US3460073A - Ladder-type band-pass filter end sections - Google Patents

Ladder-type band-pass filter end sections Download PDF

Info

Publication number
US3460073A
US3460073A US632227A US3460073DA US3460073A US 3460073 A US3460073 A US 3460073A US 632227 A US632227 A US 632227A US 3460073D A US3460073D A US 3460073DA US 3460073 A US3460073 A US 3460073A
Authority
US
United States
Prior art keywords
band
capacitor
zero
pass
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US632227A
Inventor
William Thelen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Bell Telephone Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bell Telephone Laboratories Inc filed Critical Bell Telephone Laboratories Inc
Application granted granted Critical
Publication of US3460073A publication Critical patent/US3460073A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1766Parallel LC in series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/075Ladder networks, e.g. electric wave filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1783Combined LC in series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1791Combined LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/542Filters comprising resonators of piezoelectric or electrostrictive material including passive elements

Definitions

  • An end section for high frequency band-pass filters minimizes ripple in the pass band response and has either a II-type or a T-type configuration in which the outer arm on the terminating side is a capacitance shunted by the series combination of an inductance and a capacitance, -the interposed inner arm is a capacitance shunted by the series combination of an inductance and a capacitance, and the outer arm on the other side is a capacitance.
  • the impedance relationships of the three arms are defined by the pole-zero pattern of the open and short circuit irnpedance at both sides of the end section.
  • This invention relates generally to band-pass filters and more particularly to high frequency band-pass filter end or terminating sections.
  • the principal object of the invention is to minimize the pass band ripple and simultaneously permit parastic capacity correction in a high frequency band-pass filter end section by controlling the terminating side image impedance closely at both upper and lower edges of the pass band.
  • Another and more particular object is to do so in as simple a manner as possible and with favorable component impedance values.
  • an end or terminating band-pass filter section is given a ladde-r configuration with first and second outer arms and an inner arm interposed between the two outer arms and the impedance relationships of the three arms are defined by the short circuit impedance at opposite sides of the filter section having a common resonant frequency within the pass band and different antiresonant frequencies at respectively opposite edges of the pass band, the open circuit impedances at opposite sides of the filter section having a common antiresonant frequency within the pass band at the common resonant frequency at the short circuit frequencies and different resonant frequencies at respectively opposite edges of the pass band, and the open and short circuit impedances at the terminating s ide of the filter section having a common resonant frequency below "ice the pass band and a common antiresonant frequency above the pass band.
  • the first outer arm of the filter section takes the for of a capacitance shunted by the series combination of an inductance and a capacitance
  • the second outer arm takes the form of a capacitance
  • the interposed inner arm takes the form of a capacitance shunted by the series combination of an inductance and a capacitance.
  • circuit configurations possible are, moreover, readily realizable for small bandwidth to center frequency ratios with only capacitors and piezoelectric crystals, thus permitting the end section to be fabricated readily in integrated circuit form.
  • conventional lumped constant circuit components may be used for larger bandwidth to center frequency ratios.
  • FIG. 1A is a schematic diagram of an embodiment of the invention in the form of a lI-type band-pass filter end section using lumped constant inductors and capacitors.
  • FIG. 1B is a diagram showing the significant resonant and antiresonant frequencies of the open end short circuit impedances of the embodiment of the invention shown in FIG. 1A.
  • FIG. 2A is a schematic diagram of an embodiment of the invention in the form of a T-type band-pass filter end section using lumped constant inductors and capacitors.
  • FIGJZB is a diagram showing the significant resonant and antiresonant frequencies of the open and short circuit impedances of the embodiment of the invention shown in FIG. 2A.
  • FIGS. 3A, 3B, and 3C a-re curves showing the manner in which the image impedances and image transfer losses of the embodiments of the invention shown in FIGS. 1A and 2A vary with frequency.
  • FIGS. 4 and 5 are schematic diagrams of narrow band embodiments of the invention in which the respective embodiments of FIGS. 1A and 2A are realized entirely with capacitors and piezoelectric crystals.
  • FIGS. 6A, 6B, and 6C are schematic diagrams showing how the embodiment of the invention illustrated in FIG. 1A may be modified to absorb al1 parasitic capacitances into existing circuit capacitors.
  • the embodiment of the invention illustrated in FIG. 1A is a lI-type band-pass filter end section made up of a pair of shunt arms and an interposed series arm.
  • the shunt arm at the left or terminating side of the end section contains a capacitor 11 shunted by the series combination of an inductor 12 and a capacitor 13.
  • the interposed series arm includes a capacitor 14 shunted by the series combination of an inductor 15 and a capacitor 16.
  • the shunt arm at the right, facing the main body of the band-pass filter with which the end section is used, is merely a capacitor 17.
  • the impedance of the end section at the terminating side is represented by Z, while that at the other side is represented by Z.
  • the relationships between the various impedance elements of the three arms in the embodiment of the invention shown in FIG. 1A are defined by the pole-zero plot shown in FIG. 1B, Where Zs and Zo represent the shortcircuit and open-circuit impedances, respectively, at the left or terminating side of the end section and ZS and Zo are the short-circuit and open-circuit impedances, respectively, at the other side.
  • Zs and Zo represent the shortcircuit and open-circuit impedances, respectively, at the left or terminating side of the end section
  • ZS and Zo are the short-circuit and open-circuit impedances, respectively, at the other side.
  • the abscissa is frequency
  • a pole or antiresonance is represented by the symbol x
  • a zero or resonance is represented by the symbol o.
  • all four quantities have poles at zero frequency and zeros at infinite frequency.
  • ⁇ Zs has zero at fm1, a frequency below the pass band of the end section, and a pole at f1, the lower edge of the pass band.
  • Zs also has a zero at fo, a frequency within the pass band, and a pole at fm2, a frequency above the pass band.
  • ZD has a zero at fm1, a pole at fo, a zero at f2, the upper edge of the pass band, and a pole of fm2.
  • Z has zero at f1 and a pole at fo and ZS has a zero at f1 and a pole at fo.
  • the embodiment of the invention illustrated in FIG. 2A is the T-type equivalent of the H-type band-pass filter end section shown in FIG. 1A and, as shown, includes a pair of series arms and an interposed shunt arm.
  • the series arm at the left or terminating sides of the end section contains a capacitor 21 shunted by the series combination of an inductor 22 and a capacitor 23.
  • the interposed shunt arm includes a capacitor 24 shunted by the series combination of an inductor 25 and a capacitor 26.
  • the series arm at the right, facing the main body of the band-pass filter with which the end section is used, is a capacitor 27.
  • the impedance of the end section at the terminating end is represented by Z, while that at the other end is represented by Z.
  • the relationships between the various impedance elements of the three arms in the T-type filter section shown in FIG. 2A are defined by the pole-zero plot shown in FIG. 2B, where the symbol meaning is the same as in FIG. 1B.
  • all four quantities have poles at zero frequency and zeroes at infinite frequency.
  • Zo has zero at fm1, a pole at fo, a zero at f2, and a pole at fm2.
  • Zs has a zero at fm1, a pole at f1, a zero at fo, and a pole at Fmg.
  • Zo has zero at f1 and a pole at fo and ZS has a zero at fo and a pole at f2.
  • FIGS. lA and 2A have the same image impedances at both sides and have the same image transfer loss. Comparison of their pole-zero plots shows that, in both, the shortcricuit impedances at opposite sides of the end section have a common zero or resonant frequency at j@ and different poles or antiresonant frequencies at f1 and f2, the opposite edges of the pass band. Similarly, in both, the open circuit impedances at opposite sides of the end section have a common pole or antiresonant frequency at fo and different zeroes or resonant frequencies at f1 and f2. Finally, in both, the open and short circuit impedances at the left-hand or terminating side of the end section have a common zero or resonant frequency at fm1 and a common pole or antiresonant frequency at fm2.
  • FIG. 3A The image impedance at the left or terminating sides of the embodiments of the invention shown in FIGS. 1A and 2A is shown in FIG. 3A.
  • this image impedance represented by ZI
  • ZI is a negative reactance between zero frequency and 12.1 and descends in magnitude from infinity to zero.
  • ZI is resistive between hand f2 and descends rapidly in magnitude above f1 from infinity to a value which holds with relatively little deviation through fo to a frequency approaching f2. From that point, ZI drops rapidly to zero.
  • ZI is a positive reactance and goes from zero to infinity in magnitude from f2 and fm2.
  • ZI is a negative reactance above fm2 and decreases in magnitude from infinity and approaches zero at infinitely high frequencies.
  • FIG. 3A The effect of the present invention in minimizing pass band ripple at the terminating side of the end sections shown in FIG. 1A and FIG. 2A is clearly illustrated in FIG. 3A.
  • the degree to which the magnitude of ZI is flat with frequency from a frequency just above f1 to a frequency just below f2 depends primarily upon the location of fel and fm2 with respect to f1 and f2.
  • the invention affords close control of the image impedance at the terminating side of the end sections at both edges of the pass band rather than at only one as afforded by much of the prior art.
  • the invention permits ready attainment of this result with a relatively simple circuit configuration and with relatively favorable component impedance values.
  • FIG. 3B The image impedance at the other sides of the embodiments of the invention shown in FIGS. lA and 2A is illustrated in FIG. 3B.
  • this image impedance represented by ZI', is a negative reactance between zero frequency and f1 and descends in magnitude from infinity to zero. It is resistive between f1 and f2 and increases from zero to infinity. Above f2, Z1 is a negative reactance dropping from infinity at f2 until it approaches zero at infinitely high frequencies. This characteristic produces an exact match to the image impedances of most full band-pass filter sections with which the end sections are likely to be used.
  • FIG. 3C The manner in which the image transfer loss of the embodiments of the invention shown in FIGS. 1A and 2A Varies with frequency is illustrated in FIG. 3C. As shown, there are loss peaks at fel and faz. There is minimum loss in the pass band from f1 to f2.
  • band-pass filter end sections embodying the invention are shown in FIGS. 1A and 2A as they may be realized for broad band applications with lumped constant inductors and capacitors, they may be realized with capacitors and piezoelectric crystals as well for high frequency applications requiring relatively narrow pass bands. Such end sections are particularly well suited for fabrication in integrated circuit form.
  • FIG. 4 illustrates an embodiment of the invention which -is an all crystal and capacitor equivalent of the II-type end section shown in FIG. 1A. Since the lumped constant equivalent circuit of a piezoelectric crystal is simply a capacitor shunted by the 'series combination of an inductor and another capacitor, the left or terminating side shunt arm in FIG. 4 is a piezoelectric crystal 41 and the interposed series arm is a piezoelectric crystal 42. The shunt arm on the other side is, as before, simply a capacitor 17.
  • the relationships between the impedances in the various arms of the embodiment of the invention shown in FIG. 4 are defined by the pole-zero plot illustrated in FIG. 1B.
  • FIG. 5 illustrates an embodiment of the invention which is an all crystal and capacitor equivalent of the T-type end section shown in FIG. 2A.
  • the left or terminating side series arm in FIG. 5 is a piezoelectric crystal 51 and the interposed shunt arm is a piezoelectric crystal 52.
  • the series arm on the other side is, as in FIG. 2A, simply a capacitor 27.
  • the relationships between the impedances of the various arms of the embodiment of the invention shown in FIG. 5 are given by lthe pole-zero plot of FIG. 2B.
  • FIG. lA A significant additional advantage of the embodiment of the invention illustrated in FIG. lA is that the schematic diagram is susceptible of modification to absorb parasitic capacities into the capacities of actual circuit capacitors. The manner in which this may be done is shown in FIGS. 6A, 6B, and 6C. These figures represent three successive steps of modification and involve only simple Norton transforms.
  • FIG. 6A capacitors 11 in FIG. 1A has been replaced by two parallel capacitors 61 and 62.
  • FIG. 6B shows the next step in the modifications, where each capacitor shunted by the series combination of an inductor and a capacitor has been replaced by a capacitor in series with the parallel combination of an inductor and a capacitor.
  • the combination of capacitor 61 shunted by the series combination of inductor 12 and capacitor 13 has been replaced by the combination of capacitor 63 in series with the parallel combination of inductor 64 and capacitor 65.
  • the combination of capacitor 14 shunted by the series combination of inductor 15 and capacitor 16 has been replaced -by the combination of capacitor 66 in series with the parallel combination of inductor 67 and capacitor 68.
  • FIG. 6C The final step in the transformation is shown in FIG. 6C, Where the combination made up of shunt capacitor 17 to the right of series capacitor 66 has been replaced by the combination made up of a shunt capacitor 69 to the left of a series capacitor 70.
  • the impedance level at the right-hand side of the filter section is changed only by a scaling factor @2.
  • each important parasitic capacity of the end section as transformed appears in parallel with an actual circuit capacitor.
  • the capacitive values of the circuit capacitors may, therefore, be fixed so that the nal desired capacity values are provided by their own capacities in combination with the parasitic capacities. A higher order of accuracy in filter design than heretofore is thereby made possible.h
  • a band-pass ladder-type filter section having first and second outer arms, an inner arm interposed between said first and second outer arms, a single pass band, and single loss peaks both above and below said pass band in frequency
  • said first outer arm comprises a capacitance shunted by the series combination of an inductance and a capacitance
  • said second outer arm comprises a capacitance
  • said interposed inner arm comprises a capacitance shunted by the series combination of an inductance and a capacitance
  • the short circuit impedances at opposite ends of said filter section have a cornmon resonant frequency within said pass band and different antiresonant frequencies defining respectively opposite edges of said pass band
  • the open circuit impedances at opposite ends of said filter section have a common antiresonant frequency within said pass band at the common resonant frequency of the short circuit impedances and different resonant frequencies defining respectively -opposite edges of said pass band
  • a band-pass filter section in accordance with claim 1 which is a l'I-type filter section and in which said outer arms are shunt arms and said inner arm is an interposed series arm.
  • a band-pass II-type filter section in accordance with claim 2 in which the elements of said rst shunt arm and said interposed series arm are lumped constant inductors and capacitors.
  • a band-pass filter section in accordance with claim 1 which is a T-type filter section and in ⁇ which said outer arms are series arms and said inner arm is an interposed shunt arm.
  • a band-pass T-type filter section in accordance with claim 5 in which the elements of said first series arrn and said interposed shunt arm are lumped constant inductors and capacitors.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Filters And Equalizers (AREA)

Description

Aus. 5, 1969 w. THELEN 3,460,073
LADDER-TYPE BAND-PASS FILTER END SECTIONS ald A 7' TOR/VE? Aug. 5, 1969 w. THELEN 3,450,073
LADDER-TYPE BAND-PASS FILTER END SECTIONS Filed April 20, 1967 2 Sheets-Sheet a FIG. 5
United States Patent O 3,460,073 LADDER-TYPE BAND-PASS FILTER END SECTIONS William Thelen, Salem, N.H., assignor to Bell Telephone Laboratories, Incorporated, Murray Hill, NJ., a corporation of New York Filed Apr. 20, 1967, Ser. No. 632,227 Int. Cl. Hflh 7/08 U.S. Cl. 333-72 7 Claims ABSTRACT F THE DISCLOSURE An end section for high frequency band-pass filters minimizes ripple in the pass band response and has either a II-type or a T-type configuration in which the outer arm on the terminating side is a capacitance shunted by the series combination of an inductance and a capacitance, -the interposed inner arm is a capacitance shunted by the series combination of an inductance and a capacitance, and the outer arm on the other side is a capacitance. The impedance relationships of the three arms are defined by the pole-zero pattern of the open and short circuit irnpedance at both sides of the end section.
BACKGROUND OF THE `INVENTION This invention relates generally to band-pass filters and more particularly to high frequency band-pass filter end or terminating sections.
Separately designed end sections aie normally used in multisection -filters because image impedance tend to vary widely with frequency within the pass bands of most filter sections. In the past, half or L-type filter sections having the same pass bands as the full filter sections with which they are used have been employed as end sections to provide reasonable matches to resistive loads. Such end sections have not been completely successful, however, in minimizing pass band ripple at their terminating sides because of their inability to control their terminating side image impedances closely at both upper and lower edges of the pass band while still affording an opportunity for absorbing parasitic capacities into existing circuit components.
The principal object of the invention is to minimize the pass band ripple and simultaneously permit parastic capacity correction in a high frequency band-pass filter end section by controlling the terminating side image impedance closely at both upper and lower edges of the pass band.
Another and more particular object is to do so in as simple a manner as possible and with favorable component impedance values.
SUMMARY OF THE INVENTION In accordance with the invention, an end or terminating band-pass filter section is given a ladde-r configuration with first and second outer arms and an inner arm interposed between the two outer arms and the impedance relationships of the three arms are defined by the short circuit impedance at opposite sides of the filter section having a common resonant frequency within the pass band and different antiresonant frequencies at respectively opposite edges of the pass band, the open circuit impedances at opposite sides of the filter section having a common antiresonant frequency within the pass band at the common resonant frequency at the short circuit frequencies and different resonant frequencies at respectively opposite edges of the pass band, and the open and short circuit impedances at the terminating s ide of the filter section having a common resonant frequency below "ice the pass band and a common antiresonant frequency above the pass band.
In accordance with a particular feature of the invention, the first outer arm of the filter section takes the for of a capacitance shunted by the series combination of an inductance and a capacitance, the second outer arm takes the form of a capacitance and the interposed inner arm takes the form of a capacitance shunted by the series combination of an inductance and a capacitance. The resulting end section has a minimum amount of ripple within the pass band, the terminating side image impedance is closely controlled at both upper and loweredges of the pass band, and favorable component impedance values may be employed throughout. The several circuit configurations possible are, moreover, readily realizable for small bandwidth to center frequency ratios with only capacitors and piezoelectric crystals, thus permitting the end section to be fabricated readily in integrated circuit form. For larger bandwidth to center frequency ratios, conventional lumped constant circuit components may be used.
In one important embodiment of the invention, the
BRIEF DESCRIPTION `OF THE DRAWING FIG. 1A is a schematic diagram of an embodiment of the invention in the form of a lI-type band-pass filter end section using lumped constant inductors and capacitors.
FIG. 1B is a diagram showing the significant resonant and antiresonant frequencies of the open end short circuit impedances of the embodiment of the invention shown in FIG. 1A.
FIG. 2A is a schematic diagram of an embodiment of the invention in the form of a T-type band-pass filter end section using lumped constant inductors and capacitors.
FIGJZB is a diagram showing the significant resonant and antiresonant frequencies of the open and short circuit impedances of the embodiment of the invention shown in FIG. 2A.
FIGS. 3A, 3B, and 3C a-re curves showing the manner in which the image impedances and image transfer losses of the embodiments of the invention shown in FIGS. 1A and 2A vary with frequency.
FIGS. 4 and 5 are schematic diagrams of narrow band embodiments of the invention in which the respective embodiments of FIGS. 1A and 2A are realized entirely with capacitors and piezoelectric crystals.
FIGS. 6A, 6B, and 6C are schematic diagrams showing how the embodiment of the invention illustrated in FIG. 1A may be modified to absorb al1 parasitic capacitances into existing circuit capacitors.
DETAILED DESCRIPTION The embodiment of the invention illustrated in FIG. 1A is a lI-type band-pass filter end section made up of a pair of shunt arms and an interposed series arm. The shunt arm at the left or terminating side of the end section contains a capacitor 11 shunted by the series combination of an inductor 12 and a capacitor 13. The interposed series arm includes a capacitor 14 shunted by the series combination of an inductor 15 and a capacitor 16. The shunt arm at the right, facing the main body of the band-pass filter with which the end section is used, is merely a capacitor 17. As shown, the impedance of the end section at the terminating side is represented by Z, while that at the other side is represented by Z.
The relationships between the various impedance elements of the three arms in the embodiment of the invention shown in FIG. 1A are defined by the pole-zero plot shown in FIG. 1B, Where Zs and Zo represent the shortcircuit and open-circuit impedances, respectively, at the left or terminating side of the end section and ZS and Zo are the short-circuit and open-circuit impedances, respectively, at the other side. On all four lines of the figure, the abscissa is frequency, a pole or antiresonance is represented by the symbol x, and a zero or resonance is represented by the symbol o. As illustrated, all four quantities have poles at zero frequency and zeros at infinite frequency. `Zs has zero at fm1, a frequency below the pass band of the end section, and a pole at f1, the lower edge of the pass band. Zs also has a zero at fo, a frequency within the pass band, and a pole at fm2, a frequency above the pass band. ZD has a zero at fm1, a pole at fo, a zero at f2, the upper edge of the pass band, and a pole of fm2. Z has zero at f1 and a pole at fo and ZS has a zero at f1 and a pole at fo.
The embodiment of the invention illustrated in FIG. 2A is the T-type equivalent of the H-type band-pass filter end section shown in FIG. 1A and, as shown, includes a pair of series arms and an interposed shunt arm. The series arm at the left or terminating sides of the end section contains a capacitor 21 shunted by the series combination of an inductor 22 and a capacitor 23. The interposed shunt arm includes a capacitor 24 shunted by the series combination of an inductor 25 and a capacitor 26. The series arm at the right, facing the main body of the band-pass filter with which the end section is used, is a capacitor 27. As in FIG. 1A, the impedance of the end section at the terminating end is represented by Z, while that at the other end is represented by Z.
The relationships between the various impedance elements of the three arms in the T-type filter section shown in FIG. 2A are defined by the pole-zero plot shown in FIG. 2B, where the symbol meaning is the same as in FIG. 1B. As illustrated in FIG. 2B, all four quantities have poles at zero frequency and zeroes at infinite frequency. Zo has zero at fm1, a pole at fo, a zero at f2, and a pole at fm2. Zs has a zero at fm1, a pole at f1, a zero at fo, and a pole at Fmg. Zo has zero at f1 and a pole at fo and ZS has a zero at fo and a pole at f2.
The embodiments of the invention illustrated in FIGS. lA and 2A have the same image impedances at both sides and have the same image transfer loss. Comparison of their pole-zero plots shows that, in both, the shortcricuit impedances at opposite sides of the end section have a common zero or resonant frequency at j@ and different poles or antiresonant frequencies at f1 and f2, the opposite edges of the pass band. Similarly, in both, the open circuit impedances at opposite sides of the end section have a common pole or antiresonant frequency at fo and different zeroes or resonant frequencies at f1 and f2. Finally, in both, the open and short circuit impedances at the left-hand or terminating side of the end section have a common zero or resonant frequency at fm1 and a common pole or antiresonant frequency at fm2.
The image impedance at the left or terminating sides of the embodiments of the invention shown in FIGS. 1A and 2A is shown in FIG. 3A. As shown, this image impedance, represented by ZI, is a negative reactance between zero frequency and 12.1 and descends in magnitude from infinity to zero. There is a positive reactance between fl and f1 and increases in magnitude from zero to infinity. ZI is resistive between hand f2 and descends rapidly in magnitude above f1 from infinity to a value which holds with relatively little deviation through fo to a frequency approaching f2. From that point, ZI drops rapidly to zero. ZI is a positive reactance and goes from zero to infinity in magnitude from f2 and fm2. ZI is a negative reactance above fm2 and decreases in magnitude from infinity and approaches zero at infinitely high frequencies.
The effect of the present invention in minimizing pass band ripple at the terminating side of the end sections shown in FIG. 1A and FIG. 2A is clearly illustrated in FIG. 3A. The degree to which the magnitude of ZI is flat with frequency from a frequency just above f1 to a frequency just below f2 depends primarily upon the location of fel and fm2 with respect to f1 and f2. In this manner, the invention affords close control of the image impedance at the terminating side of the end sections at both edges of the pass band rather than at only one as afforded by much of the prior art. At the same time, the invention permits ready attainment of this result with a relatively simple circuit configuration and with relatively favorable component impedance values.
The image impedance at the other sides of the embodiments of the invention shown in FIGS. lA and 2A is illustrated in FIG. 3B. As shown, this image impedance, represented by ZI', is a negative reactance between zero frequency and f1 and descends in magnitude from infinity to zero. It is resistive between f1 and f2 and increases from zero to infinity. Above f2, Z1 is a negative reactance dropping from infinity at f2 until it approaches zero at infinitely high frequencies. This characteristic produces an exact match to the image impedances of most full band-pass filter sections with which the end sections are likely to be used.
The manner in which the image transfer loss of the embodiments of the invention shown in FIGS. 1A and 2A Varies with frequency is illustrated in FIG. 3C. As shown, there are loss peaks at fel and faz. There is minimum loss in the pass band from f1 to f2.
Although band-pass filter end sections embodying the invention are shown in FIGS. 1A and 2A as they may be realized for broad band applications with lumped constant inductors and capacitors, they may be realized with capacitors and piezoelectric crystals as well for high frequency applications requiring relatively narrow pass bands. Such end sections are particularly well suited for fabrication in integrated circuit form.
FIG. 4 illustrates an embodiment of the invention which -is an all crystal and capacitor equivalent of the II-type end section shown in FIG. 1A. Since the lumped constant equivalent circuit of a piezoelectric crystal is simply a capacitor shunted by the 'series combination of an inductor and another capacitor, the left or terminating side shunt arm in FIG. 4 is a piezoelectric crystal 41 and the interposed series arm is a piezoelectric crystal 42. The shunt arm on the other side is, as before, simply a capacitor 17. The relationships between the impedances in the various arms of the embodiment of the invention shown in FIG. 4 are defined by the pole-zero plot illustrated in FIG. 1B.
FIG. 5 illustrates an embodiment of the invention which is an all crystal and capacitor equivalent of the T-type end section shown in FIG. 2A. The left or terminating side series arm in FIG. 5 is a piezoelectric crystal 51 and the interposed shunt arm is a piezoelectric crystal 52. The series arm on the other side is, as in FIG. 2A, simply a capacitor 27. The relationships between the impedances of the various arms of the embodiment of the invention shown in FIG. 5 are given by lthe pole-zero plot of FIG. 2B.
A significant additional advantage of the embodiment of the invention illustrated in FIG. lA is that the schematic diagram is susceptible of modification to absorb parasitic capacities into the capacities of actual circuit capacitors. The manner in which this may be done is shown in FIGS. 6A, 6B, and 6C. These figures represent three successive steps of modification and involve only simple Norton transforms.
In FIG. 6A, capacitors 11 in FIG. 1A has been replaced by two parallel capacitors 61 and 62. Nothing else has been changed. FIG. 6B shows the next step in the modifications, where each capacitor shunted by the series combination of an inductor and a capacitor has been replaced by a capacitor in series with the parallel combination of an inductor and a capacitor. Thus, the combination of capacitor 61 shunted by the series combination of inductor 12 and capacitor 13 has been replaced by the combination of capacitor 63 in series with the parallel combination of inductor 64 and capacitor 65. Similarly, the combination of capacitor 14 shunted by the series combination of inductor 15 and capacitor 16 has been replaced -by the combination of capacitor 66 in series with the parallel combination of inductor 67 and capacitor 68. The final step in the transformation is shown in FIG. 6C, Where the combination made up of shunt capacitor 17 to the right of series capacitor 66 has been replaced by the combination made up of a shunt capacitor 69 to the left of a series capacitor 70. The impedance level at the right-hand side of the filter section is changed only by a scaling factor @2.
As can -be seen from an inspection of FIG. 6C, each important parasitic capacity of the end section as transformed appears in parallel with an actual circuit capacitor. The capacitive values of the circuit capacitors may, therefore, be fixed so that the nal desired capacity values are provided by their own capacities in combination with the parasitic capacities. A higher order of accuracy in filter design than heretofore is thereby made possible.h
I claim:
1. A band-pass ladder-type filter section having first and second outer arms, an inner arm interposed between said first and second outer arms, a single pass band, and single loss peaks both above and below said pass band in frequency wherein said first outer arm comprises a capacitance shunted by the series combination of an inductance and a capacitance, said second outer arm comprises a capacitance, said interposed inner arm comprises a capacitance shunted by the series combination of an inductance and a capacitance, the short circuit impedances at opposite ends of said filter section have a cornmon resonant frequency within said pass band and different antiresonant frequencies defining respectively opposite edges of said pass band, the open circuit impedances at opposite ends of said filter section have a common antiresonant frequency within said pass band at the common resonant frequency of the short circuit impedances and different resonant frequencies defining respectively -opposite edges of said pass band, and the open and short circuit impedances at the end of said filter section formed by said first outer arms have a common frequency below said pass band and a common antiresonant frequency above said pass band.
2. A band-pass filter section in accordance with claim 1 which is a l'I-type filter section and in which said outer arms are shunt arms and said inner arm is an interposed series arm.
3. A band-pass II-type filter section in accordance with claim 2 in which the elements of said rst shunt arm and said interposed series arm are lumped constant inductors and capacitors.
4. A band-pass II-type lter section in accordance with claim 2 in which said shunt arm and said interposed series arm both comprise piezoelectric crystals.
5. A band-pass filter section in accordance with claim 1 which is a T-type filter section and in `which said outer arms are series arms and said inner arm is an interposed shunt arm.
6. A band-pass T-type filter section in accordance with claim 5 in which the elements of said first series arrn and said interposed shunt arm are lumped constant inductors and capacitors.
7. A band-pass T-type filter section in accordance with claim 5 in which said first series arm and said interposed shunt arm both comprise piezoelectric crystals.
References Cited UNITED STATES PATENTS 1,568,143 1/1926 Elsasser S33-70 2,001,090 5/1935 Bode 333-70 2,662,216 12/ 1953 Klinkhamer 333-70 2,976,604 3/1961 KosOwsky 33372 X HERMAN KARL SAALBACH, Primary Examiner T. J. VEZEAU, Assistant Examiner U.S. Cl. X.R. 333-76
US632227A 1967-04-20 1967-04-20 Ladder-type band-pass filter end sections Expired - Lifetime US3460073A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US63222767A 1967-04-20 1967-04-20

Publications (1)

Publication Number Publication Date
US3460073A true US3460073A (en) 1969-08-05

Family

ID=24534628

Family Applications (1)

Application Number Title Priority Date Filing Date
US632227A Expired - Lifetime US3460073A (en) 1967-04-20 1967-04-20 Ladder-type band-pass filter end sections

Country Status (1)

Country Link
US (1) US3460073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837533A (en) * 1987-07-22 1989-06-06 Toko Kabushiki Kaisha Ladder-type ceramic filter
WO2023104415A1 (en) * 2021-12-06 2023-06-15 Rf360 Singapore Pte. Ltd. Acoustic-wave-based filter for wideband applications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1568143A (en) * 1920-08-13 1926-01-05 American Telephone & Telegraph Frequency selective circuits
US2001090A (en) * 1933-09-13 1935-05-14 Bell Telephone Labor Inc Transmission network
US2662216A (en) * 1949-06-01 1953-12-08 Hartford Nat Bank & Trust Co Electric filter network
US2976604A (en) * 1956-04-13 1961-03-28 Research Corp Measurement of piezoelectric crystal characteristics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1568143A (en) * 1920-08-13 1926-01-05 American Telephone & Telegraph Frequency selective circuits
US2001090A (en) * 1933-09-13 1935-05-14 Bell Telephone Labor Inc Transmission network
US2662216A (en) * 1949-06-01 1953-12-08 Hartford Nat Bank & Trust Co Electric filter network
US2976604A (en) * 1956-04-13 1961-03-28 Research Corp Measurement of piezoelectric crystal characteristics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837533A (en) * 1987-07-22 1989-06-06 Toko Kabushiki Kaisha Ladder-type ceramic filter
WO2023104415A1 (en) * 2021-12-06 2023-06-15 Rf360 Singapore Pte. Ltd. Acoustic-wave-based filter for wideband applications
US11916530B2 (en) 2021-12-06 2024-02-27 Rf360 Singapore Pte. Ltd. Acoustic-wave-based filter for wideband applications

Similar Documents

Publication Publication Date Title
US3638144A (en) Broadband low-pass filter
US2248776A (en) Wave filter
US5357227A (en) Laminated high-frequency low-pass filter
DE3751858T2 (en) Filter combining acoustic surface wave resonators
US4453145A (en) Band pass filter
US5144268A (en) Bandpass filter utilizing capacitively coupled stepped impedance resonators
US5499002A (en) Resonator filter utilizing cascaded impedance inverters
US4028647A (en) Monolithic crystal filters
US3460073A (en) Ladder-type band-pass filter end sections
EP0318119B1 (en) Bandpass filter circuit arrangement
US2982928A (en) Electric filter
US4363009A (en) L-C Filter with impedance transformers
US3671889A (en) Broadband composite filter circuit
US3697903A (en) Equal-resonator piezoelectric ladder filters
US3613032A (en) Composite crystal filter circuit
US4246554A (en) Inductorless monolithic crystal filter network
US3723773A (en) Multiple resonator active filter
US2354141A (en) Universal resistance capacitance filter
US2990525A (en) Wave filter
CA1101945A (en) Single side band monolithic crystal filter
US2037171A (en) Wave filter
US3739304A (en) Resonator interconnections in monolithic crystal filters
US3344368A (en) Fettweis bandpass filter
US2173894A (en) Variable band width piezoelectric filter
US2814021A (en) Ladder-type band-pass filters