 0.1% ether solution of SnCl -2H O (about 0.0013% of SnCl -2H Q based on the weight of the substantially pure glycolide composition), 0.0166 part of lauryl alcohol (0.346 mole percent based on the moles of the substantially pure glycolide composition), and a magnetic steel ball 2 in diameter. The tube is evacuated and purged with argon. The tube is evacuated again to a vacuum of less than 1 mm. of Hg and the top is sealed. The reaction tube is. placed in a vertical position in a closed glass chamber throughout which dimethyl phthalate is refluxed at 222 C. The boiling point of the dimethyl phthalate is controlled by decreasing the pressure of the system. At periodic intervals after melting, the viscosity of the reaction mixture is measured by raising the steel ball by means of a magnet and measuring the rate of the fall of the ball in sec./in. Ninety minutes after the melt is first achieved, the ball drop time is 550 sec./in. or about 7200 poises, and after minutes, the ball drop time is 580 sec./in. or about 7600 poises.
The PGA thus produced is spun into .002 inch diameter fibers and used to form bi-component strands.
Additional PGA, similarly produced is used to coat Dacron filaments, in varying weight ratios to form bi-component strands which are braided into tubular arterial implants to splice into sections of arteries.
Additional PGA, similarly produced is used to form sheets. These sheets are wrapped around nerves, traumatically severed, to protect such nerves from invasive scar tissue growth, while the nerve is regenerating.
Also the PGA so produced is fabricated into the prosthetic devices shown in the drawings.
As is shown in the drawings, a bi-component filament 23 was formed by dipping a non-absorbable filament 21 of Dacron into a PGA melt forming a PGA coating 22 on the surface of the non-absorbable Dacron 21.
As shown in FIGURE 1 the dip was such that approximately 25% of the cross section was of Dacron and 75% of PGA.
In FIGURE 2 the structure is the same except that the relative proportions are changed to approximately 50% of each material.
In FIGURE 3 the structure is the same except that the proportions are changed such that approximately 75% of the cross section is of Dacron and about 25% on the surface is of PGA.
In FIGURE 4 a Dacron monofilament is shown.
In FIGURE 5 is shown a cross section of a bi-component thread. The bi-component thread consists of 3 nonabsorbable filaments 25 of Dacron and 10 absorbable filaments 24 of PGA.
FIGURE 6 is a similar bi-component thread except that the composition is changed to 6 non-absorbable filaments and 7 PGA filaments.
FIGURE 7 shows a cross section of a bi-component thread having 9 non-absorbable Dacron filaments, and 4 PGA filaments.
It is to be understood that in surgical use the ratios shown are not critical but are representative. In forming a graded transition section, either the bi-component filaments or the bi-component threads may change by discrete increments or gradually from a completely non-absorbable material to the completely absorbable PGA. The size of bicomponent filaments and the size of bi-component threads are a matter of choice depending upon the location in which the resultant prosthetic device is to be used.
FIGURE 8 shows a woven fabric in which each of the warp and the woof are constructed, starting in the center, with a 100% non-absorbable material 33, such as Dacron, and changing by 25% increments in discrete zones 34, until the outer set of threads 36 in each direction is 25 non-absorbable and 75% PGA.
Such a construction permits the use of Dacron or linear polyethylene or isotactic polypropylene in the construction of a repair patch, such as shown in Usher, supra, but in which gradation from the fully reinforcing, non-absorbable material to absorbable material is gradual. The spacing between the threads in the fabric can be chosen for a particular application. Usually, if the prosthetic device is to be used for the repair of hernias, a comparatively widely spaced weave is desired. If used for an area in which liquid retention is critical, such as an artery or vein, the weave is much closer.
In FIGURE 9 is shown a knitted fabric 27, in which the respective strands are 100% non-absorbable 28, followed by two rows of 75 non-absorbable 25 PGA 29 followed by two rows of 50% non-absorbable 50% PGA 30, followed by two rows of 25 non-absorbable 75% PGA 31.
In such a graded construction, the rate of change with distance or the number of rows of a particular composition are adjusted to fit the desired use. For smaller patches the width of each proportion of components is smaller than for large potches.
In FIGURE 10 is shown an artery 37 which is joined together over a tapered end PGA tube 38 which forms a stent about which the ends of the artery wall are joined by a suture splice 39. The tapered end is easier to insert in the artery.
In FIGURE 11 the artery walls 40 are joined together over a flared end PGA tube 41 and the ends are joined by a suture splice 42.
FIGURE 12 shows the flared end PGA tube 41.
In FIGURE 13 is shown a blood vessel 43, the ends of which are each separately placed over the end of a flared PGA tube and which blood vessel is held in place with the ends adjacent to permit healing by a PGA spring clip 44. PGA, such as produced in the above Example 3, shows an Izod impact strength of 0.14 ft. lb. per inch width or greater. It may be heated and formed into a desired shape which shape is retained on cooling, and by shaping as a flat spring clip, can be used to hold together the walls of a blood vessel 43 until natural regeneration takes place.
In FIGURE 14 is shown a similar splice of a blood vessel 45 but in which the ends are held together by an annular clip 46 of molded PGA. Such annular clips are well known for the attachment of radiator hoses to radiators in automobiles and the attachment of other flexible tubing to connectors. By a suitable choice of diameter and shape, as is well known in the industry, the radial compression at all points about the periphery may be caused to be approximately uniform and within a desired range. This is important in the splicing of blood vessels as it is desired to hold the blood vessel in position during regeneration, but yet not hold the vessels so tightly that necrosis sets in because of an impaired blood supply to the vessel walls.
FIGURE 15 shows a section of a woven tube having bi-component strands 48 in the periphery. Such a woven tube is conveniently used as a prosthetic device. Tapp, supra, shOWS a nylon tube for such purpose. By incorporating PGA containing strands into the ends of such a prosthetic device, the union of the natural artery to the artificial artery is much stronger because there is not a sharp line of demarkation.
FIGURE 16 shows a heart valve 49 such as shown by Edwards, supra, with a bi-component fabric 50 surrounding the heart valve and sewn into the heart tissue 51. By suturing the heart tissue to a bi-component fabric, as the PGA portion of the fabric is absorbed, the heart tissue grows into the remaining non-absorbable structure and forms a more secure union.
FIGURE 17 shows a broken bone 52 joined by a PGA splice bar 53 which is held to the bone by PGA screws 54.
FIGURE 18 shows a different type of splice for a broken bone in which a broken bone 55 is jointed by a PGA fluted pin 57 inserted into the bone marrow 56. The pin is chosen of such size and shape as to fill the hollow in the bone and give mechanical strength and prevent motion at the break.
Absorbable splices or bone pins hold the bone in place until it has an opportunity to knit and then gradually dissolve. In the past, metallic reinforcing elements have frequently been used. Such metallic elements add weight to the body, and perhaps cause inflammation by their physical presence, or must be removed at a separate subsequent operation. Additionally, if a bone pin is used internally of a bone, the volume of bone marrow is markedly reduced. When the PGA bone pin dissolves, no scar tissue remains and bone marrow is regenerated through the bone permitting the bone marrow to accomplish its organic functions.
The drawings above are illustrative only, of embodiment of the present invention in which vario s prosthetic devices are incorporated into the human Eddy to aid impaired functions of. natural elements:-'- rom the above drawings and descriptions, it will hes yious to those skilled in the art that many other modi cations 'may be adapted for particular injuries or ills to which the flesh is heir.
The finding that polyglycolic acid, abbreviated PGA, is absorbable in living tissue, and has marked mechanical strength, as a fiber or solid, including sheet, and hence can be used as an element in, or as, a surgical prosthesis, is most unexpected and unpredictable.
Catgut, or regenerated collagen has in the past been used for tissue emplacement, but with collagen, as the collagen is absorbed, a fibrotic tract replaces the collagen, so that in efiect scar tissue remains at the site of the emplanted collagen for many years, in many instances for life. Some patients are allergic to collagen. PGA is not a protein, has no amino acids, and has given no evidence of allergic reactions in thousands of implants. With the present PGA prostheses, the PGA is completely absorbed, and a minimal or no trace of the inserted matter remains after a comparatively short period. This complete absorption, without residual fibrotic tissue, is unique, and an important contribution to surgery.
As it is obvious that examination of such prosthetic devices in humans must wait until autopsy, after death from natural causes, experimental results were conducted on laboratory animals which would permit sacrifice and examination at selected periods. These are shown in the following examples:
EXAMPLE 4 Absorbable intermedullary rod Longitudinal incisions were made on the superior surface of the hind legs of anesthetized rabbits to expose the upper end of the femur, close to the point of attachment to the hip. At a point about 1" from the neck portion, the shaft of the femur was out completely through by means of a small circular saw attached to an air drill. A hole about A; inch in diameter was drilled through the bony process known as the greater trochanter vertically into the narrow cavity of the shaft portion of the femur. The cut ends of the femur shaft were approximated and while they were held firmly in place a medullary rod of polyglycolic acid about two inches in length and about inch in diameter was driven through the hole in the trochanter into the marrow cavity past the point at which the shaft of the femur had been parted. The effect of the medullary rod was to hold the cut ends of the femur shaft firmly in place. The top end of the medullary pin was flush with the surface of the trochanter.
The parted soft tissues were approximated with sutures, the injured legs were splinted with wooden tongue depressors affixed to the leg with adhesive tape and the animals were returned to their cages. X-rays were taken of the injured legs at weekly intervals and the progress of new bone formation was observed. Animals were sacrificed at the end of 6, l2, l8, and 24- weeks and the femurs which had been operated upon were dissected out and examined. These femurs were compared with similarly resected femurs which had been repaired with Type 316 stainless steel pins'of equivalent size to those made of PGA.
With both the experimental and control animals the course of healing was uneventful. The breaks were essentially healed by the 6th week. After sacrifice the femurs were split longitudinally and the effect of time on the implants were observed. As expected in the relatively short times used the stainless steel pin was essentially inert but since the internal space was largely occluded, where the metallic pin was present, there was no marrow tissue.
Where the medullary rod of polyglycolic acid had been used, at six weeks the overall structure of the rod was essentially unchanged but there were fissures developing on the surface and the cut ends which had been sharply defined were somewhat rounded. The rod was somewhat softened on thesurface. There was a progressive increase in the amount of erosion of the PGA rod with time but this erosion was never associated with inflammation or other adverse reactors. By the 24th week the rod of polyglycolic acid was essentially digested and the bone now showed normal tissue architecture.
EXAMPLE 5 Absorbable bone plate affixed with absorbable pins Femurs of the hind legs of rabbits were bisected as described in Example 4. The cut ends were reapproximated and immobilized by use of an internal support made from a sheet of polyglycolic acid approximately inch thick 4" wide and 1 inch long, shaped to conform generally to the bone by softening the plastic with heat and premolding it about a metal rod of suitable diameter. The premolded plate was centrally located over the cut bone and while held in position, small holes were drilled through the plate and completely through the bone with a inch drill, two holes on each side of the bone break. Small PGA nails about inch long and slightly over A inch in diameter made by flattening rod of this diameter by pressing against a heated surface were driven through the holes in the PGA plate and completely through the bone to hold the plate in place. The soft tissue was reapproximated, the broken legs splinted and the animals were returned to their cages. X-rays were taken weekly and animals were sacrificed at 3, 6, 12, 18 and 24 week intervals. The legs which had been operated upon were carefully dissected to determine the fate of the polyglycolic acid implant and to observe the course of healing. At 3 weeks the bone was partially knit and the PGA implant was essentially intact. By 6 weeks the break in the bone was healed and the PGA plate was showing signs of erosion. The nails also showed signs of breakdown, and the plate could be moved in relation to the bone. By the 12th week the nails were so weakened and the holes in the PGA plate so enlarged that the remains of the plate could be easily separated from the bone. By the 24th week the plate was almost completely absorbed,
, the bone was covered by the normal periosteal membrane and where absorption was complete there was nothing to indicate that the PGA had ever been present.
EXAMPLE 6 Arterial prosthesis made of a mixture of polyester and polyglycolic acid fibers Yarn containing a mixture of polyglycolic acid monofilaments and polyester (polymer of ethylene glycol and terephthalic acid) monofilaments was made by combining sufficient monofilaments of PGA with a polyester yarn to make about 25% of the weight of the yarn polyglycolic acid. This yarn was converted into a tightly woven cloth which was in turn formed into a tube by wrapping cut pieces of suitable size about a mandrel and sewing together the open sides with polyester thread.
In this example where the arterial prostheses were to be used in rabbits, the tubes were only V in diameter.
The abdominal aorta was exposed by incision through the ventral wall; two clamps separated by about 1 /2 inches were placed on the abdominal aorta just distal to the renal artery. The approximately 1 inch of the abdorni nal aorta between the clamps was resected and a comparable length of prosthetic tubing made as described above was sewn in place. The clamps were removed, and the animal was observed closely until blood seepage had stopped. The abdomen was then closed and the animal returned to its cage. Sacrifices were made at the end of 1, 3, 6, l2, and 18 weeks and the prosthetic implant and the neighboring tissue was examined. After the first week there was little change in the prosthesis. The pores of the fiber were closed with fibrin and some new cell growth was noticeable at the cut ends of the blood vessel. By three weeks the fibrin clots had been partially replaced by new cells which represented the partial development of a pseudo intimal lining extending from the ends of the original vessel. The polyglycolic acid filaments were still intact but were showing indications of surface erosion on microscopic examination. By 6 weeks the pseudo intimal lining was complete. Blood vessels were beginning to develop in this tissue layer. Growth of cells was occurring through the pores of the prosthesis which were now substantially enlarged by the obvious diminution in size of the PGA filaments which were no longer continuous. Shredding of the PGA filaments was evident but the complete development of the pseudo intima prevented the shreds from entering the blood stream where they could represent foci for clot formation. By the twelfth week the PGA was essentially replaced by tissue elements which formed a well vascularized multicellular layer completely capturing the polyester filaments of the prosthesis. The picture at 18 weeks was similar to that at 12 weeks with more vascularization and greater organization of the cells of the inner lining and outer surface of the prosthesis. There was a conspicuous absence of any inflammatory response of abnormal tissue reaction. The absorption of the polyglycolic acid gave sufficient space in the fiber network to permit adequate cell growth and proper vascularization so that necrosis of tissue did not develop.
So far as inspection permits, similar results appear to be obtained in humans. Of course with humans, and larger animals proportionately sized prostheses must be used.
We claim:
1. A surgical prosthesis comprising non-absorable filaments shaped as a living tissue reinforcing element, and mixed with an coacting with said non-absorable filaments, in at least a part of the element, a structure consisting essentially of polyglycolic acid, whereby on implantation in living tissue, the polyglycolic acid structure is absorbed by the living tissue which replaces the polyglycolic acid and interlocks with the non-absorable filaments, said prosthesis being sterile at time of implantation.
2. The prosthesis of claim 1 in which the reinforcing element comprises a non-absorbable strand fabric mesh section, and interwoven and graded thereinto, bi-component strands in a graded transition portion, the individual strands of which are of proportionately increasing polyglycolic acid composition and decreasing non-absorb able filament composition, at increasing distances from said non-absorable strand fabric mesh section.
3. The fabric of claim 2 in which individual strands are composed of a plurality of non-absorbable filaments and polyglycolic acid filaments with the proportionate number of polyglycolic acid filaments increasing away from the non-absorbable fabric section.
4.. The surgical fabric of claim 2 in which the bicomponent strands consist of at least one bi-component filament, with the relative polyglycolic acid proportion increasing away from the non-absorbable portion.
5. The surgical prosthesis of claim 1 in which the non-absorbable reinforcing element is a tubular fabric graft with a graded transition from a section of nonabsorable strands to a section in which at least a pre- 12 dominant portion, by weight, of the strands consist of polyglycolic acid.
6. The surgical prosthesis of claim 1 in which the non-absorable filaments are coated with a substantially continuous layer of polyglycolic acid.
7. A bi-component strand for the fabrication or attachment of a surgical prosthesis comprising at least one filament of a non-absorbable material and united therewith polyglycolic acid.
8. The bi-component strand of claim 7 in which each filament of non-absorable material is coated, approximately concentrically, with polyglycolic acid.
References Cited UNITED STATES PATENTS 3,272,204 9/1966 Artandi et al 128-334 3,276,448 10/1966 Kronenthal 128-334 3,297,033 1/1967 Schmitt et a1. 128-3355 3,304,557 2/1967 Polansky 128-334 3,316,557 5/1967 Liebig 128-334 DALTON L. TRULUCK, Primary Examiner US. Cl. X.R. 3-1
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent NO. 3 ,463,l58 August 26, 1969 Edward Emil Schmitt et a1.
It is certified that error appears in the above identified patent and that said Letters Patent are hereby corrected as shown below:
(SEAL) Attest:
Edward M. Fletcher, Jr.
Attesting Officer Commissioner of Patents WILLIAM E. SCHUYLER, IR.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US320543A US3297033A (en) | 1963-10-31 | 1963-10-31 | Surgical sutures |
US60806867A | 1967-01-09 | 1967-01-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3463158A true US3463158A (en) | 1969-08-26 |
Family
ID=26982543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US608068A Expired - Lifetime US3463158A (en) | 1963-10-31 | 1967-01-09 | Polyglycolic acid prosthetic devices |
Country Status (1)
Country | Link |
---|---|
US (1) | US3463158A (en) |
Cited By (194)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3620218A (en) * | 1963-10-31 | 1971-11-16 | American Cyanamid Co | Cylindrical prosthetic devices of polyglycolic acid |
JPS4833773B1 (en) * | 1970-05-25 | 1973-10-16 | ||
US3849805A (en) * | 1972-11-01 | 1974-11-26 | Attending Staff Ass Los Angele | Bone induction in an alloplastic tray |
US3878565A (en) * | 1971-07-14 | 1975-04-22 | Providence Hospital | Vascular prosthesis with external pile surface |
US3883901A (en) * | 1972-12-01 | 1975-05-20 | Rhone Poulenc Sa | Method of replacing or repairing the body with bioresorbable surgical articles |
US3908201A (en) * | 1972-06-30 | 1975-09-30 | Ici Ltd | Prosthetics |
US3996623A (en) * | 1974-07-30 | 1976-12-14 | Kaster Robert L | Method of implanting a prosthetic device and suturing member therefor |
US4032993A (en) * | 1974-06-28 | 1977-07-05 | Rhone-Poulenc Industries | Bioresorbable surgical articles |
US4042978A (en) * | 1972-06-30 | 1977-08-23 | Imperial Chemical Industries Limited | Prosthetics |
US4127902A (en) * | 1976-06-07 | 1978-12-05 | Homsy Charles A | Structure suitable for in vivo implantation |
US4128612A (en) * | 1974-04-19 | 1978-12-05 | American Cyanamid Company | Making absorbable surgical felt |
US4181983A (en) * | 1977-08-29 | 1980-01-08 | Kulkarni R K | Assimilable hydrophilic prosthesis |
US4243775A (en) * | 1978-11-13 | 1981-01-06 | American Cyanamid Company | Synthetic polyester surgical articles |
US4275813A (en) * | 1979-06-04 | 1981-06-30 | United States Surgical Corporation | Coherent surgical staple array |
US4279249A (en) * | 1978-10-20 | 1981-07-21 | Agence Nationale De Valorisation De La Recherche (Anvar) | New prosthesis parts, their preparation and their application |
EP0050215A1 (en) * | 1980-10-20 | 1982-04-28 | American Cyanamid Company | Modification of polyglycolic acid to achieve variable in-vivo physical properties |
US4329743A (en) * | 1979-04-27 | 1982-05-18 | College Of Medicine And Dentistry Of New Jersey | Bio-absorbable composite tissue scaffold |
WO1982001647A1 (en) * | 1980-11-17 | 1982-05-27 | Robert L Kaster | Vascular graft |
US4338926A (en) * | 1980-11-21 | 1982-07-13 | Howmedica, Inc. | Bone fracture prosthesis with controlled stiffness |
US4365357A (en) * | 1979-04-28 | 1982-12-28 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Surgical materials suitable for use with bone cements |
US4379138A (en) * | 1981-12-28 | 1983-04-05 | Research Triangle Institute | Biodegradable polymers of lactones |
US4411027A (en) * | 1979-04-27 | 1983-10-25 | University Of Medicine And Dentistry Of New Jersey | Bio-absorbable composite tissue scaffold |
US4416028A (en) * | 1981-01-22 | 1983-11-22 | Ingvar Eriksson | Blood vessel prosthesis |
US4439391A (en) * | 1979-06-26 | 1984-03-27 | International Paper Company | Polymeric sheets |
US4441215A (en) * | 1980-11-17 | 1984-04-10 | Kaster Robert L | Vascular graft |
US4467478A (en) * | 1982-09-20 | 1984-08-28 | Jurgutis John A | Human ligament replacement |
US4481353A (en) * | 1983-10-07 | 1984-11-06 | The Children's Medical Center Corporation | Bioresorbable polyesters and polyester composites |
US4495664A (en) * | 1981-07-30 | 1985-01-29 | Ceraver | Titanium or titanium alloy pin for cement-free fixing in a long bone to form a prosthesis |
US4501029A (en) * | 1982-04-22 | 1985-02-26 | Mcminn Derek J W | Tendon repair |
DE3433331A1 (en) * | 1983-09-20 | 1985-03-28 | Materials Consultants Oy, Tampere | SURGICAL DEVICE FOR IMMOBILIZING BONE FRACTURES |
US4512038A (en) * | 1979-04-27 | 1985-04-23 | University Of Medicine And Dentistry Of New Jersey | Bio-absorbable composite tissue scaffold |
US4522593A (en) * | 1983-07-07 | 1985-06-11 | Fischer Dan E | Knitted gingival retraction cord |
US4523591A (en) * | 1982-10-22 | 1985-06-18 | Kaplan Donald S | Polymers for injection molding of absorbable surgical devices |
JPS60234667A (en) * | 1984-04-26 | 1985-11-21 | アメリカン・サイアナミド・カンパニー | Surgical healing net |
US4560374A (en) * | 1983-10-17 | 1985-12-24 | Hammerslag Julius G | Method for repairing stenotic vessels |
WO1986000533A1 (en) * | 1984-07-10 | 1986-01-30 | Rijksuniversiteit Te Groningen | Bone implant |
US4585458A (en) * | 1981-06-10 | 1986-04-29 | Kurland Kenneth Z | Means and method of implanting bioprosthetics |
US4584722A (en) * | 1982-05-24 | 1986-04-29 | Yeda Research And Development Co., Ltd. | Prosthetic tendon |
JPS6194650A (en) * | 1984-09-06 | 1986-05-13 | スタンレイ・エル・キヤプナー | Apparatus for fixing permanent implant for joint |
US4594407A (en) * | 1983-09-20 | 1986-06-10 | Allied Corporation | Prosthetic devices derived from krebs-cycle dicarboxylic acids and diols |
EP0202444A2 (en) * | 1985-04-25 | 1986-11-26 | American Cyanamid Company | Prosthetic tubular article |
WO1987000419A1 (en) * | 1985-07-12 | 1987-01-29 | Minnesota Mining And Manufacturing Company | Semiabsorbable bone plate spacer |
US4650851A (en) * | 1986-03-19 | 1987-03-17 | Pfizer Hospital Products Group, Inc. | Purification of glycolide |
US4744365A (en) * | 1986-07-17 | 1988-05-17 | United States Surgical Corporation | Two-phase compositions for absorbable surgical devices |
US4754745A (en) * | 1984-11-21 | 1988-07-05 | Horowitz Bruce S | Conformable sheet material for use in brachytherapy |
US4763642A (en) * | 1986-04-07 | 1988-08-16 | Horowitz Bruce S | Intracavitational brachytherapy |
US4776329A (en) * | 1985-09-20 | 1988-10-11 | Richards Medical Company | Resorbable compressing screw and method |
US4792336A (en) * | 1986-03-03 | 1988-12-20 | American Cyanamid Company | Flat braided ligament or tendon implant device having texturized yarns |
US4804691A (en) * | 1987-08-28 | 1989-02-14 | Richards Medical Company | Method for making a biodegradable adhesive for soft living tissue |
US4815449A (en) * | 1984-11-21 | 1989-03-28 | Horowitz Bruce S | Delivery system for interstitial radiation therapy including substantially non-deflecting elongated member |
US4840632A (en) * | 1984-03-16 | 1989-06-20 | Kampner Stanley L | Hip prosthesis |
US4843112A (en) * | 1987-03-12 | 1989-06-27 | The Beth Israel Hospital Association | Bioerodable implant composition |
US4848367A (en) * | 1987-02-11 | 1989-07-18 | Odis L. Avant | Method of effecting dorsal vein ligation |
US4850999A (en) * | 1980-05-24 | 1989-07-25 | Institute Fur Textil-Und Faserforschung Of Stuttgart | Flexible hollow organ |
EP0334024A2 (en) * | 1988-03-22 | 1989-09-27 | American Cyanamid Company | Prosthetic tubular article |
US4871365A (en) * | 1985-04-25 | 1989-10-03 | American Cyanamid Company | Partially absorbable prosthetic tubular article having an external support |
US4870966A (en) * | 1988-02-01 | 1989-10-03 | American Cyanamid Company | Bioabsorbable surgical device for treating nerve defects |
DE3047573C2 (en) * | 1979-06-06 | 1990-06-28 | Staffan Bowald | |
DE3913926A1 (en) * | 1989-04-27 | 1990-10-31 | Heinz Helmut Dr Med Werner | Vascular prosthesis, esp. of PET with resorbable plastic coatings - esp. of poly:lactide, applied as soln. then treatment with non-solvent |
US4973333A (en) * | 1985-09-20 | 1990-11-27 | Richards Medical Company | Resorbable compressing screw and method |
US4990158A (en) * | 1989-05-10 | 1991-02-05 | United States Surgical Corporation | Synthetic semiabsorbable tubular prosthesis |
US4997440A (en) * | 1985-04-25 | 1991-03-05 | American Cyanamid Company | Vascular graft with absorbable and nonabsorbable components |
US5053035A (en) * | 1990-05-24 | 1991-10-01 | Mclaren Alexander C | Flexible intramedullary fixation rod |
US5061281A (en) * | 1985-12-17 | 1991-10-29 | Allied-Signal Inc. | Bioresorbable polymers and implantation devices thereof |
US5085861A (en) * | 1987-03-12 | 1992-02-04 | The Beth Israel Hospital Association | Bioerodable implant composition comprising crosslinked biodegradable polyesters |
US5124103A (en) * | 1984-03-06 | 1992-06-23 | United States Surgical Corporation | Two phase compositions for absorbable surgical devices |
US5147399A (en) * | 1988-02-01 | 1992-09-15 | Dellon Arnold L | Method of treating nerve defects through use of a bioabsorbable surgical device |
US5147400A (en) * | 1989-05-10 | 1992-09-15 | United States Surgical Corporation | Connective tissue prosthesis |
US5217495A (en) * | 1989-05-10 | 1993-06-08 | United States Surgical Corporation | Synthetic semiabsorbable composite yarn |
WO1994003117A1 (en) * | 1992-07-28 | 1994-02-17 | Dental Marketing Specialists, Inc. | Bone augmentation method and apparatus |
US5292328A (en) * | 1991-10-18 | 1994-03-08 | United States Surgical Corporation | Polypropylene multifilament warp knitted mesh and its use in surgery |
US5314446A (en) * | 1992-02-19 | 1994-05-24 | Ethicon, Inc. | Sterilized heterogeneous braids |
US5319038A (en) * | 1993-02-09 | 1994-06-07 | Johnson & Johnson Orthopaedics, Inc. G35 | Process of preparing an absorbable polymer |
US5334216A (en) * | 1992-12-10 | 1994-08-02 | Howmedica Inc. | Hemostatic plug |
US5350388A (en) * | 1989-03-07 | 1994-09-27 | Albert Einstein College Of Medicine Of Yeshiva University | Hemostasis apparatus and method |
US5358475A (en) * | 1985-12-17 | 1994-10-25 | United States Surgical Corporation | High molecular weight bioresorbable polymers and implantable devices thereof |
US5376118A (en) * | 1989-05-10 | 1994-12-27 | United States Surgical Corporation | Support material for cell impregnation |
US5403346A (en) * | 1992-12-31 | 1995-04-04 | Loeser; Edward A. | Self-affixing suture assembly |
US5403347A (en) * | 1993-05-27 | 1995-04-04 | United States Surgical Corporation | Absorbable block copolymers and surgical articles fabricated therefrom |
US5431679A (en) * | 1994-03-10 | 1995-07-11 | United States Surgical Corporation | Absorbable block copolymers and surgical articles fabricated therefrom |
US5458636A (en) * | 1994-07-20 | 1995-10-17 | U.S. Biomaterials Corporation | Prosthetic device for repair and replacement of fibrous connective tissue |
US5475063A (en) * | 1991-02-12 | 1995-12-12 | United States Surgical Corporation | Blends of glycolide and/or lactide polymers and caprolactone and/or trimethylene carbonate polymers and absorbable surgical devices made |
US5489297A (en) * | 1992-01-27 | 1996-02-06 | Duran; Carlos M. G. | Bioprosthetic heart valve with absorbable stent |
EP0701823A2 (en) | 1994-09-16 | 1996-03-20 | United States Surgical Corporation | Absorbable polymer and surgical articles fabricated therefrom |
US5522841A (en) * | 1993-05-27 | 1996-06-04 | United States Surgical Corporation | Absorbable block copolymers and surgical articles fabricated therefrom |
US5522904A (en) * | 1993-10-13 | 1996-06-04 | Hercules Incorporated | Composite femoral implant having increased neck strength |
WO1996022055A1 (en) | 1995-01-19 | 1996-07-25 | Inbae Yoon | Surgical stapling system and method of applying staples from multiple staple cartridges |
US5542594A (en) * | 1993-10-06 | 1996-08-06 | United States Surgical Corporation | Surgical stapling apparatus with biocompatible surgical fabric |
US5545212A (en) * | 1991-12-18 | 1996-08-13 | Terumo Kabushiki Kaisha | Artificial blood vessel |
US5571193A (en) * | 1992-03-12 | 1996-11-05 | Kampner; Stanley L. | Implant with reinforced resorbable stem |
US5618313A (en) * | 1994-10-11 | 1997-04-08 | United States Surgical Corporation | Absorbable polymer and surgical articles fabricated therefrom |
US5628788A (en) * | 1995-11-07 | 1997-05-13 | Corvita Corporation | Self-expanding endoluminal stent-graft |
US5632753A (en) * | 1992-12-31 | 1997-05-27 | Loeser; Edward A. | Surgical procedures |
EP0786259A2 (en) | 1996-01-19 | 1997-07-30 | United States Surgical Corporation | Absorbable polymer blends and surgical articles fabricated therefrom |
US5681310A (en) * | 1994-07-20 | 1997-10-28 | Yuan; Hansen A. | Vertebral auxiliary fixation device having holding capability |
US5697976A (en) * | 1992-06-15 | 1997-12-16 | United States Surgical Corporation | Bioabsorbable implant material |
US5700269A (en) * | 1995-06-06 | 1997-12-23 | Corvita Corporation | Endoluminal prosthesis deployment device for use with prostheses of variable length and having retraction ability |
US5707647A (en) * | 1994-04-08 | 1998-01-13 | Atrix Laboratories, Inc. | Adjunctive polymer system for use with medical device |
US5733950A (en) * | 1988-10-03 | 1998-03-31 | Atrix Laboratories, Incorporated | Biodegradable in-situ forming implants and methods of producing the same |
US5741333A (en) * | 1995-04-12 | 1998-04-21 | Corvita Corporation | Self-expanding stent for a medical device to be introduced into a cavity of a body |
WO1998018408A1 (en) | 1996-10-25 | 1998-05-07 | Bionix Implants Oy | Surgical implant |
US5756651A (en) * | 1996-07-17 | 1998-05-26 | Chronopol, Inc. | Impact modified polylactide |
US5800510A (en) * | 1993-12-02 | 1998-09-01 | Meadox Medicals, Inc. | Implantable tubular prosthesis |
US5849037A (en) * | 1995-04-12 | 1998-12-15 | Corvita Corporation | Self-expanding stent for a medical device to be introduced into a cavity of a body, and method for its preparation |
US5935594A (en) * | 1993-10-28 | 1999-08-10 | Thm Biomedical, Inc. | Process and device for treating and healing a tissue deficiency |
US5948020A (en) * | 1995-05-01 | 1999-09-07 | Sam Yang Co., Ltd. | Implantable bioresorbable membrane and method for the preparation thereof |
US5968091A (en) * | 1996-03-26 | 1999-10-19 | Corvita Corp. | Stents and stent grafts having enhanced hoop strength and methods of making the same |
US5981825A (en) * | 1994-05-13 | 1999-11-09 | Thm Biomedical, Inc. | Device and methods for in vivo culturing of diverse tissue cells |
US6007565A (en) * | 1997-09-05 | 1999-12-28 | United States Surgical | Absorbable block copolymers and surgical articles fabricated therefrom |
US6071530A (en) * | 1989-07-24 | 2000-06-06 | Atrix Laboratories, Inc. | Method and composition for treating a bone tissue defect |
US6083524A (en) * | 1996-09-23 | 2000-07-04 | Focal, Inc. | Polymerizable biodegradable polymers including carbonate or dioxanone linkages |
US6162537A (en) * | 1996-11-12 | 2000-12-19 | Solutia Inc. | Implantable fibers and medical articles |
US6187008B1 (en) | 1999-07-07 | 2001-02-13 | Bristol-Myers Squibb | Device for temporarily fixing bones |
US6191236B1 (en) | 1996-10-11 | 2001-02-20 | United States Surgical Corporation | Bioabsorbable suture and method of its manufacture |
US6206908B1 (en) | 1994-09-16 | 2001-03-27 | United States Surgical Corporation | Absorbable polymer and surgical articles fabricated therefrom |
US6228111B1 (en) | 1995-09-27 | 2001-05-08 | Bionx Implants Oy | Biodegradable implant manufactured of polymer-based material and a method for manufacturing the same |
US6228954B1 (en) | 1991-02-12 | 2001-05-08 | United States Surgical Corporation | Blends of glycolide and/or lactide polymers and caprolactone and/or trimethylene carbonate polymers and absorabable surgical devices made therefrom |
US6261583B1 (en) | 1998-07-28 | 2001-07-17 | Atrix Laboratories, Inc. | Moldable solid delivery system |
US6273897B1 (en) | 2000-02-29 | 2001-08-14 | Ethicon, Inc. | Surgical bettress and surgical stapling apparatus |
US6277927B1 (en) | 1997-11-26 | 2001-08-21 | United States Surgical Corporation | Absorbable block copolymers and surgical articles fabricated therefrom |
US6296645B1 (en) | 1999-04-09 | 2001-10-02 | Depuy Orthopaedics, Inc. | Intramedullary nail with non-metal spacers |
US6325810B1 (en) | 1999-06-30 | 2001-12-04 | Ethicon, Inc. | Foam buttress for stapling apparatus |
US6348066B1 (en) * | 1995-11-07 | 2002-02-19 | Corvita Corporation | Modular endoluminal stent-grafts and methods for their use |
US6348068B1 (en) * | 1999-07-23 | 2002-02-19 | Sulzer Carbomedics Inc. | Multi-filament valve stent for a cardisc valvular prosthesis |
US6350277B1 (en) | 1999-01-15 | 2002-02-26 | Scimed Life Systems, Inc. | Stents with temporary retaining bands |
US20020120270A1 (en) * | 2001-02-28 | 2002-08-29 | Hai Trieu | Flexible systems for spinal stabilization and fixation |
US20020123750A1 (en) * | 2001-02-28 | 2002-09-05 | Lukas Eisermann | Woven orthopedic implants |
USRE37950E1 (en) | 1990-04-24 | 2002-12-31 | Atrix Laboratories | Biogradable in-situ forming implants and methods of producing the same |
US20030014127A1 (en) * | 1988-11-10 | 2003-01-16 | Martti Talja | Biodegradable surgical implants and devices |
US6546188B1 (en) | 1998-01-16 | 2003-04-08 | Sony Corporation | Editing system and editing method |
US20030180344A1 (en) * | 2002-02-05 | 2003-09-25 | Cambridge Scientific, Inc. | Bioresorbable osteoconductive compositions for bone regeneration |
EP1361835A1 (en) * | 2000-07-27 | 2003-11-19 | Bionx Implants, Inc. | Self-expanding stent with enhanced radial expansion and shape memory |
US6652585B2 (en) | 2001-02-28 | 2003-11-25 | Sdgi Holdings, Inc. | Flexible spine stabilization system |
US20040029478A1 (en) * | 1999-11-10 | 2004-02-12 | Deutsche Institute Fur Textil- Und Faserforschung Stuttgart Stiftung Des Offentlichen Rechts | Flat implant, method for its manufacture and use in surgery |
US20040034435A1 (en) * | 1997-10-31 | 2004-02-19 | Anthony Atala | Organ reconstruction |
WO2004006808A3 (en) * | 2002-07-17 | 2004-03-11 | Proxy Biomedical Ltd | Soft tissue implants and methods for making same |
US20040058164A1 (en) * | 1994-07-22 | 2004-03-25 | Bennett Steven L. | Bioabsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom |
US6716932B2 (en) | 2000-08-16 | 2004-04-06 | Tyco Healthcare Group Lp | High consistency absorbable polymeric resin |
US6719935B2 (en) | 2001-01-05 | 2004-04-13 | Howmedica Osteonics Corp. | Process for forming bioabsorbable implants |
JP3520091B2 (en) | 1995-02-07 | 2004-04-19 | デピュー・オーソピーディクス・インコーポレーテッド | Surgical implantation of a cartilage repair unit |
US20040127846A1 (en) * | 1999-09-24 | 2004-07-01 | Dunn Richard L. | Coupling syringe system and methods for obtaining a mixed composition |
US20040167634A1 (en) * | 1999-05-26 | 2004-08-26 | Anthony Atala | Prosthetic kidney and its use for treating kidney disease |
US6783529B2 (en) | 1999-04-09 | 2004-08-31 | Depuy Orthopaedics, Inc. | Non-metal inserts for bone support assembly |
US20040177810A1 (en) * | 2003-03-11 | 2004-09-16 | Fujitsu Display Technologies Corporation | Vacuum processing apparatus |
US20040210226A1 (en) * | 2000-10-20 | 2004-10-21 | Trieu Hai H. | Anchoring devices and implants for intervertebral disc augmentation |
US6808527B2 (en) | 2000-04-10 | 2004-10-26 | Depuy Orthopaedics, Inc. | Intramedullary nail with snap-in window insert |
US20040230288A1 (en) * | 2002-04-17 | 2004-11-18 | Rosenthal Arthur L. | Medical devices adapted for controlled in vivo structural change after implantation |
US20050070930A1 (en) * | 2003-09-30 | 2005-03-31 | Gene W. Kammerer | Implantable surgical mesh |
EP1543782A1 (en) * | 2003-12-18 | 2005-06-22 | Ethicon, Inc. | High strength suture with absorbable core |
US20050136764A1 (en) * | 2003-12-18 | 2005-06-23 | Sherman Michael C. | Designed composite degradation for spinal implants |
JP2005177500A (en) * | 2003-12-18 | 2005-07-07 | Ethicon Inc | High strength suture with absorbable core and suture anchor combination |
US6929659B2 (en) | 1995-11-07 | 2005-08-16 | Scimed Life Systems, Inc. | Method of preventing the dislodgment of a stent-graft |
US20050288797A1 (en) * | 2004-06-23 | 2005-12-29 | Warwick Mills, Inc. | Controlled absorption biograft material for autologous tissue support |
US20060002972A1 (en) * | 1994-08-16 | 2006-01-05 | Children's Medical Center Corporation | Reconstruction of urological structures with polymeric matrices |
US20060064175A1 (en) * | 2004-09-20 | 2006-03-23 | Edouard Pelissier | Implantable prosthesis for soft tissue repair |
US20060190076A1 (en) * | 2003-11-17 | 2006-08-24 | Taheri Syde A | Temporary absorbable venous occlusive stent and superficial vein treatment method |
US20060216320A1 (en) * | 2003-03-31 | 2006-09-28 | Eiichi Kitazono | Composite of support matrix and collagen, and process for producing support substrate and composite |
US7128927B1 (en) | 1998-04-14 | 2006-10-31 | Qlt Usa, Inc. | Emulsions for in-situ delivery systems |
US20070116679A1 (en) * | 1999-12-29 | 2007-05-24 | Children's Medical Center Corporation | Augmentation of organ function |
WO2007070141A1 (en) | 2005-09-12 | 2007-06-21 | Proxy Biomedical Limited | Soft tissue implants and methods for making same |
US20070255422A1 (en) * | 2006-04-25 | 2007-11-01 | Mei Wei | Calcium phosphate polymer composite and method |
US20070282160A1 (en) * | 2006-06-06 | 2007-12-06 | Boston Scientific Scimed, Inc. | Implantable mesh combining biodegradable and non-biodegradable fibers |
US20070298072A1 (en) * | 2004-11-19 | 2007-12-27 | Teijin Limited | Cylindrical Body and Manufacturing Method Thereof |
US20080027542A1 (en) * | 2006-05-09 | 2008-01-31 | Lifecell Corporation | Reinforced Biological Tissue |
US7344539B2 (en) | 2001-03-30 | 2008-03-18 | Depuy Acromed, Inc. | Intervertebral connection system |
US7347870B1 (en) * | 2000-05-25 | 2008-03-25 | Bioring Sa | Device for shrinking or reinforcing the heart valvular orifices |
US7410488B2 (en) | 2005-02-18 | 2008-08-12 | Smith & Nephew, Inc. | Hindfoot nail |
US20080305146A1 (en) * | 2007-06-08 | 2008-12-11 | Wake Forest University Health Sciences, | Selective cell therapy for the treatment of renal failure |
US20090024147A1 (en) * | 2007-07-18 | 2009-01-22 | Ralph James D | Implantable mesh for musculoskeletal trauma, orthopedic reconstruction and soft tissue repair |
EP2036582A1 (en) | 1994-07-22 | 2009-03-18 | United States Surgical Corporation | Biobsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom |
US20090105753A1 (en) * | 2004-08-26 | 2009-04-23 | Prodesco, Inc. | Sutures and methods of making the same |
US7614258B2 (en) | 2006-10-19 | 2009-11-10 | C.R. Bard, Inc. | Prosthetic repair fabric |
US20100010519A1 (en) * | 2008-07-09 | 2010-01-14 | Joshua Stopek | Anastomosis Sheath And Method Of Use |
US7655009B2 (en) | 2003-12-01 | 2010-02-02 | Smith & Nephew, Inc. | Humeral nail |
US7682392B2 (en) | 2002-10-30 | 2010-03-23 | Depuy Spine, Inc. | Regenerative implants for stabilizing the spine and devices for attachment of said implants |
US20100104544A1 (en) * | 2007-06-08 | 2010-04-29 | Anthony Atala | Selective cell therapy for the treatment of renal failure |
US20100112062A1 (en) * | 2007-06-08 | 2010-05-06 | Anthony Atala | Kidney structures and methods of forming the same |
US20100160945A1 (en) * | 2008-12-19 | 2010-06-24 | Tyco Healthcare Group, Lp | Method and apparatus for storage and/or introduction of implant for hollow anatomical structure |
US20100198236A1 (en) * | 2009-02-02 | 2010-08-05 | Ralph Zipper | Surgical Meshes and Methods of Use |
US7815661B2 (en) | 2005-01-25 | 2010-10-19 | Tyco Healthcare Group, Lp | Method and apparatus for implanting an occlusive structure |
US20100291287A1 (en) * | 2004-06-07 | 2010-11-18 | Degima Gmbh | Polymeric plate bendable without thermal energy and methods of manufacture |
US20110009948A1 (en) * | 2005-08-15 | 2011-01-13 | Advanced Cardiovascular Systems, Inc. | Fiber Reinforced Composite Stents |
US20110130792A1 (en) * | 2009-12-01 | 2011-06-02 | Zimmer Gmbh | Cord for vertebral stabilization system |
US8012172B2 (en) | 2001-09-13 | 2011-09-06 | Arthrex, Inc. | High strength suture with coating and colored trace |
US8066750B2 (en) | 2006-10-06 | 2011-11-29 | Warsaw Orthopedic, Inc | Port structures for non-rigid bone plates |
US8333803B2 (en) | 2008-11-21 | 2012-12-18 | Lifecell Corporation | Reinforced biologic material |
US20130011184A1 (en) * | 2010-03-30 | 2013-01-10 | Anneleen De Smet | Splice for jointing steel cord strips encased in thermoplastic material |
US20130211430A1 (en) * | 2012-02-10 | 2013-08-15 | Novus Scientific Pte. Ltd. | Multifilaments with time-dependent characteristics, and medical products made from such multifilaments |
US20140131909A1 (en) * | 2007-12-13 | 2014-05-15 | Said G. Osman | Biologic artificial bone |
US9017361B2 (en) | 2006-04-20 | 2015-04-28 | Covidien Lp | Occlusive implant and methods for hollow anatomical structure |
US9517062B2 (en) | 2014-12-03 | 2016-12-13 | Smith & Nephew, Inc. | Closed loop suture for anchoring tissue grafts |
US20170181841A1 (en) * | 2015-12-29 | 2017-06-29 | Jeffrey Weinzweig | Prosthetic implant delivery device and method |
US10610270B2 (en) | 2018-01-15 | 2020-04-07 | Glw, Inc. | Hybrid intramedullary rods |
US10925716B2 (en) | 2015-02-25 | 2021-02-23 | Smith & Nephew, Inc. | Closed loop suture for anchoring tissue grafts |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3272204A (en) * | 1965-09-22 | 1966-09-13 | Ethicon Inc | Absorbable collagen prosthetic implant with non-absorbable reinforcing strands |
US3276448A (en) * | 1962-12-14 | 1966-10-04 | Ethicon Inc | Collagen coated fabric prosthesis |
US3297033A (en) * | 1963-10-31 | 1967-01-10 | American Cyanamid Co | Surgical sutures |
US3304557A (en) * | 1965-09-28 | 1967-02-21 | Ethicon Inc | Surgical prosthesis |
US3316557A (en) * | 1965-02-15 | 1967-05-02 | Meadox Medicals Inc | Surgical, vascular prosthesis formed of composite yarns containing both synthetic and animal derivative strands |
-
1967
- 1967-01-09 US US608068A patent/US3463158A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3276448A (en) * | 1962-12-14 | 1966-10-04 | Ethicon Inc | Collagen coated fabric prosthesis |
US3297033A (en) * | 1963-10-31 | 1967-01-10 | American Cyanamid Co | Surgical sutures |
US3316557A (en) * | 1965-02-15 | 1967-05-02 | Meadox Medicals Inc | Surgical, vascular prosthesis formed of composite yarns containing both synthetic and animal derivative strands |
US3272204A (en) * | 1965-09-22 | 1966-09-13 | Ethicon Inc | Absorbable collagen prosthetic implant with non-absorbable reinforcing strands |
US3304557A (en) * | 1965-09-28 | 1967-02-21 | Ethicon Inc | Surgical prosthesis |
Cited By (318)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3620218A (en) * | 1963-10-31 | 1971-11-16 | American Cyanamid Co | Cylindrical prosthetic devices of polyglycolic acid |
JPS4833773B1 (en) * | 1970-05-25 | 1973-10-16 | ||
US3878565A (en) * | 1971-07-14 | 1975-04-22 | Providence Hospital | Vascular prosthesis with external pile surface |
US3908201A (en) * | 1972-06-30 | 1975-09-30 | Ici Ltd | Prosthetics |
US4042978A (en) * | 1972-06-30 | 1977-08-23 | Imperial Chemical Industries Limited | Prosthetics |
US3849805A (en) * | 1972-11-01 | 1974-11-26 | Attending Staff Ass Los Angele | Bone induction in an alloplastic tray |
US3883901A (en) * | 1972-12-01 | 1975-05-20 | Rhone Poulenc Sa | Method of replacing or repairing the body with bioresorbable surgical articles |
US4128612A (en) * | 1974-04-19 | 1978-12-05 | American Cyanamid Company | Making absorbable surgical felt |
US4032993A (en) * | 1974-06-28 | 1977-07-05 | Rhone-Poulenc Industries | Bioresorbable surgical articles |
US3996623A (en) * | 1974-07-30 | 1976-12-14 | Kaster Robert L | Method of implanting a prosthetic device and suturing member therefor |
US4127902A (en) * | 1976-06-07 | 1978-12-05 | Homsy Charles A | Structure suitable for in vivo implantation |
US4181983A (en) * | 1977-08-29 | 1980-01-08 | Kulkarni R K | Assimilable hydrophilic prosthesis |
US4279249A (en) * | 1978-10-20 | 1981-07-21 | Agence Nationale De Valorisation De La Recherche (Anvar) | New prosthesis parts, their preparation and their application |
US4243775A (en) * | 1978-11-13 | 1981-01-06 | American Cyanamid Company | Synthetic polyester surgical articles |
US4411027A (en) * | 1979-04-27 | 1983-10-25 | University Of Medicine And Dentistry Of New Jersey | Bio-absorbable composite tissue scaffold |
US4512038A (en) * | 1979-04-27 | 1985-04-23 | University Of Medicine And Dentistry Of New Jersey | Bio-absorbable composite tissue scaffold |
US4329743A (en) * | 1979-04-27 | 1982-05-18 | College Of Medicine And Dentistry Of New Jersey | Bio-absorbable composite tissue scaffold |
US4457028A (en) * | 1979-04-28 | 1984-07-03 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Surgical materials suitable for use with bone cements |
US4365357A (en) * | 1979-04-28 | 1982-12-28 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Surgical materials suitable for use with bone cements |
US4275813A (en) * | 1979-06-04 | 1981-06-30 | United States Surgical Corporation | Coherent surgical staple array |
DE3047573C2 (en) * | 1979-06-06 | 1990-06-28 | Staffan Bowald | |
US4439391A (en) * | 1979-06-26 | 1984-03-27 | International Paper Company | Polymeric sheets |
US4850999A (en) * | 1980-05-24 | 1989-07-25 | Institute Fur Textil-Und Faserforschung Of Stuttgart | Flexible hollow organ |
EP0050215A1 (en) * | 1980-10-20 | 1982-04-28 | American Cyanamid Company | Modification of polyglycolic acid to achieve variable in-vivo physical properties |
WO1982001647A1 (en) * | 1980-11-17 | 1982-05-27 | Robert L Kaster | Vascular graft |
US4441215A (en) * | 1980-11-17 | 1984-04-10 | Kaster Robert L | Vascular graft |
US4338926A (en) * | 1980-11-21 | 1982-07-13 | Howmedica, Inc. | Bone fracture prosthesis with controlled stiffness |
US4416028A (en) * | 1981-01-22 | 1983-11-22 | Ingvar Eriksson | Blood vessel prosthesis |
US4585458A (en) * | 1981-06-10 | 1986-04-29 | Kurland Kenneth Z | Means and method of implanting bioprosthetics |
US4495664A (en) * | 1981-07-30 | 1985-01-29 | Ceraver | Titanium or titanium alloy pin for cement-free fixing in a long bone to form a prosthesis |
US4379138A (en) * | 1981-12-28 | 1983-04-05 | Research Triangle Institute | Biodegradable polymers of lactones |
US4501029A (en) * | 1982-04-22 | 1985-02-26 | Mcminn Derek J W | Tendon repair |
US4584722A (en) * | 1982-05-24 | 1986-04-29 | Yeda Research And Development Co., Ltd. | Prosthetic tendon |
US4467478A (en) * | 1982-09-20 | 1984-08-28 | Jurgutis John A | Human ligament replacement |
US4523591A (en) * | 1982-10-22 | 1985-06-18 | Kaplan Donald S | Polymers for injection molding of absorbable surgical devices |
US4522593A (en) * | 1983-07-07 | 1985-06-11 | Fischer Dan E | Knitted gingival retraction cord |
AT396326B (en) * | 1983-09-20 | 1993-08-25 | Materials Consultants Oy | SURGICAL IMPLANT |
US4594407A (en) * | 1983-09-20 | 1986-06-10 | Allied Corporation | Prosthetic devices derived from krebs-cycle dicarboxylic acids and diols |
DE3433331A1 (en) * | 1983-09-20 | 1985-03-28 | Materials Consultants Oy, Tampere | SURGICAL DEVICE FOR IMMOBILIZING BONE FRACTURES |
US4481353A (en) * | 1983-10-07 | 1984-11-06 | The Children's Medical Center Corporation | Bioresorbable polyesters and polyester composites |
US4560374A (en) * | 1983-10-17 | 1985-12-24 | Hammerslag Julius G | Method for repairing stenotic vessels |
US5124103A (en) * | 1984-03-06 | 1992-06-23 | United States Surgical Corporation | Two phase compositions for absorbable surgical devices |
US4990161A (en) * | 1984-03-16 | 1991-02-05 | Kampner Stanley L | Implant with resorbable stem |
US4840632A (en) * | 1984-03-16 | 1989-06-20 | Kampner Stanley L | Hip prosthesis |
JPS60234667A (en) * | 1984-04-26 | 1985-11-21 | アメリカン・サイアナミド・カンパニー | Surgical healing net |
US4633873A (en) * | 1984-04-26 | 1987-01-06 | American Cyanamid Company | Surgical repair mesh |
JPH0554352B2 (en) * | 1984-04-26 | 1993-08-12 | American Cyanamid Co | |
US4838884A (en) * | 1984-04-26 | 1989-06-13 | American Cyanamid Company | Method of using a surgical repair mesh |
WO1986000533A1 (en) * | 1984-07-10 | 1986-01-30 | Rijksuniversiteit Te Groningen | Bone implant |
JPS6194650A (en) * | 1984-09-06 | 1986-05-13 | スタンレイ・エル・キヤプナー | Apparatus for fixing permanent implant for joint |
JPH0458985B2 (en) * | 1984-09-06 | 1992-09-21 | Eru Kyapunaa Sutanrei | |
US4754745A (en) * | 1984-11-21 | 1988-07-05 | Horowitz Bruce S | Conformable sheet material for use in brachytherapy |
US4815449A (en) * | 1984-11-21 | 1989-03-28 | Horowitz Bruce S | Delivery system for interstitial radiation therapy including substantially non-deflecting elongated member |
US4997440A (en) * | 1985-04-25 | 1991-03-05 | American Cyanamid Company | Vascular graft with absorbable and nonabsorbable components |
US4652264A (en) * | 1985-04-25 | 1987-03-24 | American Cyanamid Company | Prosthetic tubular article |
US4871365A (en) * | 1985-04-25 | 1989-10-03 | American Cyanamid Company | Partially absorbable prosthetic tubular article having an external support |
US4923470A (en) * | 1985-04-25 | 1990-05-08 | American Cyanamid Company | Prosthetic tubular article made with four chemically distinct fibers |
EP0202444A2 (en) * | 1985-04-25 | 1986-11-26 | American Cyanamid Company | Prosthetic tubular article |
EP0202444A3 (en) * | 1985-04-25 | 1989-07-26 | American Cyanamid Company | Prosthetic tubular article |
WO1987000419A1 (en) * | 1985-07-12 | 1987-01-29 | Minnesota Mining And Manufacturing Company | Semiabsorbable bone plate spacer |
US5013315A (en) * | 1985-07-12 | 1991-05-07 | Minnesota Mining And Manufacturing Company | Semiabsorbable bone plate spacer |
US4776329A (en) * | 1985-09-20 | 1988-10-11 | Richards Medical Company | Resorbable compressing screw and method |
US4973333A (en) * | 1985-09-20 | 1990-11-27 | Richards Medical Company | Resorbable compressing screw and method |
US5358475A (en) * | 1985-12-17 | 1994-10-25 | United States Surgical Corporation | High molecular weight bioresorbable polymers and implantable devices thereof |
US5061281A (en) * | 1985-12-17 | 1991-10-29 | Allied-Signal Inc. | Bioresorbable polymers and implantation devices thereof |
US4792336A (en) * | 1986-03-03 | 1988-12-20 | American Cyanamid Company | Flat braided ligament or tendon implant device having texturized yarns |
AU594435B2 (en) * | 1986-03-03 | 1990-03-08 | American Cyanamid Company | Ligament or tendon implant device |
US4942875A (en) * | 1986-03-03 | 1990-07-24 | American Cyanamid Company | Surgical repair device having absorbable and nonabsorbable components |
US4650851A (en) * | 1986-03-19 | 1987-03-17 | Pfizer Hospital Products Group, Inc. | Purification of glycolide |
US4763642A (en) * | 1986-04-07 | 1988-08-16 | Horowitz Bruce S | Intracavitational brachytherapy |
US4744365A (en) * | 1986-07-17 | 1988-05-17 | United States Surgical Corporation | Two-phase compositions for absorbable surgical devices |
US4848367A (en) * | 1987-02-11 | 1989-07-18 | Odis L. Avant | Method of effecting dorsal vein ligation |
US5085861A (en) * | 1987-03-12 | 1992-02-04 | The Beth Israel Hospital Association | Bioerodable implant composition comprising crosslinked biodegradable polyesters |
US4843112A (en) * | 1987-03-12 | 1989-06-27 | The Beth Israel Hospital Association | Bioerodable implant composition |
US4804691A (en) * | 1987-08-28 | 1989-02-14 | Richards Medical Company | Method for making a biodegradable adhesive for soft living tissue |
US5147399A (en) * | 1988-02-01 | 1992-09-15 | Dellon Arnold L | Method of treating nerve defects through use of a bioabsorbable surgical device |
US4870966A (en) * | 1988-02-01 | 1989-10-03 | American Cyanamid Company | Bioabsorbable surgical device for treating nerve defects |
EP0334024A2 (en) * | 1988-03-22 | 1989-09-27 | American Cyanamid Company | Prosthetic tubular article |
EP0334024A3 (en) * | 1988-03-22 | 1989-12-27 | American Cyanamid Company | Prosthetic tubular article |
US5990194A (en) * | 1988-10-03 | 1999-11-23 | Atrix Laboratories, Inc. | Biodegradable in-situ forming implants and methods of producing the same |
US5733950A (en) * | 1988-10-03 | 1998-03-31 | Atrix Laboratories, Incorporated | Biodegradable in-situ forming implants and methods of producing the same |
US5739176A (en) * | 1988-10-03 | 1998-04-14 | Atrix Laboratories, Inc. | Biodegradable in-situ forming implants and methods of producing the same |
US20030014127A1 (en) * | 1988-11-10 | 2003-01-16 | Martti Talja | Biodegradable surgical implants and devices |
US5350388A (en) * | 1989-03-07 | 1994-09-27 | Albert Einstein College Of Medicine Of Yeshiva University | Hemostasis apparatus and method |
DE3913926A1 (en) * | 1989-04-27 | 1990-10-31 | Heinz Helmut Dr Med Werner | Vascular prosthesis, esp. of PET with resorbable plastic coatings - esp. of poly:lactide, applied as soln. then treatment with non-solvent |
US4990158A (en) * | 1989-05-10 | 1991-02-05 | United States Surgical Corporation | Synthetic semiabsorbable tubular prosthesis |
US5147400A (en) * | 1989-05-10 | 1992-09-15 | United States Surgical Corporation | Connective tissue prosthesis |
US5217495A (en) * | 1989-05-10 | 1993-06-08 | United States Surgical Corporation | Synthetic semiabsorbable composite yarn |
US5376118A (en) * | 1989-05-10 | 1994-12-27 | United States Surgical Corporation | Support material for cell impregnation |
US6071530A (en) * | 1989-07-24 | 2000-06-06 | Atrix Laboratories, Inc. | Method and composition for treating a bone tissue defect |
US6395293B2 (en) | 1989-07-24 | 2002-05-28 | Atrix Laboratories | Biodegradable implant precursor |
USRE37950E1 (en) | 1990-04-24 | 2002-12-31 | Atrix Laboratories | Biogradable in-situ forming implants and methods of producing the same |
US5053035A (en) * | 1990-05-24 | 1991-10-01 | Mclaren Alexander C | Flexible intramedullary fixation rod |
US6228954B1 (en) | 1991-02-12 | 2001-05-08 | United States Surgical Corporation | Blends of glycolide and/or lactide polymers and caprolactone and/or trimethylene carbonate polymers and absorabable surgical devices made therefrom |
US5475063A (en) * | 1991-02-12 | 1995-12-12 | United States Surgical Corporation | Blends of glycolide and/or lactide polymers and caprolactone and/or trimethylene carbonate polymers and absorbable surgical devices made |
US5292328A (en) * | 1991-10-18 | 1994-03-08 | United States Surgical Corporation | Polypropylene multifilament warp knitted mesh and its use in surgery |
US5545212A (en) * | 1991-12-18 | 1996-08-13 | Terumo Kabushiki Kaisha | Artificial blood vessel |
US5489297A (en) * | 1992-01-27 | 1996-02-06 | Duran; Carlos M. G. | Bioprosthetic heart valve with absorbable stent |
US5314446A (en) * | 1992-02-19 | 1994-05-24 | Ethicon, Inc. | Sterilized heterogeneous braids |
US5571193A (en) * | 1992-03-12 | 1996-11-05 | Kampner; Stanley L. | Implant with reinforced resorbable stem |
US5697976A (en) * | 1992-06-15 | 1997-12-16 | United States Surgical Corporation | Bioabsorbable implant material |
WO1994003117A1 (en) * | 1992-07-28 | 1994-02-17 | Dental Marketing Specialists, Inc. | Bone augmentation method and apparatus |
US5380329A (en) * | 1992-07-28 | 1995-01-10 | Dental Marketing Specialists, Inc. | Bone augmentation method and apparatus |
US5334216A (en) * | 1992-12-10 | 1994-08-02 | Howmedica Inc. | Hemostatic plug |
US5403346A (en) * | 1992-12-31 | 1995-04-04 | Loeser; Edward A. | Self-affixing suture assembly |
US5632753A (en) * | 1992-12-31 | 1997-05-27 | Loeser; Edward A. | Surgical procedures |
US5319038A (en) * | 1993-02-09 | 1994-06-07 | Johnson & Johnson Orthopaedics, Inc. G35 | Process of preparing an absorbable polymer |
US5554170A (en) * | 1993-05-27 | 1996-09-10 | United States Surgical Corporation | Absorbable block copolymers and surgical articles fabricated therefrom |
US5522841A (en) * | 1993-05-27 | 1996-06-04 | United States Surgical Corporation | Absorbable block copolymers and surgical articles fabricated therefrom |
US5403347A (en) * | 1993-05-27 | 1995-04-04 | United States Surgical Corporation | Absorbable block copolymers and surgical articles fabricated therefrom |
US5964774A (en) * | 1993-10-06 | 1999-10-12 | United States Surgical Corporation | Surgical stapling apparatus and method with surgical fabric |
US5908427A (en) * | 1993-10-06 | 1999-06-01 | United States Surgical Corporation | Surgical stapling apparatus and method |
US5542594A (en) * | 1993-10-06 | 1996-08-06 | United States Surgical Corporation | Surgical stapling apparatus with biocompatible surgical fabric |
US6045560A (en) * | 1993-10-06 | 2000-04-04 | United States Surgical Corporation | Surgical stapling apparatus with biocompatible surgical fabric |
US5522904A (en) * | 1993-10-13 | 1996-06-04 | Hercules Incorporated | Composite femoral implant having increased neck strength |
US5935594A (en) * | 1993-10-28 | 1999-08-10 | Thm Biomedical, Inc. | Process and device for treating and healing a tissue deficiency |
US6589468B1 (en) | 1993-12-02 | 2003-07-08 | Meadox Medical, Inc. | Method of forming an implantable tubular prosthesis |
US5911753A (en) * | 1993-12-02 | 1999-06-15 | Meadox Medicals, Inc. | Implantable tubular prosthesis |
US5800510A (en) * | 1993-12-02 | 1998-09-01 | Meadox Medicals, Inc. | Implantable tubular prosthesis |
US6099557A (en) * | 1993-12-02 | 2000-08-08 | Meadox Medicals, Inc. | Implantable tubular prosthesis |
US6814753B2 (en) | 1993-12-02 | 2004-11-09 | Scimed Life Systems, Inc. | Implantable tubular prosthesis |
US5431679A (en) * | 1994-03-10 | 1995-07-11 | United States Surgical Corporation | Absorbable block copolymers and surgical articles fabricated therefrom |
US5707647A (en) * | 1994-04-08 | 1998-01-13 | Atrix Laboratories, Inc. | Adjunctive polymer system for use with medical device |
US5717030A (en) * | 1994-04-08 | 1998-02-10 | Atrix Laboratories, Inc. | Adjunctive polymer system for use with medical device |
US5981825A (en) * | 1994-05-13 | 1999-11-09 | Thm Biomedical, Inc. | Device and methods for in vivo culturing of diverse tissue cells |
US6264701B1 (en) | 1994-05-13 | 2001-07-24 | Kensey Nash Corporation | Device and methods for in vivo culturing of diverse tissue cells |
US5681310A (en) * | 1994-07-20 | 1997-10-28 | Yuan; Hansen A. | Vertebral auxiliary fixation device having holding capability |
US5458636A (en) * | 1994-07-20 | 1995-10-17 | U.S. Biomaterials Corporation | Prosthetic device for repair and replacement of fibrous connective tissue |
US20060293406A1 (en) * | 1994-07-22 | 2006-12-28 | Bennett Steven L | Bioabsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom |
US20060014023A9 (en) * | 1994-07-22 | 2006-01-19 | Bennett Steven L | Bioabsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom |
US7097907B2 (en) | 1994-07-22 | 2006-08-29 | United States Surgical Corporation | Bioabsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom |
EP2301597A1 (en) | 1994-07-22 | 2011-03-30 | United States Surgical Corporation | Bioabsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom |
US7321008B2 (en) | 1994-07-22 | 2008-01-22 | United States Surgical Corporation | Bioabsorbable branched polymers end-capped with diketene acetals |
EP2036582A1 (en) | 1994-07-22 | 2009-03-18 | United States Surgical Corporation | Biobsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom |
US20040058164A1 (en) * | 1994-07-22 | 2004-03-25 | Bennett Steven L. | Bioabsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom |
US20060002972A1 (en) * | 1994-08-16 | 2006-01-05 | Children's Medical Center Corporation | Reconstruction of urological structures with polymeric matrices |
US7811332B2 (en) * | 1994-08-16 | 2010-10-12 | Children's Medical Center Corporation | Reconstruction method for urological structures utilizing polymeric matrices |
US6206908B1 (en) | 1994-09-16 | 2001-03-27 | United States Surgical Corporation | Absorbable polymer and surgical articles fabricated therefrom |
EP0701823A2 (en) | 1994-09-16 | 1996-03-20 | United States Surgical Corporation | Absorbable polymer and surgical articles fabricated therefrom |
US5618313A (en) * | 1994-10-11 | 1997-04-08 | United States Surgical Corporation | Absorbable polymer and surgical articles fabricated therefrom |
WO1996022055A1 (en) | 1995-01-19 | 1996-07-25 | Inbae Yoon | Surgical stapling system and method of applying staples from multiple staple cartridges |
JP3520091B2 (en) | 1995-02-07 | 2004-04-19 | デピュー・オーソピーディクス・インコーポレーテッド | Surgical implantation of a cartilage repair unit |
US5849037A (en) * | 1995-04-12 | 1998-12-15 | Corvita Corporation | Self-expanding stent for a medical device to be introduced into a cavity of a body, and method for its preparation |
US5741333A (en) * | 1995-04-12 | 1998-04-21 | Corvita Corporation | Self-expanding stent for a medical device to be introduced into a cavity of a body |
US6237460B1 (en) | 1995-04-12 | 2001-05-29 | Corvita Corporation | Method for preparation of a self-expanding stent for a medical device to be introduced into a cavity of a body |
US5948020A (en) * | 1995-05-01 | 1999-09-07 | Sam Yang Co., Ltd. | Implantable bioresorbable membrane and method for the preparation thereof |
US5700269A (en) * | 1995-06-06 | 1997-12-23 | Corvita Corporation | Endoluminal prosthesis deployment device for use with prostheses of variable length and having retraction ability |
US6228111B1 (en) | 1995-09-27 | 2001-05-08 | Bionx Implants Oy | Biodegradable implant manufactured of polymer-based material and a method for manufacturing the same |
US5628788A (en) * | 1995-11-07 | 1997-05-13 | Corvita Corporation | Self-expanding endoluminal stent-graft |
US6929659B2 (en) | 1995-11-07 | 2005-08-16 | Scimed Life Systems, Inc. | Method of preventing the dislodgment of a stent-graft |
US6348066B1 (en) * | 1995-11-07 | 2002-02-19 | Corvita Corporation | Modular endoluminal stent-grafts and methods for their use |
US20030149472A1 (en) * | 1995-11-07 | 2003-08-07 | Leonard Pinchuk | Modular endluminal stent-grafts and methods for their use |
US5997568A (en) * | 1996-01-19 | 1999-12-07 | United States Surgical Corporation | Absorbable polymer blends and surgical articles fabricated therefrom |
EP0786259A2 (en) | 1996-01-19 | 1997-07-30 | United States Surgical Corporation | Absorbable polymer blends and surgical articles fabricated therefrom |
US5968091A (en) * | 1996-03-26 | 1999-10-19 | Corvita Corp. | Stents and stent grafts having enhanced hoop strength and methods of making the same |
US5756651A (en) * | 1996-07-17 | 1998-05-26 | Chronopol, Inc. | Impact modified polylactide |
US5908918A (en) * | 1996-07-17 | 1999-06-01 | Chronopol, Inc. | Impact modified polylactide |
US6083524A (en) * | 1996-09-23 | 2000-07-04 | Focal, Inc. | Polymerizable biodegradable polymers including carbonate or dioxanone linkages |
USRE39713E1 (en) | 1996-09-23 | 2007-07-03 | Genzyme Corporation | Polymerizable biodegradable polymers including carbonate or dioxanone linkages |
US6177095B1 (en) | 1996-09-23 | 2001-01-23 | Focal, Inc | Polymerizable biodegradable polymers including carbonate or dioxanone linkages |
US6191236B1 (en) | 1996-10-11 | 2001-02-20 | United States Surgical Corporation | Bioabsorbable suture and method of its manufacture |
WO1998018408A1 (en) | 1996-10-25 | 1998-05-07 | Bionix Implants Oy | Surgical implant |
US6524345B1 (en) | 1996-10-25 | 2003-02-25 | Bionx Implants Oy | Surgical implant |
US6162537A (en) * | 1996-11-12 | 2000-12-19 | Solutia Inc. | Implantable fibers and medical articles |
US6624097B2 (en) | 1996-11-12 | 2003-09-23 | Solutia Inc. | Implantable fibers and medical articles |
US6136018A (en) * | 1997-09-05 | 2000-10-24 | United States Surgical Corporation | Absorbable block copolymers and surgical articles fabricated therefrom |
US6007565A (en) * | 1997-09-05 | 1999-12-28 | United States Surgical | Absorbable block copolymers and surgical articles fabricated therefrom |
US7569076B2 (en) | 1997-10-31 | 2009-08-04 | Children's Medical Center Corporation | Bladder reconstruction |
US20040034435A1 (en) * | 1997-10-31 | 2004-02-19 | Anthony Atala | Organ reconstruction |
US8128707B2 (en) | 1997-10-31 | 2012-03-06 | Children's Medical Center Corporation | Bladder reconstruction |
US20090263464A1 (en) * | 1997-10-31 | 2009-10-22 | Children's Medical Center Corporation | Bladder reconstruction |
US6277927B1 (en) | 1997-11-26 | 2001-08-21 | United States Surgical Corporation | Absorbable block copolymers and surgical articles fabricated therefrom |
US6546188B1 (en) | 1998-01-16 | 2003-04-08 | Sony Corporation | Editing system and editing method |
US7128927B1 (en) | 1998-04-14 | 2006-10-31 | Qlt Usa, Inc. | Emulsions for in-situ delivery systems |
US6261583B1 (en) | 1998-07-28 | 2001-07-17 | Atrix Laboratories, Inc. | Moldable solid delivery system |
US7022132B2 (en) | 1999-01-15 | 2006-04-04 | Boston Scientific Scimed, Inc. | Stents with temporary retaining bands |
US6350277B1 (en) | 1999-01-15 | 2002-02-26 | Scimed Life Systems, Inc. | Stents with temporary retaining bands |
US6786908B2 (en) | 1999-04-09 | 2004-09-07 | Depuy Orthopaedics, Inc. | Bone fracture support implant with non-metal spacers |
US6709436B1 (en) | 1999-04-09 | 2004-03-23 | Depuy Orthopaedics, Inc. | Non-metal spacers for intramedullary nail |
US6783529B2 (en) | 1999-04-09 | 2004-08-31 | Depuy Orthopaedics, Inc. | Non-metal inserts for bone support assembly |
US6296645B1 (en) | 1999-04-09 | 2001-10-02 | Depuy Orthopaedics, Inc. | Intramedullary nail with non-metal spacers |
US20040167634A1 (en) * | 1999-05-26 | 2004-08-26 | Anthony Atala | Prosthetic kidney and its use for treating kidney disease |
US6325810B1 (en) | 1999-06-30 | 2001-12-04 | Ethicon, Inc. | Foam buttress for stapling apparatus |
US6187008B1 (en) | 1999-07-07 | 2001-02-13 | Bristol-Myers Squibb | Device for temporarily fixing bones |
US6348068B1 (en) * | 1999-07-23 | 2002-02-19 | Sulzer Carbomedics Inc. | Multi-filament valve stent for a cardisc valvular prosthesis |
US20040127846A1 (en) * | 1999-09-24 | 2004-07-01 | Dunn Richard L. | Coupling syringe system and methods for obtaining a mixed composition |
US8226598B2 (en) | 1999-09-24 | 2012-07-24 | Tolmar Therapeutics, Inc. | Coupling syringe system and methods for obtaining a mixed composition |
US20040029478A1 (en) * | 1999-11-10 | 2004-02-12 | Deutsche Institute Fur Textil- Und Faserforschung Stuttgart Stiftung Des Offentlichen Rechts | Flat implant, method for its manufacture and use in surgery |
US20070116679A1 (en) * | 1999-12-29 | 2007-05-24 | Children's Medical Center Corporation | Augmentation of organ function |
US20110059152A1 (en) * | 1999-12-29 | 2011-03-10 | Children's Medical Center Corporation | Augmentation of organ function |
US6273897B1 (en) | 2000-02-29 | 2001-08-14 | Ethicon, Inc. | Surgical bettress and surgical stapling apparatus |
US6808527B2 (en) | 2000-04-10 | 2004-10-26 | Depuy Orthopaedics, Inc. | Intramedullary nail with snap-in window insert |
US20080288062A1 (en) * | 2000-05-25 | 2008-11-20 | Bioring Sa | Device for shrinking or reinforcing the valvular orifices of the heart |
US7347870B1 (en) * | 2000-05-25 | 2008-03-25 | Bioring Sa | Device for shrinking or reinforcing the heart valvular orifices |
EP1361835A4 (en) * | 2000-07-27 | 2004-04-14 | Bionx Implants Inc | Self-expanding stent with enhanced radial expansion and shape memory |
EP1361835A1 (en) * | 2000-07-27 | 2003-11-19 | Bionx Implants, Inc. | Self-expanding stent with enhanced radial expansion and shape memory |
US6716932B2 (en) | 2000-08-16 | 2004-04-06 | Tyco Healthcare Group Lp | High consistency absorbable polymeric resin |
US20040210226A1 (en) * | 2000-10-20 | 2004-10-21 | Trieu Hai H. | Anchoring devices and implants for intervertebral disc augmentation |
US7468152B2 (en) | 2001-01-05 | 2008-12-23 | Howmedica Osteonics Corp. | Process for forming bioabsorbable implants |
US6719935B2 (en) | 2001-01-05 | 2004-04-13 | Howmedica Osteonics Corp. | Process for forming bioabsorbable implants |
US20060009846A1 (en) * | 2001-02-28 | 2006-01-12 | Hai Trieu | Flexible systems for spinal stabilization and fixation |
US7229441B2 (en) | 2001-02-28 | 2007-06-12 | Warsaw Orthopedic, Inc. | Flexible systems for spinal stabilization and fixation |
US20080132950A1 (en) * | 2001-02-28 | 2008-06-05 | Lange Eric C | Flexible spine stabilization systems |
US7341601B2 (en) | 2001-02-28 | 2008-03-11 | Warsaw Orthopedic, Inc. | Woven orthopedic implants |
US20040078082A1 (en) * | 2001-02-28 | 2004-04-22 | Lange Eric C. | Flexible spine stabilization systems |
US7326249B2 (en) | 2001-02-28 | 2008-02-05 | Warsaw Orthopedic, Inc. | Flexible spine stabilization systems |
US7041138B2 (en) | 2001-02-28 | 2006-05-09 | Sdgi Holdings, Inc. | Flexible spine stabilization systems |
US20020120270A1 (en) * | 2001-02-28 | 2002-08-29 | Hai Trieu | Flexible systems for spinal stabilization and fixation |
US6652585B2 (en) | 2001-02-28 | 2003-11-25 | Sdgi Holdings, Inc. | Flexible spine stabilization system |
US20060200140A1 (en) * | 2001-02-28 | 2006-09-07 | Lange Eric C | Flexible spine stabilization systems |
US6827743B2 (en) | 2001-02-28 | 2004-12-07 | Sdgi Holdings, Inc. | Woven orthopedic implants |
US6852128B2 (en) | 2001-02-28 | 2005-02-08 | Sdgi Holdings, Inc. | Flexible spine stabilization systems |
US20050043733A1 (en) * | 2001-02-28 | 2005-02-24 | Lukas Eisermann | Woven orthopedic implants |
US20050119749A1 (en) * | 2001-02-28 | 2005-06-02 | Lange Eric C. | Flexible spine stabilization systems |
US20020123750A1 (en) * | 2001-02-28 | 2002-09-05 | Lukas Eisermann | Woven orthopedic implants |
US7344539B2 (en) | 2001-03-30 | 2008-03-18 | Depuy Acromed, Inc. | Intervertebral connection system |
US8012172B2 (en) | 2001-09-13 | 2011-09-06 | Arthrex, Inc. | High strength suture with coating and colored trace |
US20030180344A1 (en) * | 2002-02-05 | 2003-09-25 | Cambridge Scientific, Inc. | Bioresorbable osteoconductive compositions for bone regeneration |
US20040230288A1 (en) * | 2002-04-17 | 2004-11-18 | Rosenthal Arthur L. | Medical devices adapted for controlled in vivo structural change after implantation |
US9788930B2 (en) | 2002-07-17 | 2017-10-17 | Proxy Biomedical Limited | Soft tissue implants and methods for making same |
WO2004006808A3 (en) * | 2002-07-17 | 2004-03-11 | Proxy Biomedical Ltd | Soft tissue implants and methods for making same |
US20040059356A1 (en) * | 2002-07-17 | 2004-03-25 | Peter Gingras | Soft tissue implants and methods for making same |
US7682392B2 (en) | 2002-10-30 | 2010-03-23 | Depuy Spine, Inc. | Regenerative implants for stabilizing the spine and devices for attachment of said implants |
US20040177810A1 (en) * | 2003-03-11 | 2004-09-16 | Fujitsu Display Technologies Corporation | Vacuum processing apparatus |
US20060216320A1 (en) * | 2003-03-31 | 2006-09-28 | Eiichi Kitazono | Composite of support matrix and collagen, and process for producing support substrate and composite |
US20110140312A1 (en) * | 2003-03-31 | 2011-06-16 | Teijin Limited | Composite of support matrix and collagen, and method for production of support matrix and composite |
US8263187B2 (en) | 2003-03-31 | 2012-09-11 | Teijin Limited | Composite of support matrix and collagen, and method for production of support matrix and composite |
US20050070930A1 (en) * | 2003-09-30 | 2005-03-31 | Gene W. Kammerer | Implantable surgical mesh |
US20080039877A1 (en) * | 2003-09-30 | 2008-02-14 | Kammerer Gene W | Implantable surgical mesh |
US20060190076A1 (en) * | 2003-11-17 | 2006-08-24 | Taheri Syde A | Temporary absorbable venous occlusive stent and superficial vein treatment method |
US7655009B2 (en) | 2003-12-01 | 2010-02-02 | Smith & Nephew, Inc. | Humeral nail |
JP2005177499A (en) * | 2003-12-18 | 2005-07-07 | Ethicon Inc | High strength suture with absorbable core |
EP1543782A1 (en) * | 2003-12-18 | 2005-06-22 | Ethicon, Inc. | High strength suture with absorbable core |
JP4667853B2 (en) * | 2003-12-18 | 2011-04-13 | エシコン・インコーポレイテッド | High strength suture and suture anchor combination with an absorbent core |
US8109967B2 (en) | 2003-12-18 | 2012-02-07 | Depuy Mitek, Inc. | High strength suture with absorbable core and suture anchor combination |
US20050149119A1 (en) * | 2003-12-18 | 2005-07-07 | Ilya Koyfman | High strength suture with absorbable core |
US9642930B2 (en) | 2003-12-18 | 2017-05-09 | Depuy Mitek, Llc | High strength suture with absorbable core and suture anchor combination |
US20080255557A1 (en) * | 2003-12-18 | 2008-10-16 | Ilya Koyfman | High strength suture with absorbable core and suture anchor combination |
JP2005177500A (en) * | 2003-12-18 | 2005-07-07 | Ethicon Inc | High strength suture with absorbable core and suture anchor combination |
US10624632B2 (en) | 2003-12-18 | 2020-04-21 | DePuy Synthes Products, Inc. | High strength suture with absorbable core and suture anchor combination |
US20050136764A1 (en) * | 2003-12-18 | 2005-06-23 | Sherman Michael C. | Designed composite degradation for spinal implants |
US7329271B2 (en) | 2003-12-18 | 2008-02-12 | Ethicon, Inc. | High strength suture with absorbable core |
US8568449B2 (en) | 2003-12-18 | 2013-10-29 | Depuy Mitek, Llc | High strength suture with absorbable core and suture anchor combination |
US8940018B2 (en) | 2003-12-18 | 2015-01-27 | Depuy Mitek, Llc | High strength suture with absorbable core and suture anchor combination |
US20100291287A1 (en) * | 2004-06-07 | 2010-11-18 | Degima Gmbh | Polymeric plate bendable without thermal energy and methods of manufacture |
US20050288797A1 (en) * | 2004-06-23 | 2005-12-29 | Warwick Mills, Inc. | Controlled absorption biograft material for autologous tissue support |
WO2006002340A3 (en) * | 2004-06-23 | 2007-05-03 | Warwick Mills Inc | Controlled absorption biograft material for autologous tissue support |
WO2006002340A2 (en) * | 2004-06-23 | 2006-01-05 | Warwick Mills, Inc. | Controlled absorption biograft material for autologous tissue support |
US20090105753A1 (en) * | 2004-08-26 | 2009-04-23 | Prodesco, Inc. | Sutures and methods of making the same |
US8298290B2 (en) | 2004-09-20 | 2012-10-30 | Davol, Inc. | Implantable prosthesis for soft tissue repair |
US20060064175A1 (en) * | 2004-09-20 | 2006-03-23 | Edouard Pelissier | Implantable prosthesis for soft tissue repair |
US20070298072A1 (en) * | 2004-11-19 | 2007-12-27 | Teijin Limited | Cylindrical Body and Manufacturing Method Thereof |
US8333786B2 (en) | 2005-01-25 | 2012-12-18 | Covidien Lp | Method and apparatus for implanting an occlusive structure |
US7972354B2 (en) | 2005-01-25 | 2011-07-05 | Tyco Healthcare Group Lp | Method and apparatus for impeding migration of an implanted occlusive structure |
US7815661B2 (en) | 2005-01-25 | 2010-10-19 | Tyco Healthcare Group, Lp | Method and apparatus for implanting an occlusive structure |
US8333201B2 (en) | 2005-01-25 | 2012-12-18 | Covidien Lp | Method for permanent occlusion of fallopian tube |
US8262695B2 (en) | 2005-01-25 | 2012-09-11 | Tyco Healthcare Group Lp | Structures for permanent occlusion of a hollow anatomical structure |
US9017350B2 (en) | 2005-01-25 | 2015-04-28 | Covidien Lp | Expandable occlusive structure |
US8968353B2 (en) | 2005-01-25 | 2015-03-03 | Covidien Lp | Method and apparatus for impeding migration of an implanted occlusive structure |
US8011370B2 (en) | 2005-01-25 | 2011-09-06 | Tyco Healthcare Group Lp | Method for permanent occlusion of fallopian tube |
US7410488B2 (en) | 2005-02-18 | 2008-08-12 | Smith & Nephew, Inc. | Hindfoot nail |
USRE46008E1 (en) | 2005-02-18 | 2016-05-24 | Smith & Nephew, Inc. | Hindfoot nail |
USRE44501E1 (en) | 2005-02-18 | 2013-09-17 | Smith & Nephew, Inc. | Hindfoot nail |
USRE46078E1 (en) | 2005-02-18 | 2016-07-26 | Smith & Nephew, Inc. | Hindfoot nail |
US8741201B2 (en) * | 2005-08-15 | 2014-06-03 | Advanced Cardiovascular Systems, Inc. | Fiber reinforced composite stents |
US20110009948A1 (en) * | 2005-08-15 | 2011-01-13 | Advanced Cardiovascular Systems, Inc. | Fiber Reinforced Composite Stents |
US9750594B2 (en) | 2005-09-12 | 2017-09-05 | Proxy Biomedical Limited | Soft tissue implants and methods for making same |
WO2007070141A1 (en) | 2005-09-12 | 2007-06-21 | Proxy Biomedical Limited | Soft tissue implants and methods for making same |
US20090216338A1 (en) * | 2005-09-12 | 2009-08-27 | Peter Gingras | Soft tissue implants and methods for making same |
US9017361B2 (en) | 2006-04-20 | 2015-04-28 | Covidien Lp | Occlusive implant and methods for hollow anatomical structure |
US20070255422A1 (en) * | 2006-04-25 | 2007-11-01 | Mei Wei | Calcium phosphate polymer composite and method |
US10166104B2 (en) | 2006-04-25 | 2019-01-01 | Teleflex Medical Incorporated | Calcium phosphate polymer composite and method |
US20080027542A1 (en) * | 2006-05-09 | 2008-01-31 | Lifecell Corporation | Reinforced Biological Tissue |
US9339369B2 (en) * | 2006-05-09 | 2016-05-17 | Lifecell Corporation | Reinforced biological tissue |
US8721519B2 (en) | 2006-06-06 | 2014-05-13 | Boston Scientific Scimed, Inc. | Implantable mesh combining biodegradable and non-biodegradable fibers |
WO2007145974A3 (en) * | 2006-06-06 | 2009-03-26 | Boston Scient Scimed Inc | Implantable mesh combining biodegradable and non-biodegradable fibers |
US8968182B2 (en) | 2006-06-06 | 2015-03-03 | Boston Scientific Scimed, Inc. | Implantable mesh combining biodegradable and non-biodegradable fibers |
WO2007145974A2 (en) * | 2006-06-06 | 2007-12-21 | Boston Scientific Scimed, Inc. | Implantable mesh combining biodegradable and non-biodegradable fibers |
US20070282160A1 (en) * | 2006-06-06 | 2007-12-06 | Boston Scientific Scimed, Inc. | Implantable mesh combining biodegradable and non-biodegradable fibers |
US8066750B2 (en) | 2006-10-06 | 2011-11-29 | Warsaw Orthopedic, Inc | Port structures for non-rigid bone plates |
US7614258B2 (en) | 2006-10-19 | 2009-11-10 | C.R. Bard, Inc. | Prosthetic repair fabric |
US7900484B2 (en) | 2006-10-19 | 2011-03-08 | C.R. Bard, Inc. | Prosthetic repair fabric |
US9534203B2 (en) | 2007-06-08 | 2017-01-03 | Wake Forest University Health Sciences | Selective cell therapy for the treatment of renal failure |
US9580688B2 (en) | 2007-06-08 | 2017-02-28 | Wake Forest University Health Sciences | Kidney structures and methods of forming the same |
US10590391B2 (en) | 2007-06-08 | 2020-03-17 | Wake Forest University Health Sciences | Selective cell therapy for the treatment of renal failure |
US20100104544A1 (en) * | 2007-06-08 | 2010-04-29 | Anthony Atala | Selective cell therapy for the treatment of renal failure |
US20100112062A1 (en) * | 2007-06-08 | 2010-05-06 | Anthony Atala | Kidney structures and methods of forming the same |
US20080305146A1 (en) * | 2007-06-08 | 2008-12-11 | Wake Forest University Health Sciences, | Selective cell therapy for the treatment of renal failure |
EP2166989A4 (en) * | 2007-07-18 | 2013-08-07 | Biodynamics L L C | Implantable mesh for musculoskeletal trauma, orthopedic reconstruction and soft tissue repair |
EP2166989A1 (en) * | 2007-07-18 | 2010-03-31 | BioDynamics LLC | Implantable mesh for musculoskeletal trauma, orthopedic reconstruction and soft tissue repair |
US20110152865A1 (en) * | 2007-07-18 | 2011-06-23 | Biodynamics Llc | Implantable mesh for musculoskeletal trauma, orthopedic reconstruction and soft tissue repair |
US9814577B2 (en) | 2007-07-18 | 2017-11-14 | Biodynamics Llc | Implantable mesh for musculoskeletal trauma, orthopedic reconstruction and soft tissue repair |
US20090024147A1 (en) * | 2007-07-18 | 2009-01-22 | Ralph James D | Implantable mesh for musculoskeletal trauma, orthopedic reconstruction and soft tissue repair |
US9326860B2 (en) * | 2007-12-13 | 2016-05-03 | Amendia, Inc. | Biologic artificial bone |
US20140131909A1 (en) * | 2007-12-13 | 2014-05-15 | Said G. Osman | Biologic artificial bone |
US20100010519A1 (en) * | 2008-07-09 | 2010-01-14 | Joshua Stopek | Anastomosis Sheath And Method Of Use |
US8333803B2 (en) | 2008-11-21 | 2012-12-18 | Lifecell Corporation | Reinforced biologic material |
US9421306B2 (en) | 2008-11-21 | 2016-08-23 | Lifecell Corporation | Reinforced biologic material |
US20100160945A1 (en) * | 2008-12-19 | 2010-06-24 | Tyco Healthcare Group, Lp | Method and apparatus for storage and/or introduction of implant for hollow anatomical structure |
US9517072B2 (en) | 2008-12-19 | 2016-12-13 | Covidien Lp | Method and apparatus for storage and/or introduction of implant for hollow anatomical structure |
US20100160898A1 (en) * | 2008-12-19 | 2010-06-24 | Tyco Healthcare Group, Lp | Method and apparatus for storage and/or introduction of implant for hollow anatomical structure |
US10143476B2 (en) | 2008-12-19 | 2018-12-04 | Covidien Lp | Method and apparatus for storage and/or introduction of implant for hollow anatomical structure |
US9545257B2 (en) | 2008-12-19 | 2017-01-17 | Covidien Lp | Method and apparatus for storage and/or introduction of implant for hollow anatomical structure |
US20100198236A1 (en) * | 2009-02-02 | 2010-08-05 | Ralph Zipper | Surgical Meshes and Methods of Use |
US8328849B2 (en) * | 2009-12-01 | 2012-12-11 | Zimmer Gmbh | Cord for vertebral stabilization system |
US20110130792A1 (en) * | 2009-12-01 | 2011-06-02 | Zimmer Gmbh | Cord for vertebral stabilization system |
US9151356B2 (en) * | 2010-03-30 | 2015-10-06 | Nv Bekaert Sa | Splice for jointing steel cord strips encased in thermoplastic material |
US20130011184A1 (en) * | 2010-03-30 | 2013-01-10 | Anneleen De Smet | Splice for jointing steel cord strips encased in thermoplastic material |
US20150297335A1 (en) * | 2012-02-10 | 2015-10-22 | Novus Scientific Ab | Multifilaments with time-dependent characteristics, and medical products made from such multifilaments |
US9888992B2 (en) * | 2012-02-10 | 2018-02-13 | Novus Scientific Ab | Multifilaments with time-dependent characteristics, and medical products made from such multifilaments |
US20130211430A1 (en) * | 2012-02-10 | 2013-08-15 | Novus Scientific Pte. Ltd. | Multifilaments with time-dependent characteristics, and medical products made from such multifilaments |
US9080263B2 (en) * | 2012-02-10 | 2015-07-14 | Novus Scientific Ab | Multifilaments with time-dependent characteristics, and medical products made from such multifilaments |
US10716656B2 (en) | 2012-02-10 | 2020-07-21 | Novus Scientific Ab | Multifilaments with time-dependent characteristics, and medical products made from such multifilaments |
US9517062B2 (en) | 2014-12-03 | 2016-12-13 | Smith & Nephew, Inc. | Closed loop suture for anchoring tissue grafts |
US10925716B2 (en) | 2015-02-25 | 2021-02-23 | Smith & Nephew, Inc. | Closed loop suture for anchoring tissue grafts |
US20170181841A1 (en) * | 2015-12-29 | 2017-06-29 | Jeffrey Weinzweig | Prosthetic implant delivery device and method |
US10610270B2 (en) | 2018-01-15 | 2020-04-07 | Glw, Inc. | Hybrid intramedullary rods |
US11826083B2 (en) | 2018-01-15 | 2023-11-28 | Glw, Inc. | Hybrid intramedullary rods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3463158A (en) | Polyglycolic acid prosthetic devices | |
US3620218A (en) | Cylindrical prosthetic devices of polyglycolic acid | |
US3736646A (en) | Method of attaching surgical needles to multifilament polyglycolic acid absorbable sutures | |
US3867190A (en) | Reducing capillarity of polyglycolic acid sutures | |
US20230063894A1 (en) | Warp-knitted fabric and medical material | |
US5376118A (en) | Support material for cell impregnation | |
US3297033A (en) | Surgical sutures | |
US3739773A (en) | Polyglycolic acid prosthetic devices | |
US3883901A (en) | Method of replacing or repairing the body with bioresorbable surgical articles | |
US3982543A (en) | Reducing capillarity of polyglycolic acid sutures | |
DK1638615T3 (en) | MEDICAL POLYHYDROXYALKANOATE TEXTILES AND FIBERS | |
CN101163451B (en) | Absorbable/biodegradable composite yarns and property-modulated surgical implants therefrom | |
US4052988A (en) | Synthetic absorbable surgical devices of poly-dioxanone | |
US4916193A (en) | Medical devices fabricated totally or in part from copolymers of recurring units derived from cyclic carbonates and lactides | |
US5185408A (en) | Medical devices fabricated totally or in part from copolymers of recurring units derived from cyclic carbonates and lactides | |
JPS62500981A (en) | bone graft | |
US20020062152A1 (en) | Medical, bioresorbable implant, process for its production and the use thereof | |
CN104511056B (en) | A kind of bone injury reparing fixator tool and preparation method thereof | |
JP2014050412A (en) | Production method of artificial blood vessel | |
JPH09510639A (en) | Remodeling collagen three-dimensional fabric | |
CN105682696A (en) | Absorbable poly (p-dioxanone-co-glycolide) monofilament fibers possessing mid-term strength retention post-implantation | |
CN115607730B (en) | Degradable bionic artificial trachea | |
JP7489599B2 (en) | Braided Surgical Implants | |
White et al. | Preliminary report: Evaluation of tissue ingrowth into experimental Replamineform vascular prostheses | |
RU2808880C1 (en) | Bioresorbable implant of blood vessels based on nanofibers |