US3452319A - Coaxial cables - Google Patents

Coaxial cables Download PDF

Info

Publication number
US3452319A
US3452319A US705580A US3452319DA US3452319A US 3452319 A US3452319 A US 3452319A US 705580 A US705580 A US 705580A US 3452319D A US3452319D A US 3452319DA US 3452319 A US3452319 A US 3452319A
Authority
US
United States
Prior art keywords
cable
outer conductor
sheath
conductor
seam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US705580A
Inventor
Raymond A Kempf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Bell Telephone Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US466999A external-priority patent/US3379824A/en
Application filed by Bell Telephone Laboratories Inc filed Critical Bell Telephone Laboratories Inc
Application granted granted Critical
Publication of US3452319A publication Critical patent/US3452319A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R9/00Structural associations of a plurality of mutually-insulated electrical connecting elements, e.g. terminal strips or terminal blocks; Terminals or binding posts mounted upon a base or in a case; Bases therefor
    • H01R9/03Connectors arranged to contact a plurality of the conductors of a multiconductor cable, e.g. tapping connections
    • H01R9/05Connectors arranged to contact a plurality of the conductors of a multiconductor cable, e.g. tapping connections for coaxial cables
    • H01R9/0509Tapping connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1808Construction of the conductors
    • H01B11/1826Co-axial cables with at least one longitudinal lapped tape-conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/24Connections using contact members penetrating or cutting insulation or cable strands

Definitions

  • This invention relates to high-frequency signal distribution systems, and particularly to coaxial cables for distributing high-frequency signals from a source such as a community television antenna to a number of receivers such as television receivers in subscribing homes.
  • a convenient and inexpensive system for distributing signals from a community antenna includes an amplifier that passes the signals from a feeder cable to a number of distribution cables. So-called tap-01f couplings along the distribution cables pass signal energy through respective drop-off cables to local subscribers.
  • a tap-off coupling, or tap-off is an attenuating coupling that embraces a distribution line with a clamp that has prongs penetrating the cable outer conductor. A threaded opening in the clamp exposes a hole bored through the outer jacket and outer conductor.
  • a signal-attenuating connector screwed into the opening of the tap-off coupling connects to a drop-off cable, and with a stud projects through the insulation spacing the outer conductor from the inner conductor and pierces the inner or central conductor. With such a tap-off coupling, drop-off cables can be easily applied and removed. The attenuation in the tap-off coupling maintains the impedance of the distribution cable and prevents excessive energy from feeding through any one drop-off cable.
  • An object of 'this invention is to improve the propagating characteristics of cables susceptible to connection with tap-off couplings.
  • Another object of the invention is to accomplish this without subjecting the cable to other degrading effects.
  • these objects are obtained by surrounding the inner conductor with so-called expanded polyethylene or other expanded plastic, then applying a coaxial outer conductor having a bare overlapped seam, and embracing the outer conductor with a high-frequency shield that comprises a layer of aluminurn laminated between two plastic layers which are heat sealed along a seam offset from the seam of the outer conductor.
  • Another feature of the invention involves making the width of the heat seal transverse to the cable axis long compared to the thickness of the plastic separating the aluminum surfaces at the seal.
  • the expanded plastic is formed by fusing grains of plastic, in the presence of a gas-releasing agent that operates like the leavening in baking of bread.
  • a gas-releasing agent that operates like the leavening in baking of bread.
  • the inner conductor is not only held securely for tap-off stud penetration by a high performance expanded plastic, but the high performance is maintained because the porous plastic is at once freed from the performance-degrading eifects of flux seeping therein from the solder joint which might be used to close the seam of the outer conductor, and yet is protected from entry of performance-degrading ambient Water vapor by the triple laminate electric shield. All this is accomplished without a solder joint which would stiffen the cable and interfere with bending during installation.
  • FIG. 1 is a schematic diagram of a system embodying features of the invention
  • FIG. 2 is a perspective view of a cut-away portion of a distribution cable forming part of FIG. 1 and embodying features of the invention
  • FIG. 3 is a cross section of a portion of the cable in FIG. 1;
  • FIG. 4 is a detailed and exploded perspective of the distribution cable and tap-off in FIG. 1;
  • FIG. 5 is a section transverse to the cable of FIG. 4;
  • FIGS. 6 and 7 are sections of other embodimentsof the cable sheath in FIG. 2;
  • FIG. 8 is a section of another embodiment of the cable jacket of FIG. 2.
  • a feeder cable 10 passes signals from a community antenna 12, which may be located on a mountain top, to a central amplifier 14.
  • Two distribution cables 16 each carry the amplified television signals into the various streets of neighborhood subscribers.
  • the television receivers 18 of local subscribers in the vicinity of the distribution cables 16 hook into the distribution cables through drop-off cables 20 by means of respective tap-oif couplings 22.
  • the distribution cables are preferably aerially suspended, but underground-cables are not excluded.
  • FIG. 2 illustrates a cut-away portion of a distribution cable 16 in detail.
  • an expanded-polyethylene insulator 30 coaxially surrounds a copper central or inner conductor 32 and spaces the latter from a corrugated coaxial outer conductor 34.
  • the outer conductor 34 has corrugations 36 transverse to the longitudinal axis of the central conductor 32. It is formed from an elongated corrugated ribbon that is folded to tightly embrace the insulator 30, thereby forming some corrugations 38 in the insulation.
  • the conductor 14 closes in a longitudinal overlapping seam 40.
  • the seam 40* comprises the bare overlapped edges of the outer conductor 34 contacting each other.
  • the sheath 42 Surrounding the corrugated unsealed outer conductor 34 is a laminated sheath 42 illustrated in more detail in FIG. 3.
  • the sheath 42 comprises a one-mil-thick aluminum layer 44 bonded between a one-half-mil-thick layer 46 of polyethylene terephthalate, available commercially as Myar and a five-mil-thick polypropylene layer 48.
  • the sleeve is formed by first producing the three-layer laminate in the shape of a long ribbon and rolling it around the copper outer conductor 34 with the polypropylene layer 48 on the inside, and bending the longitudinal edges of the ribbon upwardly to form a fin 50 about one-quarter-inch wide.
  • the sheath is completed by heat sealing the polyproylene faces in the fin 50 to each other, and the fin 50 is bent over.
  • the sheath 42 mechanically closes the seam on the outer conductor 34.
  • a polyethylene or polyvinyl chloride jacket 52 is extruded about the sheath to form the completed cable 16. According to one manufacturing method the heat of the jacket '52 being extruded onto the sheath 42 seals the polypropylene faces in the tin to each other.
  • the laminate sheath 42 serves as a moisture barrier to prevent entrance of water vapors into the expanded polyethylene insulation. Such water vapor would eventually degrade the propagation characteristics of the cable.
  • FIGS. 4 and are details of the distribution cable 16 where it meets one of the tap-01f couplings 22.
  • two conductive metal clamp members 54 and 55 whose interior surfaces are recessed, are squeezed onto the cable 16 by a bolt 56.
  • An insulating gasket 58 Y on the clamp member 54 protects the cable 16 from deformation.
  • a boss 60 peripherally surrounding a threaded opening 62 exposes a hole 64 bored transverse to the axis of cable 16 and through the gasket 58, the jacket 52, the sheath 42, and the outer conductor 34.
  • Conductive prongs, 65 project inwardly from the clamp member 54 from a location behind the ears E of the boss 60. They project through the gasket 58, the jacket 52, and the sheath 42 until they pierce and conductively connect to the outer conductor 34.
  • the tap-oit coupling 22 also includes a connector 66 whose threaded protrusion 68 conductively engages the outer conductor on the drop-off cable 20 and screws into the threads in the opening 62.
  • Insulation 70 centrally mounts a stud 72 within the protrusion 68.
  • the stud 72 is conductively connected with the inner conductor on the cable 20.
  • the attenuator network in the tap-oif coupling 22 bridges the distribution cable 16 without excessively disturbing its impedance and also limits radiation of the local oscillator of the television receiver 18 back into the distribution network.
  • the attenuation is selected to provide an appropriate signal level at the television receiver related to the position of the drop along the distribution cable 16 measured from the nearest amplifier 14.
  • the antenna 12 feeds signals from television transmitters, over a range of frequencies of 54 megacycles to 216 megacycles, through the feeder cable to the amplifier 14.
  • the amplifier 14 is a wide-band amplifier suitable for operating over this broad range of frequencies. It passes the amplified signals through the lines 16 to the tap-oh couplings 22. Here connection is made between the outer conductors of cable 16 and cable 20 through the prongs 65 and the protrusion 68. Connection is made between the inner conductors through the stud 72.
  • the drop-off cables 20 carry the broad-band signals to individual television receivers 18.
  • Connecting a cable 20 from television receiver 18 to the signal-carrying distribution cable 16 is readily accomplished. It involves first securing the two clamp members 54 of the tap-ott coupling 22 to the line 16, and, with a threaded corer (not shown) rotated in the threads of the boss 60, boring a hole in the jacket 52, the sheath 42, and the outer conductor 34. The connection, is completed by mounting the connector portion 66 onto the cable 20, and then screwing the connector onto the clamp members 54 until the stud 72 pierces the inner conductor 32.
  • the expanded plastic insulator 30 Assuring accurate interconductor spacing and excellent propagation characteristics, and assuring adequate support of the inner conductor during the penetrating process of the stud 72, while nevertheless preventing degradation of the dielectric constant, are the expanded plastic insulator 30, the seam 40 on the outer conductor 34, and the sheath 42.
  • the expanded plastic of insulator 30 provides the body for centering and supporting the inner conductor 32. Its high air content is responsible for a low dielectric constant that improves the propagation characteristics of the cable.
  • the outer conductor 34 and the sheath 42 together maintain the low dielectric constant of the insulator 30 and maximize its eliect.
  • the sheath 42 forms a shield that helps the outer conductor prevent loss of electrical energy through the seam 40.
  • high intensity interference in the vicinity of the cable is effectively prevented from entering the cable.
  • the heat seal of the sheath 42 in FIG. 2 is formed by overlapping the sheath edges rather than by folding the fin 50.
  • a sheath suitable to replace the sheath 42 in FIG. 2, is illustrated in FIG. 6-.
  • the aluminum layer 44 of sheath 42 is sandwiched between two S-milthick polypropylene layers 74 and 76.
  • the longitudinal edges of the sheath are overlapped and the outer sheath 74 welded to the inner sheath 76 to form a heat seal 78.
  • This heat scaling operation can be performed with a special heating source.
  • the heat energy for the heat seal 78 may be obtained from the heat emitted when the jacket 52 is extruded about the sheath 42.
  • FIG. 7 illustrates another embodiment of the sheath 42 with exaggerated layer thicknesses.
  • the overlapping sheath edges form the heat seal 78 as illustrated in FIG. 6.
  • the Mylar layer is approximately one-half-mil thick. However, it imparts considerable strength to the entire sheath. Mylar has far greater torsional, tear, and tensile strength as compared to polypropylene or similar thicknesses of aluminum.
  • the Mylar layer is quite flexible.
  • the heat seal 78 is formed either by a separate step or as part of the jacket extruding process. In both FIGS. 6 and 7 the heat seal along the overlap extends one-quarter inch in the peripheral direction.
  • the jacket 52 may be either polyethylene or polyvinyl chloride. It may also be composed of two thick layers, that is, an interior layer of polyethylene and an exterior layer of polyvinyl chloride.
  • the polyvinyl chloride imparts heat resistance and fire protection properties to the cable. Structures using polyvinyl chloride cable are suitable in locations where they are subject to high temperatures or fires.
  • FIG. 8 illustrates a compound jacket 52 of polyethylene 80 and polyvinyl chloride 82.
  • a cable junction comprising high-frequency propagating means including an inner conductor and a coaxial corrugated outer conductor surrounding said inner conductor, expanded plastic insulating means surrounding said inner conductor for spacing said outer conductor therefrom, said outer conductor forming a longitudinal seam with bare overlapping portions contactable with each other, high-frequency shielding means for confining high-frequency energy at the seam of said outer conductor, said shielding means including a triple layer laminate surrounding said outer conductor and forcing said overlapping portions into intimate contact, said sheath comprising a metal foil layer sandwiched between an inner plastic layer and an outer plastic layer, said sheath forming at its edges a longitudinal fin having said inner plastic layers heat welded together, said fin being folded against the surface of said sheath, an outer insulating jacket surrounding said shielding means, clamp means surrounding and holding said jacket, said jacket and said laminate as well as said outer conductor forming a continuous radial hole, said clamp means forming an open ing exposing said hole, said clamp means having means for contacting said outer conductor,
  • a cable juncture comprising a cable having coaxial inner and outer conductors, said outer conductor being corrugated, expanded plastic insulation means spacing said conductors from each other, said outer con-ductor having portions forming a seam, said portions being bare and directly contactable, laminated shielding means having a metal layer sandwiched between respective plastic layers and surrounding said outer conductor and having edges forming a seal offset from said seam, said layers forming edge sections at said edges, said seal having two of said edge sections at said edges welded together, an outer protective jacket surrounding said shielding means, a tap-off embracing said cable and having separate prongs for penetrating and contacting said inner conductor and said outer conductor, and a second cable having respective current carriers conductively connected to said separate prongs.
  • a cable juncture comprising a cable having coaxial inner and outer conductors, said outer conductor being corrugated, expanded plastic insulation means spacing said conductors from each other, said outer conductor having portions forming a seam, said portions being bare and directly contactable, laminated shielding means having a metal layer sandwiched between respective plastic layers and surrounding said outer conductor and having edges forming a heat seal offset from said seam, said layers forming edge sections at said edges, said seal having two of said edge sections at said edges welded together, an outer protective jacket surrounding said shielding means, a tap-off embracing said cable and having separate prongs for penetrating and contacting said inner conductor and said outer conductor, said prong penetrating said outer conductor also penetrating said shielding means and thereby connecting said shielding means to said outer conductor, and a second cable having respective current carriers conductively connected to said separate prongs.
  • a cable junction comprising high-frequency propagating means including an inner conductor and a coaxial corrugated outer conductor surrounding said inner conductor, expanded plastic insulating means surrounding said inner conductor for spacing said outer conductor therefrom, said outer conductor [forming a longitudinal seam with bare overlapping portions contactable with each other, high-frequency shielding means for confining high-frequency energy at the seam of said outer conductor, said shielding means including a triple layer laminate surrounding said outer conductor and forcing said overlapping portions into intimate contact, said sheath comprising a metal foil layer sandwiched between an inner plastic layer and an outer plastic layer, said sheath forming at its edges a longitudinal overlap, said plastic layers at the edges being heat welded together to form a heat seal, said seal being peripherally wide compared to the thickness of said layers, and an outer protective jacket, an outer insulating jacket surrounding said shielding means, clamp means surrounding and holding said jacket, said jacket and said laminate as well as said outer conductor forming a continuous radial hole, said clamp means forming an opening exposing said hole

Landscapes

  • Cable Accessories (AREA)

Description

June 24, 1969 R. A. KEMPF 3,452,319
COAXIAL CABLES Original Filed June 25. 1965 Sheet of 3 FIG. I
N |0 ANTENNA AMP l6- A6 I 1' e a 8 s lNl/ENTOR R. A. KEMPF ATTORNEY R. A. KEMPF COAXIAL CABLES June 24, 1969 Sheet Z ofS Original Filed June 25, 1965 R. A. KEMPF COAXIAL CABLES June 24, 1969 Sheet Original Filed June 25. 1965 FIG. 6
FIG. 7
United States Patent 3,452,319 COAXIAL CABLES Raymond A. Kempf, Baltimore, Md., assignor to Bell Telephone Laboratories, Incorporated, New York, N.Y., a corporation of New York Original application June 25, 1965, Ser. No. 466,999, now Patent No. 3,379,824, dated Apr. 23, 1968. Divided and this application Nov. 29, 1967, Ser. No. 705,580
Int. "Cl. H01r 11/20, 17/18 US. Cl. 33997 4 Claims ABSTRACT OF THE DISCLOSURE A tap-off, which embraces a cable having a jacket which in turn surrounds a laminated plastic-metal-plastic vapor barrier, has separate prongs for radially penetrating This is a division of application Ser. No. 466,999, filed June 25, 1965, and now Patent No. 3,379,824.
This invention relates to high-frequency signal distribution systems, and particularly to coaxial cables for distributing high-frequency signals from a source such as a community television antenna to a number of receivers such as television receivers in subscribing homes.
A convenient and inexpensive system for distributing signals from a community antenna includes an amplifier that passes the signals from a feeder cable to a number of distribution cables. So-called tap-01f couplings along the distribution cables pass signal energy through respective drop-off cables to local subscribers. A tap-off coupling, or tap-off, is an attenuating coupling that embraces a distribution line with a clamp that has prongs penetrating the cable outer conductor. A threaded opening in the clamp exposes a hole bored through the outer jacket and outer conductor. A signal-attenuating connector screwed into the opening of the tap-off coupling connects to a drop-off cable, and with a stud projects through the insulation spacing the outer conductor from the inner conductor and pierces the inner or central conductor. With such a tap-off coupling, drop-off cables can be easily applied and removed. The attenuation in the tap-off coupling maintains the impedance of the distribution cable and prevents excessive energy from feeding through any one drop-off cable.
Such tap-off couplings operate especially well with distribution cables having solid insulation separating the inner from the outer conductor. Unfortunately, they fail with disk-spaced cables. There, because between the spacers the central conductor is substantially unsupported, the projecting prong will tend to displace the central conductor without proper penetration and contact. However, cables with solid insulators do not have the signal propagating properties available in disk-spaced cables, where the air provides a desirable low dielectric constant.
An object of 'this invention is to improve the propagating characteristics of cables susceptible to connection with tap-off couplings.
Another object of the invention is to accomplish this without subjecting the cable to other degrading effects.
According to a feature of this invention these objects are obtained by surrounding the inner conductor with so-called expanded polyethylene or other expanded plastic, then applying a coaxial outer conductor having a bare overlapped seam, and embracing the outer conductor with a high-frequency shield that comprises a layer of aluminurn laminated between two plastic layers which are heat sealed along a seam offset from the seam of the outer conductor. Another feature of the invention involves making the width of the heat seal transverse to the cable axis long compared to the thickness of the plastic separating the aluminum surfaces at the seal.
The expanded plastic is formed by fusing grains of plastic, in the presence of a gas-releasing agent that operates like the leavening in baking of bread. Such insulation constitutes a combination of plastic and air, exhibiting a dielectric constant lower than that of solid plastic and therefore improving the signal propagating properties of the cable which uses it.
By virtue of the invention the inner conductor is not only held securely for tap-off stud penetration by a high performance expanded plastic, but the high performance is maintained because the porous plastic is at once freed from the performance-degrading eifects of flux seeping therein from the solder joint which might be used to close the seam of the outer conductor, and yet is protected from entry of performance-degrading ambient Water vapor by the triple laminate electric shield. All this is accomplished without a solder joint which would stiffen the cable and interfere with bending during installation.
These and other features of the invention are pointed out more particularly in the claims. Other objects and advantages of the invention will become obvious from the following detailed description when read in light of the accompanying drawings, wherein:
FIG. 1 is a schematic diagram of a system embodying features of the invention;
FIG. 2 is a perspective view of a cut-away portion of a distribution cable forming part of FIG. 1 and embodying features of the invention;
FIG. 3 is a cross section of a portion of the cable in FIG. 1;
FIG. 4 is a detailed and exploded perspective of the distribution cable and tap-off in FIG. 1;
FIG. 5 is a section transverse to the cable of FIG. 4;
FIGS. 6 and 7 are sections of other embodimentsof the cable sheath in FIG. 2; and
FIG. 8 is a section of another embodiment of the cable jacket of FIG. 2.
In FIG. 1 a feeder cable 10 passes signals from a community antenna 12, which may be located on a mountain top, to a central amplifier 14. Two distribution cables 16 each carry the amplified television signals into the various streets of neighborhood subscribers. The television receivers 18 of local subscribers in the vicinity of the distribution cables 16 hook into the distribution cables through drop-off cables 20 by means of respective tap-oif couplings 22. The distribution cables are preferably aerially suspended, but underground-cables are not excluded.
FIG. 2 illustrates a cut-away portion of a distribution cable 16 in detail. Here an expanded-polyethylene insulator 30 coaxially surrounds a copper central or inner conductor 32 and spaces the latter from a corrugated coaxial outer conductor 34. The outer conductor 34 has corrugations 36 transverse to the longitudinal axis of the central conductor 32. It is formed from an elongated corrugated ribbon that is folded to tightly embrace the insulator 30, thereby forming some corrugations 38 in the insulation. The conductor 14 closes in a longitudinal overlapping seam 40. The seam 40* comprises the bare overlapped edges of the outer conductor 34 contacting each other.
Surrounding the corrugated unsealed outer conductor 34 is a laminated sheath 42 illustrated in more detail in FIG. 3. Here the thicknesses of the layers are some-- what exaggerated for purposes of illustration. The sheath 42 comprises a one-mil-thick aluminum layer 44 bonded between a one-half-mil-thick layer 46 of polyethylene terephthalate, available commercially as Myar and a five-mil-thick polypropylene layer 48. The sleeve is formed by first producing the three-layer laminate in the shape of a long ribbon and rolling it around the copper outer conductor 34 with the polypropylene layer 48 on the inside, and bending the longitudinal edges of the ribbon upwardly to form a fin 50 about one-quarter-inch wide. The sheath is completed by heat sealing the polyproylene faces in the fin 50 to each other, and the fin 50 is bent over. The sheath 42 mechanically closes the seam on the outer conductor 34. A polyethylene or polyvinyl chloride jacket 52 is extruded about the sheath to form the completed cable 16. According to one manufacturing method the heat of the jacket '52 being extruded onto the sheath 42 seals the polypropylene faces in the tin to each other.
The laminate sheath 42 serves as a moisture barrier to prevent entrance of water vapors into the expanded polyethylene insulation. Such water vapor would eventually degrade the propagation characteristics of the cable.
FIGS. 4 and are details of the distribution cable 16 where it meets one of the tap-01f couplings 22. In the coupling 22 two conductive metal clamp members 54 and 55, whose interior surfaces are recessed, are squeezed onto the cable 16 by a bolt 56. An insulating gasket 58 Y on the clamp member 54 protects the cable 16 from deformation. A boss 60 peripherally surrounding a threaded opening 62 exposes a hole 64 bored transverse to the axis of cable 16 and through the gasket 58, the jacket 52, the sheath 42, and the outer conductor 34. Conductive prongs, 65 project inwardly from the clamp member 54 from a location behind the ears E of the boss 60. They project through the gasket 58, the jacket 52, and the sheath 42 until they pierce and conductively connect to the outer conductor 34.
The tap-oit coupling 22 also includes a connector 66 whose threaded protrusion 68 conductively engages the outer conductor on the drop-off cable 20 and screws into the threads in the opening 62. Insulation 70 centrally mounts a stud 72 within the protrusion 68. The stud 72 is conductively connected with the inner conductor on the cable 20. When the connector 66 is tightly screwed into the opening 62 in clamp member 54, the stud passes through the insulation 30 in the line 16 until it pierces the inner or central conductor 32. The bulk of the expanded plastic insulator 30 holds the central conductor 32 in the path of the advancing and piercing stud. This assures proper pentration and connection of the stud 72 with central conductor 32. An attenuator (not shown) in the connector 66 reduces the energy passing from the cable 16 to cable 20 and thus maintains the impedance of cable 16.
The attenuator network in the tap-oif coupling 22 bridges the distribution cable 16 without excessively disturbing its impedance and also limits radiation of the local oscillator of the television receiver 18 back into the distribution network. The attenuation is selected to provide an appropriate signal level at the television receiver related to the position of the drop along the distribution cable 16 measured from the nearest amplifier 14.
In operation the antenna 12 feeds signals from television transmitters, over a range of frequencies of 54 megacycles to 216 megacycles, through the feeder cable to the amplifier 14. The amplifier 14 is a wide-band amplifier suitable for operating over this broad range of frequencies. It passes the amplified signals through the lines 16 to the tap-oh couplings 22. Here connection is made between the outer conductors of cable 16 and cable 20 through the prongs 65 and the protrusion 68. Connection is made between the inner conductors through the stud 72. The drop-off cables 20 carry the broad-band signals to individual television receivers 18.
Connecting a cable 20 from television receiver 18 to the signal-carrying distribution cable 16 is readily accomplished. It involves first securing the two clamp members 54 of the tap-ott coupling 22 to the line 16, and, with a threaded corer (not shown) rotated in the threads of the boss 60, boring a hole in the jacket 52, the sheath 42, and the outer conductor 34. The connection, is completed by mounting the connector portion 66 onto the cable 20, and then screwing the connector onto the clamp members 54 until the stud 72 pierces the inner conductor 32.
Assuring accurate interconductor spacing and excellent propagation characteristics, and assuring adequate support of the inner conductor during the penetrating process of the stud 72, while nevertheless preventing degradation of the dielectric constant, are the expanded plastic insulator 30, the seam 40 on the outer conductor 34, and the sheath 42. The expanded plastic of insulator 30 provides the body for centering and supporting the inner conductor 32. Its high air content is responsible for a low dielectric constant that improves the propagation characteristics of the cable. The outer conductor 34 and the sheath 42 together maintain the low dielectric constant of the insulator 30 and maximize its eliect. They do this by leaving the edges of seam 40 bare and thus avoid the use of solder to close the seam 40; such a solder joint requires a flux which otherwise seeps into the expanded polyethylene and destroys its desirable characteristics. They complete the partial electrical shielding of energy in the cable with the aluminum layer 44 of the laminate sheath 42. They prevent ingress of vapor to the porous insulation 30, unprotected by a solder seam on the outer conductor 34. The sheath 42 is virtually vapor impenetrable at the aluminum layer 44. The fin 50 presents such vapor with a comparatively long ingress path along the heat seal, which ingress path is also extremely narrow due to the small spacing between the edges of the aluminum layer 44. By dolding the din 50 over along a line offset from the outer edge of scam 40 the sheath 42 forms a shield that helps the outer conductor prevent loss of electrical energy through the seam 40. On the other hand, high intensity interference in the vicinity of the cable is effectively prevented from entering the cable.
According to another embodiment of the invention the heat seal of the sheath 42 in FIG. 2 is formed by overlapping the sheath edges rather than by folding the fin 50. Such a sheath, suitable to replace the sheath 42 in FIG. 2, is illustrated in FIG. 6-. Here again the thicknesses of the layers shown are exaggerated for clarity. The aluminum layer 44 of sheath 42 is sandwiched between two S-milthick polypropylene layers 74 and 76. After the sheath is folded tightly about the outer conductor 34, the longitudinal edges of the sheath are overlapped and the outer sheath 74 welded to the inner sheath 76 to form a heat seal 78. This heat scaling operation can be performed with a special heating source. On the other hand, the heat energy for the heat seal 78 may be obtained from the heat emitted when the jacket 52 is extruded about the sheath 42.
FIG. 7 illustrates another embodiment of the sheath 42 with exaggerated layer thicknesses. Here again the overlapping sheath edges form the heat seal 78 as illustrated in FIG. 6. However, here it is the aluminum layer 44 as well as the Mylar layer 46 that is sandwiched between the two S-mil-thick polypropylene layers 74 and 76. The Mylar layer is approximately one-half-mil thick. However, it imparts considerable strength to the entire sheath. Mylar has far greater torsional, tear, and tensile strength as compared to polypropylene or similar thicknesses of aluminum. Moreover, the Mylar layer is quite flexible. Here again, the heat seal 78 is formed either by a separate step or as part of the jacket extruding process. In both FIGS. 6 and 7 the heat seal along the overlap extends one-quarter inch in the peripheral direction.
According to the invention the jacket 52 may be either polyethylene or polyvinyl chloride. It may also be composed of two thick layers, that is, an interior layer of polyethylene and an exterior layer of polyvinyl chloride. The polyvinyl chloride imparts heat resistance and fire protection properties to the cable. Structures using polyvinyl chloride cable are suitable in locations where they are subject to high temperatures or fires. FIG. 8 illustrates a compound jacket 52 of polyethylene 80 and polyvinyl chloride 82.
While embodiments of the invention have been described in detail, it will be obvious to those skilled in the art that the invention may be embodied otherwise without departing from its spirit and scope.
What is claimed is:
1. A cable junction comprising high-frequency propagating means including an inner conductor and a coaxial corrugated outer conductor surrounding said inner conductor, expanded plastic insulating means surrounding said inner conductor for spacing said outer conductor therefrom, said outer conductor forming a longitudinal seam with bare overlapping portions contactable with each other, high-frequency shielding means for confining high-frequency energy at the seam of said outer conductor, said shielding means including a triple layer laminate surrounding said outer conductor and forcing said overlapping portions into intimate contact, said sheath comprising a metal foil layer sandwiched between an inner plastic layer and an outer plastic layer, said sheath forming at its edges a longitudinal fin having said inner plastic layers heat welded together, said fin being folded against the surface of said sheath, an outer insulating jacket surrounding said shielding means, clamp means surrounding and holding said jacket, said jacket and said laminate as well as said outer conductor forming a continuous radial hole, said clamp means forming an open ing exposing said hole, said clamp means having means for contacting said outer conductor, a connector removably secured on said clamp means and in said opening, said connector having an outer shell conductively connected to said clamp means by said connector being secured to said clamp means, a cable having an outer conductor connected to said shell, said cable having an inner conductor, said connector having an axial protrusion insulated from said shell and connected to said inner conductor of said cable, said protrusion piercing through the hole and through said expanded polyethylene and piercing and contacting said inner conductor of said highfrequency propagating means.
2. A cable juncture comprising a cable having coaxial inner and outer conductors, said outer conductor being corrugated, expanded plastic insulation means spacing said conductors from each other, said outer con-ductor having portions forming a seam, said portions being bare and directly contactable, laminated shielding means having a metal layer sandwiched between respective plastic layers and surrounding said outer conductor and having edges forming a seal offset from said seam, said layers forming edge sections at said edges, said seal having two of said edge sections at said edges welded together, an outer protective jacket surrounding said shielding means, a tap-off embracing said cable and having separate prongs for penetrating and contacting said inner conductor and said outer conductor, and a second cable having respective current carriers conductively connected to said separate prongs.
3. A cable juncture comprising a cable having coaxial inner and outer conductors, said outer conductor being corrugated, expanded plastic insulation means spacing said conductors from each other, said outer conductor having portions forming a seam, said portions being bare and directly contactable, laminated shielding means having a metal layer sandwiched between respective plastic layers and surrounding said outer conductor and having edges forming a heat seal offset from said seam, said layers forming edge sections at said edges, said seal having two of said edge sections at said edges welded together, an outer protective jacket surrounding said shielding means, a tap-off embracing said cable and having separate prongs for penetrating and contacting said inner conductor and said outer conductor, said prong penetrating said outer conductor also penetrating said shielding means and thereby connecting said shielding means to said outer conductor, and a second cable having respective current carriers conductively connected to said separate prongs.
4. A cable junction comprising high-frequency propagating means including an inner conductor and a coaxial corrugated outer conductor surrounding said inner conductor, expanded plastic insulating means surrounding said inner conductor for spacing said outer conductor therefrom, said outer conductor [forming a longitudinal seam with bare overlapping portions contactable with each other, high-frequency shielding means for confining high-frequency energy at the seam of said outer conductor, said shielding means including a triple layer laminate surrounding said outer conductor and forcing said overlapping portions into intimate contact, said sheath comprising a metal foil layer sandwiched between an inner plastic layer and an outer plastic layer, said sheath forming at its edges a longitudinal overlap, said plastic layers at the edges being heat welded together to form a heat seal, said seal being peripherally wide compared to the thickness of said layers, and an outer protective jacket, an outer insulating jacket surrounding said shielding means, clamp means surrounding and holding said jacket, said jacket and said laminate as well as said outer conductor forming a continuous radial hole, said clamp means forming an opening exposing said hole, said clamp means having means for contacting said outer conductor, a connector removably secured on said clamp means and in said opening, said connector having an outer shell conductively connected to said clamp means by said connector being secured to said clamp means, a cable having an outer conductor connected to said shell, said cable having an inner conductor, said connector having an axial protrusion insulated from said shell and connected to said inner conductor of said cable, said protrusion piercing through the hole and through said expanded polyethylene and piercing and contacting said inner conductor of said high-frequency propagating means.
References Cited UNITED STATES PATENTS 2,694,182 11/1954 Edlen et a1. 3,032,604 5/1962 Timmons 174l15 3,173,990 3/1965 Lamons. 3,206,541 9/1965 Jachimowicz 174105 3,375,025 4/1967 Tomlinson 174107 RICHARD E. MOORE, Primary Examiner. JOSEPH H. McGLYNN, Assistant Examiner.
U.S. Cl. X.R. 339 l 77
US705580A 1965-06-25 1967-11-29 Coaxial cables Expired - Lifetime US3452319A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US466999A US3379824A (en) 1965-06-25 1965-06-25 Coaxial cables
US70558067A 1967-11-29 1967-11-29

Publications (1)

Publication Number Publication Date
US3452319A true US3452319A (en) 1969-06-24

Family

ID=27041863

Family Applications (1)

Application Number Title Priority Date Filing Date
US705580A Expired - Lifetime US3452319A (en) 1965-06-25 1967-11-29 Coaxial cables

Country Status (1)

Country Link
US (1) US3452319A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3688246A (en) * 1968-06-06 1972-08-29 John A Toedtman Electrical connector with insulation-piercing contact pins
US3848955A (en) * 1973-08-09 1974-11-19 Westinghouse Electric Corp Electrical connector for tapping a concentric electrical cable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2694182A (en) * 1953-02-20 1954-11-09 George G Edlen Impedance-matching tap-off coupler for wave transmission lines
US3032604A (en) * 1959-03-30 1962-05-01 Belden Mfg Co Electrical cable
US3173990A (en) * 1962-08-27 1965-03-16 Andrew Corp Foam-dielectric coaxial cable with temperature-independent relative conductor length
US3206541A (en) * 1963-04-29 1965-09-14 Gen Cable Corp Sheathed electrical cable
US3375025A (en) * 1964-07-15 1968-03-26 Yara Engineering Corp Fittings and combinations of conduits therewith making or adapted to make fluid-tight seals therewith

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2694182A (en) * 1953-02-20 1954-11-09 George G Edlen Impedance-matching tap-off coupler for wave transmission lines
US3032604A (en) * 1959-03-30 1962-05-01 Belden Mfg Co Electrical cable
US3173990A (en) * 1962-08-27 1965-03-16 Andrew Corp Foam-dielectric coaxial cable with temperature-independent relative conductor length
US3206541A (en) * 1963-04-29 1965-09-14 Gen Cable Corp Sheathed electrical cable
US3375025A (en) * 1964-07-15 1968-03-26 Yara Engineering Corp Fittings and combinations of conduits therewith making or adapted to make fluid-tight seals therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3688246A (en) * 1968-06-06 1972-08-29 John A Toedtman Electrical connector with insulation-piercing contact pins
US3848955A (en) * 1973-08-09 1974-11-19 Westinghouse Electric Corp Electrical connector for tapping a concentric electrical cable

Similar Documents

Publication Publication Date Title
US3379824A (en) Coaxial cables
EP0667981B1 (en) Shielded electric cable
US3439111A (en) Shielded cable for high frequency use
JP3452456B2 (en) Connection method and connection cable between electronic devices
US4398058A (en) Moisture-proofing electrical cable
US9065183B2 (en) Leaky coaxial cable
US4117260A (en) Coaxial drop wire
US3735293A (en) High frequency cable
WO2020168670A1 (en) Hdmi cable
US4810835A (en) Flame-resistant electric line
US20030122636A1 (en) Radio frequency coaxial cable and method for making same
US5321202A (en) Shielded electric cable
US6288328B1 (en) Coaxial cable having effective insulated conductor rotation
JP2010192287A (en) Flexible flat high-frequency cable terminal connection structure for high-speed transmission, and method of manufacturing the same
GB2050041A (en) Fire resistant cable
US3452319A (en) Coaxial cables
US3452320A (en) Coaxial cables
US8809683B2 (en) Leaky coaxial cable
US2892007A (en) Coaxial line
JPH03181209A (en) Rapial coaxial cable
US3971879A (en) High frequency cable with bridging strip
CN102456437A (en) Cable, heat-shrinkable tube with shielding function and manufacturing method for cable
CN105548841B (en) A kind of built-in uhf sensor for GIS partial discharge detection spreads structure
KR102299293B1 (en) Coaxial Connector
US20220270782A1 (en) Cable