US3456749A - Hydraulic lifting device with weight estimator - Google Patents

Hydraulic lifting device with weight estimator Download PDF

Info

Publication number
US3456749A
US3456749A US750976A US3456749DA US3456749A US 3456749 A US3456749 A US 3456749A US 750976 A US750976 A US 750976A US 3456749D A US3456749D A US 3456749DA US 3456749 A US3456749 A US 3456749A
Authority
US
United States
Prior art keywords
check valve
lifting device
piston
hydraulic lifting
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US750976A
Inventor
Alois Joseph Smieja
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3456749A publication Critical patent/US3456749A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/14Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing suspended loads
    • G01G19/16Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing suspended loads having fluid weight-sensitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/02Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles

Definitions

  • FIGURE 1 shows an assembled and mounted edge view of the hydraulic lifting device.
  • FIGURE 2 is a sectional view of the hydraulic lifting device showing the piston sleeve in an inactive position with the check-valve open.
  • FIGURE 3 is a sectional view of the hydraulic lifting device showing the piston sleeve in an expanded position with the check valve closed.
  • FIGURE 4 is a sectional view of the hydraulic lifting device check valve assembly.
  • FIGURE 5 is a perspective view of the hydraulic lifting device piston.
  • FIGURE 6 is a perspective view of the hydraulic lifting device mounting base.
  • FIGURE 7 is an enlarged sectional View of the hydraulic lifting device check valve head assembly.
  • This hydraulic lifting device was invented for the purpose of determining the approximate load and balance on any load carrying contrivance so as to prevent hazard and inconvenience in isolated areas where conventional stationary weighing devices are not available or practical.
  • This hydraulic lifting device is designed to be used in places where there is a minimum clearance for mounting and a fraction of an inch or more lift is desired such as between any load containing apparatus on any load carry ingcontrivance and the framework of the load carrying contrivance.
  • This hydraulic lifting device may be used in a portable manner or more than one can be used to 3,456,749 Patented July 22, 1969 estimate the load or balance of any portion or portions of any load carrying contrivance.
  • This hydraulic lifting device can be manufactured from pre-cast or pressed machined metal, any other durable material or a cornbination thereof.
  • FIGURE 1 shows an edge view wherein the hydraulic lifting device is shown mounted onto a conventional base S.
  • Bolt 4 fastens spring 1 to conventional base 5.
  • Spring 1 is hooked into slot 2 of ear 3 which is a part of piston sleeve 8.
  • Bolt 18 fastens spring 17 to conventional base S.
  • Spring 17 is hooked into slot 16 of ear 15 which is a part of piston sleeve 8.
  • the purpose of springs 1 and 17 is to force piston sleeve 8 into its inactive position as shown in FIGURE 2.
  • 10 is fastened to piston 25 as shown in FIGURES 2 and 3 and extends below conventional frame 5.
  • Dust baille 7 is fastened to piston sleeve 8 and mounting base 6 as shown in FIG- URES 2 and 3 to prevent dust and other foreign matter from entering the hydraulic lifting device.
  • Pressure port 11 in check valve assembly 10 is for the purpose of installing a pressure reading or signaling device.
  • Port 12 in check valve assembly 10 is for the purpose of installing a hydraulic line to operate the hydraulic lifting device.
  • Gasket 13 seals check valve assembly ⁇ cap 14 which is removable from check valve assembly lll for the purpose of servicing check valve assembly 10.
  • Bleeder port 9 in piston sleeve 8I is for the purpose of installing a conventional pressure relief safety valve which is also used for bleeding air from the lift chamber 52 shown in FIG- URES 2 and 3.
  • FIGURE 2 is a sectional View taken from the plane of dotted line 2-2 shown in FIGURE l.
  • FIGURE 2 shows the hydraulic lifting device in an inactive position.
  • Springs I1 and 17 shown in FIGURE 1 hold piston sleeve 8 dov/n against mounting base 6 which compresses dust baille 7 which is fastened on the upper edge to piston sleeve 8 by snap ring 21 which fits into snap ring groove 23 and is fastened on its lower edge to mounting base 6 by snap ring 22 which fits into snap ring groove 24.
  • This dust baille and the snap rings can be manufactured of any suitable flexible material.
  • Bleeder port 9 in piston sleeve 8 opens into lift chamber 52 thereby permitting a conventional pressure release safety valve to be installed to prevent excessive pressure in lift chamber 52 and to permit air bleeding of lift chamber 52.
  • Soft O-ring 19 fits into O-ring groove 20 in piston 25 for the purpose of sealing piston sleeve 8 against piston 25 so as to prevent hydraulic fluid leakage and permit piston sleeve 8 to travel freely.
  • Piston 25 rests on mounting base 6 and is prevented from turning by stop 26 which is fitted into slot 53 which is described in more detail hereinafter and more clearly shown in FIGURE 6.
  • Check valve assembly 10 is fastened to piston 25 by threads 35 in piston shoulder 27 and sealed with gasket 51.
  • Mounting base 6 can be secured to any conventional base 5 by bolting or welding. Hole 50 in mounting base 6 permits mounting from underneath conventional base 5 n places of minimum clearances.
  • Check valve stem 36 which fits into cylinder hole 48 in check valve head 46, is held against the head of piston sleeve 8 by check valve spring 44 which is secured on check valve head 46 by spring holder 42 and is secured in check valve cap 14 by spring seat 45.
  • Check valve cap 14 is threaded into check valve assembly 10 and sealed with gasket 13.
  • the purpose of soft washer 47 which lits in cylinder hole 48 underneath check valve stem 36 will be described in detail hereinafter and is more clearly shown in FIGURE 7.
  • Check valve head ring 40 is secured to check valve head 46 by O-ring groove 41.
  • yCheck valve stem 36 slides on bushing 49 to prevent wear to check valve assembly 10.
  • Port 12 is for the purpose of injecting hydraulic iluid into the check valve assembly. Port 12 is open into lower assembly. Port 12 is open into lower chamber 39 ⁇ which (when check valve head 46 is in open position) is open into pressure chamber 37 which is open into lift chamber 52 by way of ports 29, 30, 31, 32, 33 and 34. (ports 30, 31, 33 and 34 are shown in FIGURE 4).
  • Port 11 is open into pressure chamber 37 for the purpose of installing a pressure reading or signaling device.
  • FIGURE 3 is the same sectional View as FIGURE 2 showing the hydraulic lifting device in its expanded position when hydraulic pressure is applied.
  • the length of the check valve stem can be varied to regulate the distance of travel desired. A shorter check valve stem will permit the check valve head to close more readily limiting the travel of the piston sleeve, while a longer stem will delay the closing of the check valve thereby permitting the piston sleeve to travel a greater distance.
  • Dust batile 7 is shown in FIGURE 3 in an expanded position when piston sleeve 8 is in its expanded position.
  • FIGURE 4 is a sectional view of check valve assembly 10 taken from the plane shown by dotted line 4-4 in FIGURE 3. Ports 29, 30, 31, 32, 33 and 34 are so spaced as to acquire immediate dispersement of hydraulic fluid in lift chamber 52 and to eliminate possible maintenance with a fewer number of ports.
  • FIGURE 4 shows threads 35 in relation to gasket 51 area shown in FIGURES 2 and 3.
  • FIGURE 4 shows the upper end of check valve stem 36 and bushing 49.
  • FIGURE is a perspective view showing piston 25 which rests on mounting base 6 which is shown in FIG- URE 6. Stop 26 which is shown in FIGURES 2 and 3 resting in slot 53 may also be placed in other positions as described hereinafter.
  • O-ring groove 20 is placed near the top of piston 25 to permit maximum travel of piston sleeve 8.
  • Piston shoulder 27 with threads 35 and at surface for sealing with gasket 51 is for the purpose of connecting check valve assembly to piston 25.
  • FIGURE 6 is a perspective view of mounting base 6 containing slots 53, 54, 55, 56, 57, 58, 59 and 60 wherein stop 26 may be alternately placed to provide varied positions for check valve assembly 10 after it is threaded into piston 25.
  • stop 26 may be alternately placed to provide varied positions for check valve assembly 10 after it is threaded into piston 25.
  • piston 25- may be rotated and fixed in any of 8 positions by placing stop 26 in any one of slots 53, 54, 55, 56, 57, 58, 59 or 60.
  • Stop 26 also serves the purpose of a holding device for piston 25 while check valve assembly 10 is being threaded into or out of piston 25 thereby eliminating the necessity of disassembling the hydraulic lifting device when check valve assembly 10 may need servicing.
  • Hole 50 in mounting base 6 permits check valve assembly 10 to protrude below conventional base 5 thru hole 28 in conventional base 5. Hole 50 also provides access for easy mounting of mounting base 6 in places where minimum clearances are involved and it may become necessary to secure the hydraulic lifting device ⁇ from underneath conventional base 5. Snap ring groove 24 in mounting base 6 holds snap ring 22 which is on lower edge of dust baffle 7 as shown in FIGURES 2 and 3.
  • FIGURE 7 is an enlarged sectional view of check valve head 46 and check valve stem 36.
  • Soft washer 47 is so designed to remain centered in cylinder 48 and permit soft washer 47 to compress or expand as check valve stem 36 slides inside cylinder 48 due to pressure differential in chambers 37 and 39 as hereinbefore described.
  • Spring holder 42 is a cast or machined part of check valve head 46.
  • a hydraulic lifting device including its integral parts, one of which is a check valve assembly and its integral parts containing a valve stem which is separate from the valve head and ts into a valve head cylinder, said valve stem also having a rounded end to prevent fraying from constant contact with a piston sleeve, the valve head having an O-ring, a cylinder in said valve head, a compressible washer so designed as to maintain a-center position in the cylinder wherein it rests and further designed to compress in a manner compensatory to the compression of the valve O-ring, an O-ring groove in the valve head, a threaded valve assembly cap with a spring seat therein, a valve spring, a spring holder on the valve head, a port used to attach a hydraulic injection system with which to operate said hydraulic lifting device, a chamber with a hydraulic fluid access port and valve seat shoulder therein containing the valve head and valve spring, a pressure chamber wherein a stable pressure may be maintained by the closing of the valve head against the valve head seat shoulder for the purpose of attach

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Check Valves (AREA)

Description

July 22, 1999 A. J. SMIEJA' 3,456,149
HYDRAULIC LIFTING DEVICE WITH WEIGHT ESTIMATOR Filed Aug. v, 1968 2 sheets-sheet 1 a I 9\ 1?-2 l5 le l V l WIW l |I "WHW 40 8 Hau/95 3 ALols JOSEPH SMIEJA- INVENTQR. 49
33 lo 34 BY July 22, 1969 A. J. SMIEJA 3,456,749
HYDRAULIC LIFTING DEVICE WITH WEIGHT ESTIMATOR Filed Aug. 7, 1968 2 Sheets-Sheet. 2
l E i 26 l l l F/GURE -5 58 F/GURE 6 ALols JOSEPH sMlEJA-INVENTOR.
United States Patent O "ice 3,456,749 HYDRAULIC LIFTING DEVICE WITH WEIGHT ESTIMATOR Alois Joseph Smieja, Rte. 1, Box 59, Nehalem, Oreg. 97131 Filed Aug. 7, 1968, Ser. No. 750,976 Int. Cl. G01g 19/00 U.S. Cl. 177-146 1 Claim ABSTRACT F THE DISCLOSURE A hydraulic lifting device, with a large diameter minimum travel piston sleeve, used for balancing or estimating loads in trucks, trailers or places where small clearances are involved and no stationary scales are available to prevent hazardous over-loading or over-balancing. A check valve limits the travel of the piston sleeve and closes a pressure chamber so that a stable pressure reading or signal can approximate the load or balance this device is lifting.
Summary of the invention Brief `description of the drawings FIGURE 1 shows an assembled and mounted edge view of the hydraulic lifting device.
FIGURE 2 is a sectional view of the hydraulic lifting device showing the piston sleeve in an inactive position with the check-valve open.
FIGURE 3 is a sectional view of the hydraulic lifting device showing the piston sleeve in an expanded position with the check valve closed.
FIGURE 4 is a sectional view of the hydraulic lifting device check valve assembly.
FIGURE 5 is a perspective view of the hydraulic lifting device piston.
FIGURE 6 is a perspective view of the hydraulic lifting device mounting base.
FIGURE 7 is an enlarged sectional View of the hydraulic lifting device check valve head assembly.
Detailed description This hydraulic lifting device was invented for the purpose of determining the approximate load and balance on any load carrying contrivance so as to prevent hazard and inconvenience in isolated areas where conventional stationary weighing devices are not available or practical. This hydraulic lifting device is designed to be used in places where there is a minimum clearance for mounting and a fraction of an inch or more lift is desired such as between any load containing apparatus on any load carry ingcontrivance and the framework of the load carrying contrivance. This hydraulic lifting device may be used in a portable manner or more than one can be used to 3,456,749 Patented July 22, 1969 estimate the load or balance of any portion or portions of any load carrying contrivance. This hydraulic lifting device can be manufactured from pre-cast or pressed machined metal, any other durable material or a cornbination thereof.
FIGURE 1 shows an edge view wherein the hydraulic lifting device is shown mounted onto a conventional base S. Bolt 4 fastens spring 1 to conventional base 5. Spring 1 is hooked into slot 2 of ear 3 which is a part of piston sleeve 8. Bolt 18 fastens spring 17 to conventional base S. Spring 17 is hooked into slot 16 of ear 15 which is a part of piston sleeve 8. The purpose of springs 1 and 17 is to force piston sleeve 8 into its inactive position as shown in FIGURE 2. Check valve assembly |10 is fastened to piston 25 as shown in FIGURES 2 and 3 and extends below conventional frame 5. Dust baille 7 is fastened to piston sleeve 8 and mounting base 6 as shown in FIG- URES 2 and 3 to prevent dust and other foreign matter from entering the hydraulic lifting device. Pressure port 11 in check valve assembly 10 is for the purpose of installing a pressure reading or signaling device. Port 12 in check valve assembly 10 is for the purpose of installing a hydraulic line to operate the hydraulic lifting device. Gasket 13 seals check valve assembly `cap 14 which is removable from check valve assembly lll for the purpose of servicing check valve assembly 10. Bleeder port 9 in piston sleeve 8I is for the purpose of installing a conventional pressure relief safety valve which is also used for bleeding air from the lift chamber 52 shown in FIG- URES 2 and 3.
FIGURE 2 is a sectional View taken from the plane of dotted line 2-2 shown in FIGURE l. FIGURE 2 shows the hydraulic lifting device in an inactive position. Springs I1 and 17 shown in FIGURE 1 hold piston sleeve 8 dov/n against mounting base 6 which compresses dust baille 7 which is fastened on the upper edge to piston sleeve 8 by snap ring 21 which fits into snap ring groove 23 and is fastened on its lower edge to mounting base 6 by snap ring 22 which fits into snap ring groove 24. This dust baille and the snap rings can be manufactured of any suitable flexible material.
Bleeder port 9 in piston sleeve 8 opens into lift chamber 52 thereby permitting a conventional pressure release safety valve to be installed to prevent excessive pressure in lift chamber 52 and to permit air bleeding of lift chamber 52.
Soft O-ring 19 fits into O-ring groove 20 in piston 25 for the purpose of sealing piston sleeve 8 against piston 25 so as to prevent hydraulic fluid leakage and permit piston sleeve 8 to travel freely.
Piston 25 rests on mounting base 6 and is prevented from turning by stop 26 which is fitted into slot 53 which is described in more detail hereinafter and more clearly shown in FIGURE 6. Check valve assembly 10 is fastened to piston 25 by threads 35 in piston shoulder 27 and sealed with gasket 51.
Mounting base 6 can be secured to any conventional base 5 by bolting or welding. Hole 50 in mounting base 6 permits mounting from underneath conventional base 5 n places of minimum clearances.
Check valve stem 36, which fits into cylinder hole 48 in check valve head 46, is held against the head of piston sleeve 8 by check valve spring 44 which is secured on check valve head 46 by spring holder 42 and is secured in check valve cap 14 by spring seat 45. Check valve cap 14 is threaded into check valve assembly 10 and sealed with gasket 13. The purpose of soft washer 47 which lits in cylinder hole 48 underneath check valve stem 36 will be described in detail hereinafter and is more clearly shown in FIGURE 7. Check valve head ring 40 is secured to check valve head 46 by O-ring groove 41. yCheck valve stem 36 slides on bushing 49 to prevent wear to check valve assembly 10.
Port 12 is for the purpose of injecting hydraulic iluid into the check valve assembly. Port 12 is open into lower assembly. Port 12 is open into lower chamber 39` which (when check valve head 46 is in open position) is open into pressure chamber 37 which is open into lift chamber 52 by way of ports 29, 30, 31, 32, 33 and 34. ( ports 30, 31, 33 and 34 are shown in FIGURE 4).
Port 11 is open into pressure chamber 37 for the purpose of installing a pressure reading or signaling device.
FIGURE 3 is the same sectional View as FIGURE 2 showing the hydraulic lifting device in its expanded position when hydraulic pressure is applied.
When hydraulic fluid enters port 12 under pressure it flows into lower chamber 39, then around check valve head 46 in open position (FIGURE 2), then into pressure chamber 37, then thru ports 29, 30, 31, 32, 33 and 34 (FIGURE 4) into lift chamber 52. As hydraulic pressure increases in lift chamber 52 piston sleeve 8 moves upward sliding on O-ring 19 thereby permitting check valve stem 36 and check valve head 46 to move upward due to the force applied by check valve spring 44. Check valve head 46 attains the extent of its upward travel when O-ring 40 contacts check valve head seat 38 thereby stopping the hydraulic flow from lower chamber 39 to pressure chamber 37.
The length of the check valve stem can be varied to regulate the distance of travel desired. A shorter check valve stem will permit the check valve head to close more readily limiting the travel of the piston sleeve, while a longer stem will delay the closing of the check valve thereby permitting the piston sleeve to travel a greater distance.
After the check valve head 46- is closed the pressure in lower chamber 39 could exceed the pressure in pressure chamber 37 thereby causing O-ring 40 to compress against shoulder 38. Soft washer 47 will be designed so as to compensate with an equal amount of compression thereby preventing check valve stern 36 from causing any lift on piston sleeve head 8.
When check valve head 46 is closed a constant pressure will be maintained in pressure chamber 37 permitting a pressure reading or an activation of a signaling device by a conventional apparatus connected to port 11 thereby determining the approximate weight or balance of the load the piston sleeve 8 is lifting.
Dust batile 7 is shown in FIGURE 3 in an expanded position when piston sleeve 8 is in its expanded position.
FIGURE 4 is a sectional view of check valve assembly 10 taken from the plane shown by dotted line 4-4 in FIGURE 3. Ports 29, 30, 31, 32, 33 and 34 are so spaced as to acquire immediate dispersement of hydraulic fluid in lift chamber 52 and to eliminate possible maintenance with a fewer number of ports. FIGURE 4 shows threads 35 in relation to gasket 51 area shown in FIGURES 2 and 3. FIGURE 4 shows the upper end of check valve stem 36 and bushing 49.
FIGURE is a perspective view showing piston 25 which rests on mounting base 6 which is shown in FIG- URE 6. Stop 26 which is shown in FIGURES 2 and 3 resting in slot 53 may also be placed in other positions as described hereinafter. O-ring groove 20 is placed near the top of piston 25 to permit maximum travel of piston sleeve 8. Piston shoulder 27 with threads 35 and at surface for sealing with gasket 51 is for the purpose of connecting check valve assembly to piston 25.
FIGURE 6 is a perspective view of mounting base 6 containing slots 53, 54, 55, 56, 57, 58, 59 and 60 wherein stop 26 may be alternately placed to provide varied positions for check valve assembly 10 after it is threaded into piston 25. In places with minimum clearance in the structural parts of a conventional mounting base it may become necessary to Vary the position of ports 11 and 12 which are in check valve assembly 10 so that hydraulic lines, pressure reading equipment lines and signaling device lines may be more easily connected to check valve assembly 10. Therefore when check valve assembly 10 is secured to piston 25, piston 25- may be rotated and fixed in any of 8 positions by placing stop 26 in any one of slots 53, 54, 55, 56, 57, 58, 59 or 60. Stop 26 also serves the purpose of a holding device for piston 25 while check valve assembly 10 is being threaded into or out of piston 25 thereby eliminating the necessity of disassembling the hydraulic lifting device when check valve assembly 10 may need servicing.
.Hole 50 in mounting base 6 permits check valve assembly 10 to protrude below conventional base 5 thru hole 28 in conventional base 5. Hole 50 also provides access for easy mounting of mounting base 6 in places where minimum clearances are involved and it may become necessary to secure the hydraulic lifting device `from underneath conventional base 5. Snap ring groove 24 in mounting base 6 holds snap ring 22 which is on lower edge of dust baffle 7 as shown in FIGURES 2 and 3.
FIGURE 7 is an enlarged sectional view of check valve head 46 and check valve stem 36. Soft washer 47 is so designed to remain centered in cylinder 48 and permit soft washer 47 to compress or expand as check valve stem 36 slides inside cylinder 48 due to pressure differential in chambers 37 and 39 as hereinbefore described. Spring holder 42 is a cast or machined part of check valve head 46.
. Although this hydraulic lifting device was primarily invented to t between the 2 or 3 inch clearance between log bunkers and the frame of a log truck, its use will be varied in industry where load carrying contrivances and minimum clearances are involved.
I claim:
1. A hydraulic lifting device including its integral parts, one of which is a check valve assembly and its integral parts containing a valve stem which is separate from the valve head and ts into a valve head cylinder, said valve stem also having a rounded end to prevent fraying from constant contact with a piston sleeve, the valve head having an O-ring, a cylinder in said valve head, a compressible washer so designed as to maintain a-center position in the cylinder wherein it rests and further designed to compress in a manner compensatory to the compression of the valve O-ring, an O-ring groove in the valve head, a threaded valve assembly cap with a spring seat therein, a valve spring, a spring holder on the valve head, a port used to attach a hydraulic injection system with which to operate said hydraulic lifting device, a chamber with a hydraulic fluid access port and valve seat shoulder therein containing the valve head and valve spring, a pressure chamber wherein a stable pressure may be maintained by the closing of the valve head against the valve head seat shoulder for the purpose of attaching a pressure reading or signaling device to the port therein, six ports leading from the pressure charnber to a lift chamber and finally the check valve assembly which contains threads that fasten said assembly into a stable piston, said stable piston containing a threaded shoulder whereon the check valve assembly is fastened and sealed, an O-ring groove and an O-ring on the piston, a stop on this piston for altering the position of said piston by placing said stop in any one of eight slots in a mounting base, a snap ring groove in the mounting base, an access hole in the mounting base, a piston sleeve with two slotted ears and a snap ring groove, a ilexible dust baille with two snap rings attached thereto and a bleeder port which is also used as a safety pressure release port, the piston sleeve and piston being designed in References Cited UNITED STATES PATENTS Weber.
Markson 73--141 XR Weber 177-208 XR lo Billman.
Link 177--208 6 3,339,873 9/ 1967 Hale 254-93 XR FOREIGN PATENTS 506,076 5 1920 France. 1,041,812 10/ 1958 Germany.
417,470 2/1967 Switzerland.
ROBERT S. WARD, JR., Primary Examiner
US750976A 1968-08-07 1968-08-07 Hydraulic lifting device with weight estimator Expired - Lifetime US3456749A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US75097668A 1968-08-07 1968-08-07

Publications (1)

Publication Number Publication Date
US3456749A true US3456749A (en) 1969-07-22

Family

ID=25019931

Family Applications (1)

Application Number Title Priority Date Filing Date
US750976A Expired - Lifetime US3456749A (en) 1968-08-07 1968-08-07 Hydraulic lifting device with weight estimator

Country Status (1)

Country Link
US (1) US3456749A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581836A (en) * 1969-12-02 1971-06-01 Fairchild Camera Instr Co Method for reducing frictional errors in determining the weight of an object supported by a pneumatic or hydraulic device
US4162710A (en) * 1977-11-14 1979-07-31 Kenneth A. Sjogren Log truck scale pad and pop-off valve
US20020102151A1 (en) * 2001-01-31 2002-08-01 Howard Lefler Method and apparatus for loading and unloading equipment
US6600112B2 (en) * 2000-04-10 2003-07-29 Mettler-Toledo Gmbh Weighing scale with a combined sealing and arresting device
US20190203799A1 (en) * 2017-03-22 2019-07-04 Qingdao Haier Washing Machine Co., Ltd. Household appliance foot and household appliance
US10704179B2 (en) 2017-03-23 2020-07-07 Qindao Haier Washing Machine Co., Ltd. Support for household appliance, and household appliance
US10711388B2 (en) 2017-03-23 2020-07-14 Qingdao Haier Washing Machine Co., Ltd. Support for household appliance, and household appliance
US10808349B2 (en) 2017-03-22 2020-10-20 Qingdao Haier Washing Machine Co., Ltd. Support for household appliance, and household appliance

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR506076A (en) * 1919-11-14 1920-08-13 Maurice Brunet Hydraulic scale for vehicles
US2613925A (en) * 1952-02-01 1952-10-14 Herbert W Link Pneumatic load indicating device
US2662539A (en) * 1949-09-16 1953-12-15 Hagan Corp Fluid-counterbalanced force measuring device
DE1041812B (en) * 1956-03-28 1958-10-23 Kaspar Klaus Compressed air operated lifting device for tipping vehicle platforms
US2956761A (en) * 1957-09-12 1960-10-18 Weber Instr Company Self-levelling and weighing device
US3082836A (en) * 1960-12-05 1963-03-26 United Aircraft Corp Lifting device
US3179192A (en) * 1963-04-01 1965-04-20 Herbert W Link Supporting and weighing device
CH417470A (en) * 1963-05-24 1966-07-15 Akad Wissenschaften Ddr Method and arrangement for moving large masses
US3339873A (en) * 1965-10-21 1967-09-05 Dean H Hale Stool with vertically movable seat

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR506076A (en) * 1919-11-14 1920-08-13 Maurice Brunet Hydraulic scale for vehicles
US2662539A (en) * 1949-09-16 1953-12-15 Hagan Corp Fluid-counterbalanced force measuring device
US2613925A (en) * 1952-02-01 1952-10-14 Herbert W Link Pneumatic load indicating device
DE1041812B (en) * 1956-03-28 1958-10-23 Kaspar Klaus Compressed air operated lifting device for tipping vehicle platforms
US2956761A (en) * 1957-09-12 1960-10-18 Weber Instr Company Self-levelling and weighing device
US3082836A (en) * 1960-12-05 1963-03-26 United Aircraft Corp Lifting device
US3179192A (en) * 1963-04-01 1965-04-20 Herbert W Link Supporting and weighing device
CH417470A (en) * 1963-05-24 1966-07-15 Akad Wissenschaften Ddr Method and arrangement for moving large masses
US3339873A (en) * 1965-10-21 1967-09-05 Dean H Hale Stool with vertically movable seat

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581836A (en) * 1969-12-02 1971-06-01 Fairchild Camera Instr Co Method for reducing frictional errors in determining the weight of an object supported by a pneumatic or hydraulic device
US4162710A (en) * 1977-11-14 1979-07-31 Kenneth A. Sjogren Log truck scale pad and pop-off valve
US6600112B2 (en) * 2000-04-10 2003-07-29 Mettler-Toledo Gmbh Weighing scale with a combined sealing and arresting device
US20020102151A1 (en) * 2001-01-31 2002-08-01 Howard Lefler Method and apparatus for loading and unloading equipment
US6756547B2 (en) 2001-01-31 2004-06-29 Howard Lefler Method and apparatus for loading and unloading equipment
US20190203799A1 (en) * 2017-03-22 2019-07-04 Qingdao Haier Washing Machine Co., Ltd. Household appliance foot and household appliance
US10801578B2 (en) * 2017-03-22 2020-10-13 Qingdao Haier Washing Machine Co., Ltd. Household appliance foot and household appliance
US10808349B2 (en) 2017-03-22 2020-10-20 Qingdao Haier Washing Machine Co., Ltd. Support for household appliance, and household appliance
US10704179B2 (en) 2017-03-23 2020-07-07 Qindao Haier Washing Machine Co., Ltd. Support for household appliance, and household appliance
US10711388B2 (en) 2017-03-23 2020-07-14 Qingdao Haier Washing Machine Co., Ltd. Support for household appliance, and household appliance

Similar Documents

Publication Publication Date Title
US3456749A (en) Hydraulic lifting device with weight estimator
US2802664A (en) Hydro-pneumatic suspension unit
US2503424A (en) Backflow preventer
GB1517030A (en) Hydraulic damping means for hinged check valve
US4000758A (en) Fluid reservoir device with fill means, level indicator means and pressure relief means
GB896642A (en) Improvements in or relating to fluid-filled damping devices
US4392664A (en) Front fork of motorcycle
US3545263A (en) Compression testing machine
USRE27234E (en) Hydraulic lifting device with weight estimator
GB905585A (en) Fluid pressure control valve device
US3072107A (en) Hydraulic lift control system and valve therefor
US3790146A (en) Fluid filled supporting leg
US3052259A (en) Diaphragm actuated safety valve
GB1005171A (en) Improvements in vehicle suspension systems
US2491279A (en) Safety overload pitman for power presses
US2643872A (en) Hydraulic lift scale
US3606294A (en) Balancing valve for a load-responsive brake pressure regulator
US2662544A (en) Drain valve mechanism for fluid pressure systems
US4125126A (en) Pressure and vacuum relief valve
US2789574A (en) Fluid pressure regulator
US3155199A (en) Spring applied brake
US1938738A (en) Brake pipe vent valve
SU1010375A2 (en) Safety valve
US3134398A (en) Hydraulic prop valve
US2899976A (en) Release relief valve