US3453863A - Method for forecasting physical characteristics of thick steel plate - Google Patents

Method for forecasting physical characteristics of thick steel plate Download PDF

Info

Publication number
US3453863A
US3453863A US532992A US3453863DA US3453863A US 3453863 A US3453863 A US 3453863A US 532992 A US532992 A US 532992A US 3453863D A US3453863D A US 3453863DA US 3453863 A US3453863 A US 3453863A
Authority
US
United States
Prior art keywords
furnace
plate
specimen
test
forecasting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US532992A
Inventor
John H Scott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lukens Inc
Original Assignee
Lukens Steel Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lukens Steel Co filed Critical Lukens Steel Co
Application granted granted Critical
Publication of US3453863A publication Critical patent/US3453863A/en
Assigned to LUKENS, INC. reassignment LUKENS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: LUKENS STEEL COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals

Definitions

  • PROGRAMMER 122 /5 1 4 CONTROLLER r20 I73 26 P OWER SUPPLY IN VENTOR JOHN H. SCOTT W WZ4 A 7' TORNEYS United States Patent vania Filed Mar. 9, 1966, Ser. No. 532,992 Int. Cl. G011: 25/16 U.S. Cl.
  • ABSTRACT OF THE DISCLOSURE A method of forecasting physical properties of a thick steel plate following heat treatment by recording the heating and cooling rates which occur during such heat treatment at a standard location in a plate having similar chemistry and thickness, and obtaining from the plate to be tested a comparatively small specimen from a similar location, placing such specimen in a furnace where it is heated and cooled at the same rate as recorded with the similar plate, and testing the specimen to determine its physical properties.
  • This invention relates to a method and apparatus for simplifying the testing of thick steel plates. More particularly, this invention relates to a method and apparatus for simulating the heating and cooling cycles of thick steel plates using relatively small steel specimens and thereby reducing waste.
  • the length and width of a specimen block cast is usually two or three times (2T or 3T) the thickness of the plates.
  • 2T or 3T The thickness of the plates.
  • a block in a 3T test would necessarily have dimensions of 18" x 18 x 6".
  • 36" by the full width of the pattern is needed to be added to the rolled plate. This is a substantial portion of the plate.
  • a plate 96" wide of 6" gauge over 4000 pounds is needed for testing purposes.
  • the large specimen blocks are invariably taken from plates prior to heat treatment, at times the heat treatment is accomplished in the steel company, in which event, it may be necessary to treat and test several large specimen blocks for the purpose of determining the most favorable heat treatment for the desired end product.
  • FIG. 1 is a diagram of the control system.
  • the test specimen 2 is taken from the approximate center of a block of the plate preferably at A or /3 of the plates thickness and need only be about 0.5" in thickness 01' diameter.
  • the heating and cooling rates for steel plates of a certain chemistry must have been previously obtained by placing thermocouples in a 21 or 3T block of a plate similar in chemistry and thickness along the centerline or the quarterline or in the same location as that from which the specimen is taken.
  • the specimen 2 has a monitoring thermocouple 4 and a control thermocouple 6 spot welded along the side thereof and the specimen is suspended in a furnace 8 by wire 10.
  • the furnace 8 is water cooled with inlet 12 and outlet 14 in the furnace casing.
  • the furnace was a dual dielliptical aluminum reflector, water cooled unit housing two quartz tubes.
  • the furnace Model E2-10-2, 220 v. AC, 60-cycle, is made by Research, Inc., Minneapolis, Minn., and will heat specimens up to 1800 F. or more.
  • a wire 16 from the monitoring thermocouple 4 leads to recorder 18 so that an accurate history of the timetemperature treatment of the specimens during cooling and heating is recorded.
  • a suitable recorder used in the below example is the Brown Electronic Recorder manufactured by Honeywell. This instrument is capable of recording temperatures 200-2000 F. and has a 24 Pt. recorder-type K, 120 v. AC, '60 cycle dual chart speed.
  • the control thermocouple 6 is connected by a wire conductor 20 to a controller 22 which in turn is connected through circuit 21 to a source of power.
  • the controller 22 used and found suitable is the Thermac Temperature/ Power Controller operating at l)-2000 F. from a Chromel/Alumel thermocouple made by Research Incorporated.
  • the controller uses -230 v. AC, 60-cycle at 40 amp.
  • the controller is connected by conductor 24 to programmer 26.
  • Programmer 26 is a conventional instrument such as that used in the below example, namely, a Research Incorporated Trak Programmer, 8. 115 v. AC, 60-cycle unit.
  • Power supply 23 is connected to the heating units of furnace 8 through circuit 19.
  • the controller 22 is responsive to thermocouple 6 and to programmer 26 to regulate the heating units in the' furnace. 4
  • Example 1 Using the above instruments arranged as shown in FIG. 1 a specimen of a steel plate of 6% gauge was taken from the plate.
  • the steel had the following ladle chemistry:
  • Example III A 6 /5" thick plate of A 387 Grade D plate having Yield Tensile Percent Percent strength, strength, elong. reduc. Test location 0.2%, k.s.i. k.s.i. in 2 of area Program Gool Top-RT. 770 F 64. 5 84. 7 32 73.0 49.3 71.8 70.8
  • Example H same c em y as 0 th n xample I was heat
  • the below tests were carried out using different steels of varying thicknesses as indicated.
  • HEAT TREATMENT Normalize, 1675 F., 1 hr./in. Air cool Temper, 1,250 F., 1 hr./in. Air cool Stress relieve cycles, 1,250 F., 1 hr./in. Furnace cool to 600 F.
  • Example IV A 3T block sample (A) was heat treated (normalized) according to the schedule listed below.
  • a program cooled specimen (B) was prepared from the same steel using specimens were tempered at 1250 F. one hour per inch cooling curves obtained from the centerline and quarterand furnace cooled. Thereafter the specimens were stressline areas of the 3T block. The results of the test were as relieved at 1225 F. one hour per inch and allowed to follows: furnace cool.
  • the cooli ig rates were as follows: II- A, HEAT TREATMENT 9.1 F./m1n.; I I-B, 9.5 F./r n1n., II-C, 9.25 F./m1n., Fflhrs" AC and II-D and -E, 17. 8 F./m1n. 1,225: F., 7hrs.,AC O
  • a quartz lamp is one example of a heat source that can be used.
  • the heating element and the furnace must be capable of cooling 01f faster than the specimen being treated and -a water-cooled furnace is operative for this purpose. If cooling needs to be hastened, inert gas can be introduced through existing openings in furnace. The gas flow may be regulated as desired and the electronic control will still prevent exceeding desired cooling rate. The chief requirement is that extremely close control over the temperature of the specimen be exercised.
  • the specimen being heat treated cannot be insulated and it is essential that the heating element, preferably a quartz lamp, be of the modulating type so that all degrees between the highest and lowest temperatures can be quickly attained.
  • the heating element preferably a quartz lamp
  • a method of ascertaining the physical characteristics such as yield strength, tensile strength, percentage of elongation and percentage of reduction in area, of a steel plate which will exist after a predetermined heat treatment which comprises (1) recording the heating and cooling rates which occur during heat treatment substantially identical to the desired predetermined heat treatment taken at a standard test location within a steel plate of similar chemistry and thickness,
  • test piece is also heated at a rate corresponding to said recorded heating rate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Control Of Heat Treatment Processes (AREA)

Description

J. H. SCOTT 3,453,863
.METHOD FOR FORECASTING PHYSICAL CHARACTERISTICS OF THICK STEEL PLATE Filed March 9. 1966 July 8 1969 RECORDER. r/6
PROGRAMMER 122 ,/5 1 4 CONTROLLER r20 I73 26 P OWER SUPPLY IN VENTOR JOHN H. SCOTT W WZ4 A 7' TORNEYS United States Patent vania Filed Mar. 9, 1966, Ser. No. 532,992 Int. Cl. G011: 25/16 U.S. Cl. 73-15 2 Claims ABSTRACT OF THE DISCLOSURE A method of forecasting physical properties of a thick steel plate following heat treatment by recording the heating and cooling rates which occur during such heat treatment at a standard location in a plate having similar chemistry and thickness, and obtaining from the plate to be tested a comparatively small specimen from a similar location, placing such specimen in a furnace where it is heated and cooled at the same rate as recorded with the similar plate, and testing the specimen to determine its physical properties.
Background and summary of the invention This invention relates to a method and apparatus for simplifying the testing of thick steel plates. More particularly, this invention relates to a method and apparatus for simulating the heating and cooling cycles of thick steel plates using relatively small steel specimens and thereby reducing waste.
Steel plates used to fabricate structures such as vessels and other large equipment are frequently heat treated after fabrication of the structures. Current practices of forecasting the strength and other properties of thick steel plates (4 or more thick) to be heat treated involve the rolling of plate with excess steel. Specimens from the excess steel are cut from the plates and these specimens are heat treated in accordance with the fabricators specifications and then the specimens are tested. If these tests were not conducted, considerable cost and efforts incident to fabrication of the plates into the structure involved might otherwise be lost. This is a gamble that few fabricators can afford.
The length and width of a specimen block cast is usually two or three times (2T or 3T) the thickness of the plates. For a plate 6" thick, a block in a 3T test would necessarily have dimensions of 18" x 18 x 6". Thus for 3T testing top and bottom of a plate, 36" by the full width of the pattern is needed to be added to the rolled plate. This is a substantial portion of the plate. For a plate 96" wide of 6" gauge, over 4000 pounds is needed for testing purposes.
The reason for using such large blocks is that it is necessary to obtain test specimens with suflicient mass to duplicate the cooling and heating cycles.
Although the large specimen blocks are invariably taken from plates prior to heat treatment, at times the heat treatment is accomplished in the steel company, in which event, it may be necessary to treat and test several large specimen blocks for the purpose of determining the most favorable heat treatment for the desired end product.
It is an object of the present invention to accurately simulate the heating and cooling cycles of thick steel plates using relatively small test samples and thereby reduce waste.
The above and other objects will be apparent from the drawings and following description:
Brief description of the drawings FIG. 1 is a diagram of the control system.
Description of the preferred embodiment According to the present invention the test specimen 2 is taken from the approximate center of a block of the plate preferably at A or /3 of the plates thickness and need only be about 0.5" in thickness 01' diameter. The heating and cooling rates for steel plates of a certain chemistry must have been previously obtained by placing thermocouples in a 21 or 3T block of a plate similar in chemistry and thickness along the centerline or the quarterline or in the same location as that from which the specimen is taken. The specimen 2 has a monitoring thermocouple 4 and a control thermocouple 6 spot welded along the side thereof and the specimen is suspended in a furnace 8 by wire 10. The furnace 8 is water cooled with inlet 12 and outlet 14 in the furnace casing. In one test the furnace was a dual dielliptical aluminum reflector, water cooled unit housing two quartz tubes. The furnace, Model E2-10-2, 220 v. AC, 60-cycle, is made by Research, Inc., Minneapolis, Minn., and will heat specimens up to 1800 F. or more.
A wire 16 from the monitoring thermocouple 4 leads to recorder 18 so that an accurate history of the timetemperature treatment of the specimens during cooling and heating is recorded. A suitable recorder used in the below example is the Brown Electronic Recorder manufactured by Honeywell. This instrument is capable of recording temperatures 200-2000 F. and has a 24 Pt. recorder-type K, 120 v. AC, '60 cycle dual chart speed.
The control thermocouple 6 is connected by a wire conductor 20 to a controller 22 which in turn is connected through circuit 21 to a source of power. The controller 22 used and found suitable is the Thermac Temperature/ Power Controller operating at l)-2000 F. from a Chromel/Alumel thermocouple made by Research Incorporated. The controller uses -230 v. AC, 60-cycle at 40 amp. The controller is connected by conductor 24 to programmer 26. Programmer 26 is a conventional instrument such as that used in the below example, namely, a Research Incorporated Trak Programmer, 8. 115 v. AC, 60-cycle unit. Power supply 23 is connected to the heating units of furnace 8 through circuit 19. The controller 22 is responsive to thermocouple 6 and to programmer 26 to regulate the heating units in the' furnace. 4
Example 1 Using the above instruments arranged as shown in FIG. 1 a specimen of a steel plate of 6% gauge was taken from the plate. The steel had the following ladle chemistry:
HEAT TREATMENT 1,700 F., 6% hours, Air cool 1,350 F., 3%; hours, Furnace cool to 600 F. 1,050 F., 40 hours, Furnace cool to 600 F.
Example III A 6 /5" thick plate of A 387 Grade D plate having Yield Tensile Percent Percent strength, strength, elong. reduc. Test location 0.2%, k.s.i. k.s.i. in 2 of area Program Gool Top-RT. 770 F 64. 5 84. 7 32 73.0 49.3 71.8 70.8
2T X 2T Top-RT. 770 F 61.4 87. 3 31 73. 1 54.3 75.5 21 66.7
Program C0ol-- Bottom-RT. 770 F-. 51. 7 78. 3 31 75. 3 38. 4 66.1 26 67.2
2'1 x 2? Bottom-RT. 770 F 54. 5 82. 1 71. 8 46.9 69.9 24 63.8
the h istr set f r i E Example H same c em y as 0 th n xample I was heat The below tests were carried out using different steels of varying thicknesses as indicated.
treated according to the below schedule. The specimens program cooled showed good agreement in terms of properties with the 2T block specimens.
HEAT TREATMENT Normalize, 1675 F., 1 hr./in. Air cool Temper, 1,250 F., 1 hr./in. Air cool Stress relieve cycles, 1,250 F., 1 hr./in. Furnace cool to 600 F.
Stress relieve cycles, 1,250 F., 1 hr./in. Furnace cool to 600 F.
Stress relieve cycles, 1,050 F., 1 hr./in. Furnace cool to 600 F.
Stress relleve cycles, 1,050 F., 1 hr./in. Furnace cool to 600 F.
Stress relieve cycles, 1,050 F., 1 hr./in. Furnace cool to 600 F.
Stress relieve cycles, 1,250 F., 1 hr./in. Furnace cool to 600 F.
Test Elongation Test Heat Treatment Test temp., 2% Yield Tensile percent Method location F. strength strength in 2" 2T Block Top- 52, 800 90, 100 28 Botto 46, 400 500 29 Program-cooled Top. 53, 600 83,500 30 Botto 51, 100 84, 900 28 2T Block Top. 43, 000 000 22 Botto 39, 400 69, 000 24 Program-cooled Top 38, 700 68, 300 26 Botto 40, 500 69, 300 24 I'I-A, II-B and II-C were normalized at 1675 F. one hour per inch and air cooled. lI-D and II-E were heated to 1575 F. one hour per inch and water quenched. All
Example IV A 3T block sample (A) was heat treated (normalized) according to the schedule listed below. A program cooled specimen (B) was prepared from the same steel using specimens were tempered at 1250 F. one hour per inch cooling curves obtained from the centerline and quarterand furnace cooled. Thereafter the specimens were stressline areas of the 3T block. The results of the test were as relieved at 1225 F. one hour per inch and allowed to follows: furnace cool. The cooli ig rates were as follows: II- A, HEAT TREATMENT 9.1 F./m1n.; I I-B, 9.5 F./r n1n., II-C, 9.25 F./m1n., Fflhrs" AC and II-D and -E, 17. 8 F./m1n. 1,225: F., 7hrs.,AC O
The chemistries of these steels were as follows: 1,275 21 hrs-i F0 Tensile Yield Percent strength, strength, Elong. Percent P S Or Mo Cu p.s.i. p.s.i. in 2 RA.
.009 .017 2.27 .92 .13 0 AOent rline 30,700 55,700 30 30.2 .008 .017 2.75 .95 .08 Aqua erline- 82,000 54,200 28 75.5 .00 .017 2,75 .95 0s BCenterhne 80,600 56,200 27 77.7 .010 .022 .10 .46 .15 B Quarterhne 83,600 59,600 29 80.1
Equivalent Elongation Reduction Test tempering .2% Yield Tensile percent of area, method parameter strength strength in 2 percent II-A 21 37.1 43, 300 75,500 P-C 37. 1 51, 700 78,500 11-13 2'1 37. 1 42, 500 54, 200 P-O 37. 1 41, 65,000 II-C 2T 37. 5 50,200 77,900 19-0 37. 5 49, 300 77, 500 II-D 3T 35.3 53,600 75,800 P-C 35. 3 52, 600 72, 500 II-E 3'1 35.3 53,000 70, 300 P-O 35. 3 00, 000 75, 500
In summary, to simulate the heating and cooling cycles of a thick plate, it is necessary to use a source of heat that upon being turned off will not retain heat. A quartz lamp is one example of a heat source that can be used. Also, the heating element and the furnace must be capable of cooling 01f faster than the specimen being treated and -a water-cooled furnace is operative for this purpose. If cooling needs to be hastened, inert gas can be introduced through existing openings in furnace. The gas flow may be regulated as desired and the electronic control will still prevent exceeding desired cooling rate. The chief requirement is that extremely close control over the temperature of the specimen be exercised.
From the foregoing it will be apparent that the specimen being heat treated cannot be insulated and it is essential that the heating element, preferably a quartz lamp, be of the modulating type so that all degrees between the highest and lowest temperatures can be quickly attained.
Having thus described my invention, what I claim as new and desire to secure by Letters Patent of the United States is:
1. A method of ascertaining the physical characteristics such as yield strength, tensile strength, percentage of elongation and percentage of reduction in area, of a steel plate which will exist after a predetermined heat treatment, which comprises (1) recording the heating and cooling rates which occur during heat treatment substantially identical to the desired predetermined heat treatment taken at a standard test location within a steel plate of similar chemistry and thickness,
(2) preparing, a comparatively small test piece from a depth corresponding to the depth of said standard test location from the plate to be tested,
(3) afiixing a control thermocouple to said test piece,
(4) heating said assembled test piece to predetermined temperatures for predetermined lengths of time corresponding to said recorded heating rates in a furnace,
(5) controlling by said thermocouple the reduction of temperature of said furnace at a rate whereby said test piece is cooled at said recorded cooling rate whereby the cooling rate of said test piece is substantially the same as the cooling rate of steel at about said standard test location in said plate to be tested, and
(6) testing sai-d test piece to determine its physical characteristics.
2. A method in accordance with claim 1 wherein said test piece is also heated at a rate corresponding to said recorded heating rate.
References Cited UNITED STATES PATENTS 2,262,778 11/1941 Schneider 73--15 2,729,096 1/1956 Rosenholtz et a1. 73--15.6 3,129,087 4/1964 Ha-gy 7315.6
JAMES J. GILL, Primary Examiner.
ROBERT S. SALZMAN, Assistant Examiner.
US532992A 1966-03-09 1966-03-09 Method for forecasting physical characteristics of thick steel plate Expired - Lifetime US3453863A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US53299266A 1966-03-09 1966-03-09

Publications (1)

Publication Number Publication Date
US3453863A true US3453863A (en) 1969-07-08

Family

ID=24124011

Family Applications (1)

Application Number Title Priority Date Filing Date
US532992A Expired - Lifetime US3453863A (en) 1966-03-09 1966-03-09 Method for forecasting physical characteristics of thick steel plate

Country Status (1)

Country Link
US (1) US3453863A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346754A (en) * 1980-04-30 1982-08-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Heating and cooling system
US4599905A (en) * 1985-07-29 1986-07-15 Essex Group, Inc. Method and apparatus for determining the elongation property of copper wire
US20140007713A1 (en) * 2012-07-04 2014-01-09 Christopher D. Prest Mechanical testing of test plaque formed on an alloy part and mechanical proof testing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2262778A (en) * 1939-03-20 1941-11-18 American Steel & Wire Co Determining the identities of pieces of different steels
US2729096A (en) * 1951-10-16 1956-01-03 Rensselaer Polytech Inst Method for determining the fatigue endurance limit of solids, especially metals
US3129087A (en) * 1961-05-15 1964-04-14 Corning Glass Works Apparatus for controlled heat treatment of glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2262778A (en) * 1939-03-20 1941-11-18 American Steel & Wire Co Determining the identities of pieces of different steels
US2729096A (en) * 1951-10-16 1956-01-03 Rensselaer Polytech Inst Method for determining the fatigue endurance limit of solids, especially metals
US3129087A (en) * 1961-05-15 1964-04-14 Corning Glass Works Apparatus for controlled heat treatment of glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346754A (en) * 1980-04-30 1982-08-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Heating and cooling system
US4599905A (en) * 1985-07-29 1986-07-15 Essex Group, Inc. Method and apparatus for determining the elongation property of copper wire
US20140007713A1 (en) * 2012-07-04 2014-01-09 Christopher D. Prest Mechanical testing of test plaque formed on an alloy part and mechanical proof testing

Similar Documents

Publication Publication Date Title
Clarebrough et al. The determination of the energy stored in a metal during plastic deformation
Wuxderlich et al. Dynamic differential thermal analysis of the glass transition interval
US3453863A (en) Method for forecasting physical characteristics of thick steel plate
CA2289580A1 (en) Method and apparatus for measuring quenchant properties of coolants
US2404474A (en) Apparatus for measuring carbonaceous deposits
Kotler et al. Experimental observations of dendritic growth
US4412752A (en) Method and apparatus for determining the cooling characteristics of a quenching medium
US2730894A (en) Portable quench oil tester
Gilmour et al. The thermoelastic effect in glassy polymers
US2083521A (en) Analysis of fluid mixtures
Stong THE MODULUS OF ELASTICITY OF GLASS*: I Preliminary Studies:(a) Effect of Thermal History;(b) Effect of Temperature Change
Scatchard et al. Equilibrium of Solid α-Silver—Zinc Alloys with Zinc Vapor1
GB1066492A (en) Determination of heats of reaction
US2491512A (en) Process for testing molding sand and apparatus therefor
Bongiovanni et al. Effects of dissolved oxygen and freezing techniques on the silver freezing point
McReynolds Electrical observations of the austenite‐martensite transformation in steel
US3620068A (en) Quench calorimeter
SU1495696A1 (en) Method for non-destructive determination of thermophysical properties of materials of heat-insulating coatings on metal base
Chiu New Differential Thermal Analysis Technique for Measuring Isothermal Crystallization Rates of High Polymers.
SU920488A1 (en) Internal heat exchange coefficient determination method
US3588065A (en) Apparatus for controlled cooling of metal samples
JPS52117215A (en) Control of continuous heat treating furnace
SU1604996A1 (en) Method of assessing explosion safety of heated conductors
GB1364802A (en) Apparatus for carrying out end quench tests
SU879397A1 (en) Method of tool wear degree determination

Legal Events

Date Code Title Description
AS Assignment

Owner name: LUKENS, INC., 50 SOUTH FIRST AVENUE, COATESVILLE,

Free format text: CHANGE OF NAME;ASSIGNOR:LUKENS STEEL COMPANY;REEL/FRAME:003997/0281

Effective date: 19820512