US3457837A - Controller for pneumatically-operated hoists - Google Patents

Controller for pneumatically-operated hoists Download PDF

Info

Publication number
US3457837A
US3457837A US564295A US3457837DA US3457837A US 3457837 A US3457837 A US 3457837A US 564295 A US564295 A US 564295A US 3457837D A US3457837D A US 3457837DA US 3457837 A US3457837 A US 3457837A
Authority
US
United States
Prior art keywords
air
valve
chamber
hoist
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US564295A
Other languages
English (en)
Inventor
Edgar R Powell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DW Zimmerman Manufacturing Inc
Original Assignee
DW Zimmerman Manufacturing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DW Zimmerman Manufacturing Inc filed Critical DW Zimmerman Manufacturing Inc
Application granted granted Critical
Publication of US3457837A publication Critical patent/US3457837A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/02Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member
    • F15B15/06Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member for mechanically converting rectilinear movement into non- rectilinear movement
    • F15B15/068Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member for mechanically converting rectilinear movement into non- rectilinear movement the motor being of the helical type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/02Driving gear
    • B66D1/08Driving gear incorporating fluid motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D3/00Portable or mobile lifting or hauling appliances
    • B66D3/18Power-operated hoists
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/06Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H39/00Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution
    • F16H39/01Pneumatic gearing; Gearing working with subatmospheric pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D2700/00Capstans, winches or hoists
    • B66D2700/01Winches, capstans or pivots
    • B66D2700/0125Motor operated winches
    • B66D2700/0133Fluid actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D2700/00Capstans, winches or hoists
    • B66D2700/02Hoists or accessories for hoists
    • B66D2700/026Pulleys, sheaves, pulley blocks or their mounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/428Flow control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/615Filtering means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/635Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
    • F15B2211/6355Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/863Control during or prevention of abnormal conditions the abnormal condition being a hydraulic or pneumatic failure
    • F15B2211/8633Pressure source supply failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/875Control measures for coping with failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/885Control specific to the type of fluid, e.g. specific to magnetorheological fluid
    • F15B2211/8855Compressible fluids, e.g. specific to pneumatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2278Pressure modulating relays or followers
    • Y10T137/2409With counter-balancing pressure feedback to the modulating device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2559Self-controlled branched flow systems
    • Y10T137/2574Bypass or relief controlled by main line fluid condition
    • Y10T137/2605Pressure responsive
    • Y10T137/2607With pressure reducing inlet valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2559Self-controlled branched flow systems
    • Y10T137/2574Bypass or relief controlled by main line fluid condition
    • Y10T137/2605Pressure responsive
    • Y10T137/2607With pressure reducing inlet valve
    • Y10T137/261Relief port through common sensing means

Definitions

  • An air controller for an air-operated hoist is provided.
  • the air-operated hoist is of the type in which air pressure acts on a piston which moves a hoist drum mounted on a ball screw.
  • the controller has all components integrated into one body mounted on the hoist housing with the controller being less expensive to manufacture and assemble and being capable of being readily replaced on the hoist housing in the event of a defect or failure of the controller.
  • This invention relates to a controller for a pneumatic hoist used to facilitate the handling of loads.
  • a pneumatic hoist embodying the invention includes a chamber or cylinder to which a fluid, usually air, is supplied under pressure.
  • the air pressure acts on a piston which, in turn, moves with a hoist drum mounted on a ball screw and arranged so that the piston moves toward the chamber as the load is lowered and moves away from the chamber as the load is raised.
  • most of the load carried by the hoist is offset or balanced by the air pressure so that a small force on behalf of the operator is required to raise or lower the load, with this force usually being up to about ten percent of the actual weight of the load.
  • the hoist operator can thereby manipulate the load, including raising and lowering it, as though it weighed but a few pounds.
  • the basic hoist unit when used with different controls, can be employed for other purposes.
  • the basic hoist can be used to actually raise and lower loads with the aid of air pressure and without any handling of the load by the operator at all.
  • the hoist operates more like a conventional hoist, but has the additional advantages that the load can be physically raised or lowered a few inches from a given position by the operator, simply by grasping the load, if desired.
  • a hoist of this type is shown in my co-pending application, Ser. No. 516,620, now Patent No. 3,325,148.
  • the basic hoist structure can be used as a tool balnacer, as discussed and shown in my co-pending application, Ser. No. 518,287.
  • the present invention relates to a controller for a basic hoist unit capable of operating the unit as a pneumatically-operated balancing hoist, a first described above.
  • the new controller is arranged so that all components thereof are integrated into one housing or body which can be mounted on the housing of the hoist unit and removed therefrom in a very short time.
  • Other suitable controls can then be quickly substituted to enable Patented July 29, 1969 the hoist unit to be operated as a more conventional hoist or as a tool balancer, by way of example, as discussed above.
  • the controller can be readily mounted on different basic hoist units of different sizes to handle loads of a wide variety of sizes.
  • the new controller by integrating the various individual controls into one body, is less expensive to manufacture than the combined individual controls heretofore employed, and the assembly costs of the various controls, piping, and fittings also is substantially eliminated. Further, if a problem in the controls develops while the hoist is in operation, another controller can be substituted for the defective one so that the down time of the hoist can be a matter of a few minutes. The defective controller can be removed to a remote location and repaired at leisure.
  • the controller according to the invention also includes a unique air pressure control which is capable of regulating air pressure more closely than heretofore, and has an improved means for venting air from the system.
  • Still another object of the invention is to provide a controller with an improved air pressure regulator capable of closely controlling and venting air pressure for the hoist.
  • FIG. 1 is a view in perspective of a pneumatically-operated hoist shown mounted on a rail and carrying a load;
  • FIG. 2 is a view in vertical, longitudinal cross section of the hoist shown in FIG. 1;
  • FIG. 3 is a somewhat schematic view in cross section of a controller embodying the invention and used with the hoist unit of FIGS. 1 and 2;
  • FIG. 4 is a view in elevation of the actual controller of the invention
  • FIG. 5 is a view in cross section taken along the line 5- 5 of FIG. 4.
  • a pneumatically-operated hoist embodying the invention is indicated at and is suspended from a con veyor rail 12 by a trolley 14.
  • a load 16 is suspended from the hoist by a suitable hoist hook 18 and a hoist cable 20. Raising and lowering of the load 16 is easily accomplished by hand since most of the weight of the load is counterbalanced by air pressure. This pressure is controlled by a vent or exhaust line 22 and a manually-operated control Valve 24.
  • the hoist 10 as shown in longitudinal cross section, includes a housing 26 having end walls 28 and 30.
  • a ball screw 32 extends longitudinally through the housing 26 and is fastened at each end centrally to the end walls 28 and 30.
  • a ball screw assembly 34 is mounted on the ball screw 32 and moves longitudinally in the housing 26 when turned relative to the ball screw.
  • a cable drum 36 is mounted on the ball screw assembly 34 and moves therewith both rotatably and longitudinally relative to the screw 32.
  • the drum 36 has a shallow helical groove 38 therein which receives the hoist cable when the load is raised and the cable is wound on the drum.
  • One end of the cable 20 is suitably afiixed to the drum at one end of the helical groove.
  • a thrust bearing 40 located adjacent the drum 36 bears against a hub portion 42 of the drum.
  • the bearing 40 is engaged by a piston 44 which has a peripheral seal 46 contacting the housing 26 in gas-tight relationship.
  • the second end wall 30, the right hand portion of the housing 26, and the piston 44 form a power chamber 48 to receive air or other suitable fluid for operating the hoist.
  • An ring seal 50 located in the piston 44 enables the piston to be supported in slidable but sealing contact with a sleeve 52 mounted over the right end of the ball screw 32.
  • the controller 56 comprises a housing or controller body 58 having integral mounting flanges 60 and 62 (FIG. 4).
  • the body 58 is attached to the end wall 30 by four bolts 64 extending through the flanges. With this arrangement, the entire controller can be quickly attached to and removed from the end wall by means of the four bolts.
  • the controller body 58 is threaded to receive an air supply fitting 66 to enable air to be supplied from a line 68 to a supply chamber 70 containing a filter 72.
  • the main air is supplied through a main air regulator 74, past an airoperated check valve 76, and through an inlet passage 77 to the chamber 48.
  • Air from the supply chamber 70 also passes throuhg a pilot air regulator 78, through a trim valve 80, an auxiliary valve 82, and through the vent line 22 to the manually-operated control valve 24.
  • the pressure of the air from the pilot air regulator 78 controls the main air pressure from the main air regulator 74 with the pilot air pressure being changed as desired by the handoperated valve 24.
  • the hand-operated control valve 24 is of a three-position type as discussed more fully in my copending application, Ser. No. 315,873, now Patent No. 3,260,508.
  • the pilot air is not vented at all but is completely blocked so that the maximum pressure of pilot air as determined by the pilot air regulator 78 is applied to the main air regulator 74 and the highest pressure air is supplied to the power chamber 48 of the hoist unit. With this setting, the hoist can handle the heaviest weight to be manipulated with the aid of the hoist.
  • the control valve also has a second position in which the line 22 is aligned with a vent opening 84 controlled by a needle valve 86.
  • the valve 86 is set so that a small amount of air Will be bled through the line 22 so that the pilot air pressure will accordingly be decreased and the main air pressure will also be decreased.
  • the valve 86 is set so that the pressure will enable the hoist to handle a load of intermediate weight in a manner similar to the heaviest weight.
  • the vent line 22 also can be aligned with a second vent opening 88 controlled by a second needle valve 90. This needle valve is set so that maximum pilot air will be exhausted through the line 22 to enable the main air pressure to be at a minimum whereby the hoist hook 18 can be manipulated up and down as if it were substantially weightless.
  • the pilot air regulator 78 is connected with the supply chamber 72 through a short pilot air passage 92 communicating with an opening 94.
  • the opening 94 has a valve stem 96 extending therethrough which carries a valve 98 for controlling the opening 94.
  • the valve 98 is urged toward the opening by a suitable coiled spring 100 located therebelow.
  • a pilot air chamber 102 above the opening 94 is a transversely extending diaphragm 104 having a bleed passage 106 centrally located therein and aligned with the upper end of the valve stem 96.
  • a pressure spring 108 urges the diaphragm 104 downwardly with the pressure of the spring 108 regulated by an adjusting screw 110.
  • the screw 110 changes the pressure of the spring 108 on the diaphragm 104 and thereby changes the pilot air pressure.
  • the vent passage 106 through the diaphragm 104 serves to release pressure in the chamber 102 in the event that the screw 110 is tightened excessively and is then unscrewed, with the air at the excessively high pressure otherwise being trapped in the absence of the vent passage 106.
  • the regulated pilot air is supplied through an inlet passage 112 past the trim valve and into a pilot air chamber or bonnet 114 of the main air regulator 74.
  • the pressure in the chamber 114 determines the pressure of the main air and the trim valve 80 adjusts the rate at which the pilot air flows into the chamber 114 and consequently, the rate of change of the main air. This, in turn, controls the speed at which the hoist responds to changes in the pilot air pressure as determined by the manually-operated valve 24.
  • the pilot air passes through an outlet passage 116 and past the auxiliary valve 82 to the control valve 24.
  • the auxiliary valve 82 can be used to control the venting of the pilot air in place of one of the needle valves 86 or in some applications.
  • the auxiliary valve 82 will control the pilot air flow when the valve 86 is aligned with the flexible exhaust hose 22.
  • a main opening 122 connects the valve chamber 120 with a main air regulator chamber 124.
  • a hollow valve stem 126 extends into the opening 122 and carries a valve body 128 having a resilient valve ring 130 cooperating with an annular valve seat 132.
  • the valve body 128 has a small longitudinal passage 134 near the stem 126, which passage enables the pressure in a lower spring chamber 136 formed by a spring-retaining nut 137 to equal that in the main chamber 124.
  • a lower surface or shoulder 142 which is subjected to unregulated air, is substantially equal in area to an upper surface 144 so that the effect of the unregulated air is balanced.
  • a regulating spring 146 also is used to urge the valve body upwardly toward the closed position.
  • a main regulating diaphragm 148 separates the pilot air chamber 114 and the main regulating chamber 124 with the diaphragm urged downwardly by the pilot air pressure.
  • the diaphragm 148 has a central socket 150 carrying an upper ball 152 of a vent control link 154.
  • the link 154 also has a lower ball 156 constituting a valve for closing oif an upper end of an exhaust passage 158 in the valve stem 126.
  • the design of the link 154 is important to obtain effective air regulation.
  • the upper ball 152 in the socket 150 enables the link to swivel somewhat to accommodate any misalignment between the diaphragm 148 and the exhaust passage 158.
  • the spherical design of the lower valve 156 effectively fits in the upper end of the cylindrical passage 158 in sealing relation even though some misalignment may exist. While the spherical shape is preferred, the valve 156 also can be semi-spherical, conical, or of truncated conical shape, with good results still being obtained. In any event, the shape is such that the valve 156 is circular in cross section taken through a plane perpendicular to the link 154, with the cross section decreasing in diameter in a direction away from the link 154 and toward the stem 126 at least for the extremity of the valve which seats in the exhaust passage 158.
  • the regulated air from the chamber 124 passes to an outlet passage 160 to the passage 77. From here, the air enters the power chamber 48 and urges the piston and drum toward the opposite end of the hoist.
  • the air in the chamber when exceeding a predetermined pressure, causes the main diaphragm 148 to move upwardly and unseat the valve 156 from the hollow stem 126. The air thereby bleeds through the passage 158 until the operator releases the downward force on the load.
  • the piston moves away from the power chamber 48, causing the pressure therein to decrease.
  • the air pressure in the upper chamber 114 then urges the diaphragm 148 downwardly and, through the link 154, causes the valve body 128 to move downwardly away from the seat 132, thereby enabling additional air to enter the power chamber '48 through the main regulator chamber 124.
  • the air-operated check valve 76 is used. This includes a valve stem 162 having a valve 164 seating against a shoulder 166 in the passage 160, when the valve is in a right hand position.
  • the valve stem has a piston 168 which is located in a cylinder 170 to which the main air is supplied through a passage 172 communicating with the valve chamber 120.
  • the pressure of the air in the chamber 170 urges the piston 168 toward the left against the force of a spring 174 held by a retaining nut 176.
  • the controller 56 has many advantages over the separate control components heretofore used.
  • the overall controller 56 can be quickly attached to and removed from the cover 30 by means of the four bolts to enable the controller to be replaced by a different control unit or to enable the control unit to be repaired with a substitute controller used in place of the defective one.
  • the controller 56 also is less expensive than individual, separate components and the cost of assembling the various components along with their associated piping and fittings is eliminated. Further, all of the adjustments for the controller 56 are readily available.
  • the pilot air is easily regulated by the screw 110 and for this purpose can be provided with a siutable knob 178 (FIG. 4).
  • the trim valves 80 and 82 also are slotted for adjustment and are readily accessible, as shown in FIG. 4.
  • a pneumatically-operated hoist having a hoist housing, said housing forming a power chamber, means subjected to air in said power chamber for aiding in raising and lowering a load, a pressure regulator for controlling the pressure of air to said chamber, said regulator comprising a regulator housing, a diaphragm extending across said regulator housing and partly defining a main air chamber, said diaphragm having a centrally-located socket directed toward said main air chamber, a main inlet in said main air chamber for air to be regulated, a main outlet in said main air chamber for the regulated air, a valve assembly between said main air inlet and said main air chamber comprising a valve stem, a valve body, a valve carried by said valve body, and an annular valve seat, resilient means for urging said valve body and said valve toward said valve seat, said stem having a passage extending therethrough and communicating with the atmosphere, a valve link, a ball on said link received in said socket to connect one end of said valve link to the central portion of
  • a pneumatically-operated hoist having a hoist housing, said housing forming a power chamber, means subjected to air in said power chamber for aiding in raising and lowering a load, a pilot air-controlled regulator for controlling the pressure of air to said chamber in accordance with the pressure of pilot air supplied to the regulator, said regulator comprising a regulator housing, a diaphragm extending across said regulator housing and separating said regulator housing into a pilot air chamber and a main air chamber, a main inlet in said main air chamber for air to be regulated, a main outlet in said main air chamber for the regulated air, a valve assembly between said main air inlet and said main air chamber comprising a valve stem, a valve body, a valve carried by said body, and an annular valve seat, resilient means for urging said valve body and said valve toward said valve seat, said valve body and said valve presenting approximately equal opposite areas toward unregulated air, said body and said valve presenting a larger area toward the regulated air in a direction to urge said valve toward
  • a pneumatically-operated hoist having a hoist housing, said housing forming a power chamber, means subjected to air in said power chamber for aiding in raising and lowering a load, a pressure regulator for controlling the pressure of air to said chamber, said regulator comprising a regulator housing, a diaphragm extending across said regulator housing and partly defining a main air chamber, said diaphragm having a centrally-located socket directed toward said main air chamber, a main inlet in said main air chamber for air to be regulated, a main outlet in said main air chamber for the regulated air, a valve assembly between said main air inlet and said main air chamber comprising a valve stem, a valve body, a valve carried by said valve body, and an annular valve seat, resilient means for urging said valve body and said valve toward said valve seat, said stern having a passage extending therethrough and communicating with the atmosphere, a valve link, means pivotally connecting one end of said valve link to a central portion of said diaphragm
  • valve member of said link being substantially spherical.
  • a pneumatically-operated hoist having a hoist housing, said housing, forming a power chamber, means subjected to air in said power chamber for aiding in raising and lowering a load, a controller for controlling air to said chamber comprising a body, means for mounting said body on said hoist housing, said body having a main air outlet communicating with said chamber, said body having a main air inlet, a pilot air regulator in said body, passage means in said body connecting said main air inlet and said pilot air regulator, a main air regulator in said body having a main diaphragm separating a pilot air chamber and a main air chamber, passage means in said body connecting said pilot air regulator and said pilot air chamber, passage means in said body connecting said main air inlet with said main air chamber, passage means in said body connecting said main air chamber with said main air outlet, said main air chamber having a valve assembly for regulating flow of air from said main air inlet to said main air outlet to maintain the pressure of the air at said main air outlet at a predetermined value, a
  • valve assembly having a vent, and remotely operated vent means communicating with said pilot air outlet passage means.
  • a pneumatically-operated hoist having a hoist housing, said housing forming a power chamber, means subjected to air in said power chamber for aiding in raising and lowering a load, a controller for controlling air to said chamber comprising a body, means for mounting said body on said hoist housing, said body having a main air outlet communicating with said chamber, said body having a main air inlet, a pilot air regulator in said body, passage means in said body connecting said main air inlet and said pilot air regulator, a main air regulator in said body having a main diaphragm separating a pilot air chamber and a main air chamber, passage means in said body connecting said pilot air regulator and said pilot air chamber, passage means in said body connecting said main air inlet with said main air chamber, passage means in said body connecting said air chamber with said main air outlet, said main air chamber having a valve assembly for regulating flow of air from said main air inlet to said main air outlet to maintain the pressure of the air at said main air outlet at a predetermined value, and an air-

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Fluid Pressure (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
US564295A 1966-07-11 1966-07-11 Controller for pneumatically-operated hoists Expired - Lifetime US3457837A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US56429566A 1966-07-11 1966-07-11

Publications (1)

Publication Number Publication Date
US3457837A true US3457837A (en) 1969-07-29

Family

ID=24253919

Family Applications (1)

Application Number Title Priority Date Filing Date
US564295A Expired - Lifetime US3457837A (en) 1966-07-11 1966-07-11 Controller for pneumatically-operated hoists

Country Status (4)

Country Link
US (1) US3457837A (de)
DE (1) DE1531294B1 (de)
GB (1) GB1147303A (de)
SE (1) SE328106B (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3635442A (en) * 1969-10-08 1972-01-18 Ingersoll Rand Co Air balancer safety system
US3669411A (en) * 1970-03-26 1972-06-13 Lorne J Mckendrick Load balancer
US3675899A (en) * 1970-05-27 1972-07-11 Lorne J Mckendrick Hoist and balancing apparatus
US3756563A (en) * 1971-12-01 1973-09-04 Zimmerman Mfg Ing D Apparatus for handling objects
US3758079A (en) * 1970-11-18 1973-09-11 Gardner Denver Co Control system for balancing hoist
US3791627A (en) * 1971-09-20 1974-02-12 Zimmerman D W Mfg Pneumatically-operated hoist with automatic control system
US3856266A (en) * 1970-02-24 1974-12-24 L Kendrick Balancing apparatus with servo relief valve
US4372534A (en) * 1980-03-28 1983-02-08 Atlas Copco Aktiebolag Pneumatic hoist
US4462571A (en) * 1982-02-24 1984-07-31 D. W. Zimmerman Mfg., Inc. Fluid-operated, load-handling apparatus
US4500074A (en) * 1983-03-23 1985-02-19 D. W. Zimmerman Mfg., Inc. Fluid-operated apparatus for handling and lifting loads
US4624277A (en) * 1985-10-03 1986-11-25 Harry Veite Pressure regulating and relief valve
EP0279236A1 (de) * 1987-02-20 1988-08-24 Gebrüder Bode & Co. GmbH Drehantrieb für Schwenktüren insbesondere an Fahrzeugen
US5327926A (en) * 1992-12-28 1994-07-12 John A. Blatt Flow regulator
WO1995015912A1 (en) * 1993-12-10 1995-06-15 Columbus Mckinnon Corporation Air lifting and balancing unit
WO1995019316A1 (en) * 1994-01-13 1995-07-20 D.W. Zimmerman Manufacturing, Inc. Balancing hoist and material handling system
US5553832A (en) * 1993-03-12 1996-09-10 Knight Industries, Inc. Safety device for an air balancing hoist
US5848781A (en) * 1994-01-13 1998-12-15 Ingersoll-Rand Company Balancing hoist braking system
US20120211709A1 (en) * 2007-07-10 2012-08-23 Givens Engineering Inc. Pneumatic multi-weight balancing device
US20150277449A1 (en) * 2009-12-16 2015-10-01 Norgren Limited Pressure regulator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018102397A1 (de) 2018-02-02 2019-08-08 J.D. Neuhaus Holding Gmbh & Co. Kg Steuerventilanordnung zur indirekten pneumatischen Steuerung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1479386A (en) * 1918-10-18 1924-01-01 Cons Car Heating Co Fluid-pressure engine
GB403787A (en) * 1932-10-07 1934-01-04 Electro Mechanical Brake Compa Improvements relating to pressure reducing or controlling valves
US3286989A (en) * 1965-10-19 1966-11-22 Ingersoll Rand Co Balancing hoist
US3313212A (en) * 1964-06-01 1967-04-11 Dow Chemical Co Magnetic-pneumatic control system
US3357443A (en) * 1965-03-15 1967-12-12 Grove Valve & Regulator Co Fluid pressure regulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1479386A (en) * 1918-10-18 1924-01-01 Cons Car Heating Co Fluid-pressure engine
GB403787A (en) * 1932-10-07 1934-01-04 Electro Mechanical Brake Compa Improvements relating to pressure reducing or controlling valves
US3313212A (en) * 1964-06-01 1967-04-11 Dow Chemical Co Magnetic-pneumatic control system
US3357443A (en) * 1965-03-15 1967-12-12 Grove Valve & Regulator Co Fluid pressure regulator
US3286989A (en) * 1965-10-19 1966-11-22 Ingersoll Rand Co Balancing hoist

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3635442A (en) * 1969-10-08 1972-01-18 Ingersoll Rand Co Air balancer safety system
US3856266A (en) * 1970-02-24 1974-12-24 L Kendrick Balancing apparatus with servo relief valve
US3669411A (en) * 1970-03-26 1972-06-13 Lorne J Mckendrick Load balancer
US3675899A (en) * 1970-05-27 1972-07-11 Lorne J Mckendrick Hoist and balancing apparatus
US3758079A (en) * 1970-11-18 1973-09-11 Gardner Denver Co Control system for balancing hoist
US3791627A (en) * 1971-09-20 1974-02-12 Zimmerman D W Mfg Pneumatically-operated hoist with automatic control system
US3756563A (en) * 1971-12-01 1973-09-04 Zimmerman Mfg Ing D Apparatus for handling objects
US4372534A (en) * 1980-03-28 1983-02-08 Atlas Copco Aktiebolag Pneumatic hoist
US4462571A (en) * 1982-02-24 1984-07-31 D. W. Zimmerman Mfg., Inc. Fluid-operated, load-handling apparatus
US4478390A (en) * 1982-02-24 1984-10-23 D. W. Zimmerman Mfg., Inc. Fluid-operated apparatus for handling and lifting loads
US4500074A (en) * 1983-03-23 1985-02-19 D. W. Zimmerman Mfg., Inc. Fluid-operated apparatus for handling and lifting loads
US4624277A (en) * 1985-10-03 1986-11-25 Harry Veite Pressure regulating and relief valve
EP0279236A1 (de) * 1987-02-20 1988-08-24 Gebrüder Bode & Co. GmbH Drehantrieb für Schwenktüren insbesondere an Fahrzeugen
US5327926A (en) * 1992-12-28 1994-07-12 John A. Blatt Flow regulator
US5553832A (en) * 1993-03-12 1996-09-10 Knight Industries, Inc. Safety device for an air balancing hoist
US5439200A (en) * 1993-12-10 1995-08-08 Columbus Mckinnon Corporation Air lifting and balancing unit
US5517821A (en) * 1993-12-10 1996-05-21 Columbus Mckinnon Corporation Pneumatic control circuit for applying constant force
US5520368A (en) * 1993-12-10 1996-05-28 Columbus Mckinnon Corporation Air lifting and balancing unit with constant force pneumatic circuit
WO1995015912A1 (en) * 1993-12-10 1995-06-15 Columbus Mckinnon Corporation Air lifting and balancing unit
US5556077A (en) * 1993-12-10 1996-09-17 Columbus Mckinnon Corporation Air lifting and balancing unit
WO1995019316A1 (en) * 1994-01-13 1995-07-20 D.W. Zimmerman Manufacturing, Inc. Balancing hoist and material handling system
US5848781A (en) * 1994-01-13 1998-12-15 Ingersoll-Rand Company Balancing hoist braking system
US20120211709A1 (en) * 2007-07-10 2012-08-23 Givens Engineering Inc. Pneumatic multi-weight balancing device
US8465005B2 (en) * 2007-07-10 2013-06-18 Givens Engineering Inc. Pneumatic multi-weight balancing device
US20150277449A1 (en) * 2009-12-16 2015-10-01 Norgren Limited Pressure regulator
US9483060B2 (en) * 2009-12-16 2016-11-01 Norgren Limited Pressure regulator

Also Published As

Publication number Publication date
DE1531294B1 (de) 1970-07-30
SE328106B (de) 1970-09-07
GB1147303A (en) 1969-04-02

Similar Documents

Publication Publication Date Title
US3457837A (en) Controller for pneumatically-operated hoists
US3384350A (en) Pneumatically-operated device for manipulating heavy loads
US5217043A (en) Control valve
US3260508A (en) Balancing hoist
US2739611A (en) Combination regulating and relief valves
US3675899A (en) Hoist and balancing apparatus
US3537686A (en) Hoist and balancing apparatus
US3791627A (en) Pneumatically-operated hoist with automatic control system
US2013222A (en) Pressure control apparatus
US1229726A (en) Safety air-relief valve.
US3734325A (en) Safety interlock for fluid-operated, load-handling apparatus
US3421737A (en) Balancing hoist
AU734000B2 (en) Electro-pneumatic brake system and controller therefor
US3656715A (en) Hoist hook control
US3856266A (en) Balancing apparatus with servo relief valve
US4500074A (en) Fluid-operated apparatus for handling and lifting loads
US2613903A (en) Dual load balancing hoist
US4372534A (en) Pneumatic hoist
US2952264A (en) Regulator for pressurizing device
US4462571A (en) Fluid-operated, load-handling apparatus
US3554091A (en) Coupling and power control device
US519436A (en) Herman schweim
US2635582A (en) Manual control device with power booster
US2591030A (en) Solenoid-operated valve structure
US3547150A (en) Hoist control valve