US3448777A - Wire handling apparatus - Google Patents

Wire handling apparatus Download PDF

Info

Publication number
US3448777A
US3448777A US3448777DA US3448777A US 3448777 A US3448777 A US 3448777A US 3448777D A US3448777D A US 3448777DA US 3448777 A US3448777 A US 3448777A
Authority
US
United States
Prior art keywords
wires
wire
core
jig
cores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Harvey D Gibson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Application granted granted Critical
Publication of US3448777A publication Critical patent/US3448777A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/08Winding conductors onto closed formers or cores, e.g. threading conductors through toroidal cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T225/00Severing by tearing or breaking
    • Y10T225/30Breaking or tearing apparatus
    • Y10T225/307Combined with preliminary weakener or with nonbreaking cutter
    • Y10T225/321Preliminary weakener
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49069Data storage inductor or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49789Obtaining plural product pieces from unitary workpiece
    • Y10T29/4979Breaking through weakened portion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49838Assembling or joining by stringing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • Y10T29/5176Plural diverse manufacturing apparatus including means for metal shaping or assembling including machining means
    • Y10T29/5177Plural diverse manufacturing apparatus including means for metal shaping or assembling including machining means and work-holder for assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53165Magnetic memory device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53265Means to assemble electrical device with work-holder for assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53696Means to string

Definitions

  • the present invention is effective to accurately and automatically position the lead wires from the core matrix
  • the present invention rel-ates to a wire aligning and termination method and apparatus. More specifically, the present invention is directed to a method and apparatus for concurrently aligning a plurality of groups of fine wires with respect to a printed circuit board for subsequent termination thereon.
  • the present invention will be described in the environment of a core stringing machine which is claimed in my copending application entitled Wire Stringing Machine, filed concurrently herewith and assigned to the same assignee.
  • the first and second ends of a group of wires are positioned in an accurate spatial relationship with respect to similar ends by corresponding wire locking means.
  • a printed circuit board is precisely positioned in a termination jig.
  • the jig is provided with clamping means for retaining the wire locking means in predetermined first and second positions with respect to the printed circuit board to position the wires in each group adjacent to terminal locations on the printed circuit board and to uniformly tension the wires.
  • FIGURE 1 is a pictorial view of a typical core and 3,448,777 Patented June 10, 1969 the signal wires passing therethrough as found in a prior art core plane;
  • FIGURE 2 is an enlarged cross-section of a corner of a support plate for supporting cores in the wire stringing machine of the present invention
  • FIGURE 3 is a pictorial side view of a wire stringing machine embodying the present invention.
  • FIGURE 4 is a view of an enlarged cross-section of a portion of the machine shown in FIGURE 3;
  • FIGURE 5 is a top view of the apparatus shown in FIGURE 4.
  • FIGURE 6 is an elongated cross-section of a portion of the apparatus shown in FIGURE 4;
  • FIGURE 7 is a pictorial illustration of a transfer tray used during the stringing of multiple sets of wires and for handling the completed core plane;
  • FIGURE 8 is a pictorial illustration of a jig used to connect the core plane to a printed circuit board.
  • FIGURE 1 there is shown a pictorial illustration of a typical prior art core 1 with the signal wires threading the core as found in a core plane having an X wire, a Y wire, an INHIBIT wire and a SENSE wire.
  • Each core in the plane has all of these wires passing through its center opening.
  • a small core commonly used in current core matrices would have an approximate outer diameter of .030 and an inner diameter of .018.
  • Such a core could be referred to as a 30/ 18 core.
  • the wires used to string such a core could be a so-called No. 42 wire having a nominal outside diameter of .0030 inch including the insulating layer on the wire.
  • FIGURE 2 is an enlarged pictorial illustration of a corner portion of a core support plate 2.
  • the plate 2 is provided with a plurality of recesses 3 which are arranged to hold half of a ferrite core.
  • a typical core 4 is shown in one of the recesses 3.
  • the recesses 3 are arranged to hold the cores 4 in a suitable predetermined configuration, which is well-known in the prior art, to enable the aforesaid wires to be passed through the cores 4 in a straight line from one side of the core matrix to the other.
  • a hole 5 may be provided in the bottom of each recess 3 in order to enable a vacuum loading technique to be used to fill the recessse 3 with the cores 4.
  • Such loading techniques are well-known in the prior art and comprise a means for applying vacuum to the underside of the plate 2 while the cores 4 are brushed or vibrated into the recesses 3.
  • the vacuum which is communicated into each of the recesses 3 by the holes 5 is effective to induce a core 4 to enter the recess 3 and to retain the core 4 while the other cores are being positioned in the other ones of the recesses 3.
  • a plurality of row wire guide grooves 6 are provided in the surface of the plate 2 with the grooves 6 being coaxially aligned with the center opening of the cores 4 across the plate 2.
  • a plurality of column wire guide grooves 7 are provided in the face of the plate 2.
  • the column grooves 7 are also axially aligned with the cores 4 and are arranged to intersect the row grooves 6 at the center of the recesses 3 to provide separate levels for the wires threading the cores.
  • the width of the row and column grooves 6, 7 is arranged to accommodate respective wires which are to be guided through the cores 4.
  • a cover plate 2a shown in dotted outline, having an internal configuration similar to the support plate 2 is positioned on top of the plate 2 after the plate 2 is filled withthe cores 4.
  • the recesses in the cover 2a and the support plate 2 are arranged to mate to form closed boxes holding the cores 4 therein.
  • the row and column grooves in the cover plate are longitudinally aligned with the grooves 6, 7 in the support plate 2.
  • the total height of the mated grooves is arranged to accommodate the number of layers of wires which are to be positioned in each row and column.
  • each of the row grooves 6 would be arranged to hold two layers of wires which would be the Y and INHIBIT wires shown in FIGURE 1.
  • the grooves 6 and 7 may, also, be outwardly tapered at their ends at the outside faces of the plate 2 to facilitate the guiding of a wire into one of the grooves 6, 7.
  • the complete core assembly comprising the support plate 2, the cover 2a and the cores 4 positioned in their individual recesses are placed in a precisely predetermined position on a wire stringing apparatus shown generally in FIGURE 3 and in more detail in enlarged cross-section in FIGURES 4, and 6.
  • a wire storage box 11 is arranged to store a plurality of individual containers of insulated wire 12, e.g. 64, which wires are used in the stringing of a core matrix.
  • the insulated wires 13 are brought out of the box 11 through individual ports 14 which may be fitted with smooth guide bushings 15 to prevent damage to the insulating coating on the wires 13.
  • the wires 13 are, next, directed to a wire stringing apparatus starting with a support plate 16 having guide holes therein corresponding in number to the number of the wires 13. After emerging from the guide plate 16, the wires 13 are arranged in individual grooves in a curved transition plate 17 whereby their individual location is precisely determined.
  • the Wires 13 From the curved transition plate 17, the Wires 13 enter a wire handling apparatus 18, described fully hereinafter, having individual Wire grooves for supporting the wires 13, drive means operative to move the wires 13 out of the storage box 11, and means for forming integral leaders in each of the wires 13.
  • a support structure 19, also described hereinafter, is provided at the exit side of the apparatus 18 to support a core matrix support plate 2 having the cores 4 to be strung individually positioned therein to receive the insulated wires 13 as previously discussed.
  • the wires 13 are extracted from their individual containers 12 within the storage box 11 by the Wire drive means within the apparatus 18 and are introduced into the core support assembly supported by the turntable 19.
  • a bench 20 with a shelf 21 is provided to support the wire storage box 11, and the Wire guiding assembly in an operative relationship as shown in exemplary form in FIGURE 3.
  • a support arm 22 is attached to the base of the apparatus 18 to rigidly support the guide plate 16.
  • a turntable 30 is provided with a jig surface 31 for precisely locating the core assembly.
  • the turntable 30 is rotatably mounted by means of a center support spindle 32 having a bearing 33 mounted thereon.
  • the bearing means 33 is arranged to space the turntable 30 from a spindle sleeve 34 attached to the base 20.
  • the jig surface 31 is arranged to hold the plate 2 with the cores 4 and the top cover 2a in a predetermined location in the center of the turntable 30.
  • a clamp mechanism may be provided to further retain the plate 2 and cover 2a.
  • FIGURE 5 there is shown a partial cross-sectional top view of the apparatus shown in FIGURE 4.
  • the jig turntable 30 and jig surface 31 are shaped to form a cross with equal length arms having depressed center areas to form a pair of similar intersecting channels. The intersection of these channels is arranged to hold the plate 2, core 4 and cover 2a in a precise location with respect to the edges of the aforesaid channels.
  • Adjacent to the jig surface 31 and the turntable is a wire feeding mechanism including a support bracket 35 mounted on the base 20 and a guide channel member 36 mounted on the bracket 35.
  • a wire driving apparatus 37 is positioned in the channel of the guide member 36. This channel is arranged to be the same size as the channels in the jig surface 31 to enable the drive apparatus 37 to slide from the guide member 36 to the jig surface 31.
  • the alignment of the channels in the jig surface 31 with the channel in the guide member 36 is effected by a spring-loaded indexing pin 40 which is arranged to cooperate with recesses 41 in the ends of the arms of the turntable 30.
  • the drive apparatus 37 is arranged to have a sliding fit in the aforesaid channel to enable it to be moved from the guide member 36 to a precise location next to the facing side of the core plates 2, 2a wherein the wires 13 are aligned with the grooves 6, 7. In the latter position, the wires 13 are driven by the drive apparatus 37 through the cores 4 in a manner hereinafter described.
  • a I-shaped wire locking comb 45 is positioned in the channel of the jig surface 31 adjacent to the side of the plates 2, 2a opposite to that facing the drive apparatus 37.
  • the spaces between the teeth of comb 45 on the long leg of the I are arranged to form a continuous wire channel with the respective wire slots in the the plates 2, 2a.
  • a wire locking member 45a in the form of a bar fitting between the legs of the comb 45 is inserted into this gap to lock the wires in the comb and to equalize the tension in the individual Wires.
  • the comb 45 may be temporarily retained against the plates 2, 2a by any suitable means which allows free movement of the Wires through the comb 45 during the stringing operation.
  • FIGURE 6 an enlarged view of the drive apparatus 37 is shown with a bottom wire guide plate having longitudinal grooves 51 of approximately square cross-section therein to accommodate individual ones of the wires 13.
  • the depth of these grooves 51 is arranged to accommodate the diameter of the wires 13 with cross-cut slots of predetermined locations to allow the drive mechanism of the apparatus 37 to exert a driving force thereon and for other reasons explained fully hereinafter.
  • the wire drive means is a spring-loaded transverse resilient roller 53 positioned in contact with the Wires 13 near the entrance end of the plate 50.
  • the roller 53 is provided with a pair of drive knobs 54 attached to respective ends of an axle 55 supporting the roller 53.
  • the axle 55 is journaled in a cover housing 56 forming an upward extension of the guide plate 50.
  • a cross-cut arcuate slot 57 is provided across the grooves 51 under the roller 53 to expose the wires 13 to the roller 53 with a small portion of the grooves 51 being retained to guide the wires 13.
  • a transverse clamp block 60 is centrally located in the cover block 56 and spaced from the roller 53.
  • a screw 61 is attached to the top of the block 60 and is threaded into the housing 56. The other end of the screw 61 is attached to a knob 62 positioned above the housing 56.
  • the block 60 has a flat bottom surface and substantially the same width as the roller 53 to enable all of the wires 13 to be clamped upon the plate 50 by a rotation of the clamp knob 62.
  • a second cross-cut slot 63 is provided under the block 60 to expose the wires 13 to the bottom surface of the block 60. The slot 63 is arranged to expose approximately 30 percent of the diameter of the wires 13 to the block 60.
  • a transverse knife edge 65 is positioned in a slot 66 in the housing 56 adjacent to the exit side of the guide plate 50 and spaced from the clamp block 60.
  • the knife edge 65 is connected to a spring-biased actuating lever 67 positioned above the housing 56.
  • the slot 66 is con tinued to the bottom of the grooves 51 to prevent damage to the knife-edge 65.
  • the depth of the cut is controlled by a stop 68 shown in FIGURE 4.
  • the knife edge 65 is arranged to be normally out of contact with the wires 13.
  • a matching cover 69 is provided on the transition guide plate 17 to restrain the wires 13 in the grooves of the plate 7.
  • the bottom surface of the jig surfacechannels 31 must have a depth which will place the exit side of the wire grooves in the wire drive apparatus 37 in alignment with the spatial position of the desired wire location in the core assembly.
  • the vertical location of the wires 13 exiting from the drive apparatus 37 with respect to the bottom of the guide plate 50 is fixed by this mechanical dimension.
  • the position of the core plates 2, 2a is fixed on the jig surface 31. Accordingly, the depths of the various channels in the jig surface 31 are effective to vertically locate the wires 13 in the various Wire layers in the slots of the plates 2, 2a.
  • the bottom face of the operative channel in the jig surface 31 and the guide channel in the support 36 in alignment to facilitate movement of the drive apparatus 37.
  • the jig surface 31 must be raised slightly to align the aforesaid channel bottoms.
  • This vertical motion is accommodated in the movement of the shaft 32 in the cylindrical housing 34;
  • the extent of the vertical movement is determined by a camming action between the bottom of the turntable 30 and a fixed cam plate 70 attached to the support 35 under the index pin 40.
  • the cam plate 70 is arranged to contact a bottom edge 71 of the outer periphery of the turntable 30.
  • the thickness of the turntable 30 at this point for each of the four jig guide channels is arranged to provide the necessary positioning action of the jig surface 31.
  • the present invention is initially used to prepare the ends of the wires 13 to allow leaderless stringing of the wires through the cores 4.
  • the knife edge 65 is used to produce a notch 72 in each of the wires 13 with the stop 68 serving to limit the depth of the notch 72.
  • the clamp block 60' is positioned by the knob 62 on the wires 13 in the crosscut slot 63 behind the notch produced by the knife edge 65.
  • the block 60 is forced down on the wire 13 until it reaches the top of the slot 63. This squeezing, or flattening of the top and bottom, of the wires 13 is effective to workharden a substantial length of each insulated wire behind its respective notch.
  • a locking comb similar to comb 45 is positioned and clamped by any suitable means in front of the drive apparatus 37 which would be positioned on the guide support 36.
  • the feed roller 53 is operated to drive the wires 13 into the comb 45.
  • the locking bar 45a is inserted in the comb 45 to lock the wires 13 in place.
  • the wire 13 is then placed in a taut condition by reverse rotation of the feed roller 53.
  • the clamp block 60 is lowered on the wires 13 and is effective to work-harden the wires 13 by a controlled deformation wherein they are taken past their yield point in the taut condition.
  • the knife edge 65 is then used to produce the notches 72 in each of the wires.
  • the drive apparatus 37 is then moved slightly backwards away from the locking comb 45 and the wires 13 are broken at the notches 72.
  • This wire breaking step is effective to form a cone-shaped end on each of the wires since they neck down at the notches 72 just before the actual break takes place.
  • the clamp 60 is released, and the wires 13 and the points may then be fed back under the clamp block 60 to work-harden the point by repeating the clamping and unclamping operations.
  • the comb 45 and the locking bar 45a are removed and the short pieces of wire therein are discarded.
  • the wire feeding apparatus 37 is now slid along the support channel 36 and into the waiting arm of the jig surface 31 until the exit end of the guide plate 50 is adjacent to the pre-positioned face of the core plates 2, 2a.
  • the edges of the jig surface 31 are effective to transversely align the wire grooves 51 with the slots in the core plates 2, 2a, while the cam plate 70 positions the grooves 51 at the proper height.
  • the feed roller 53 is then operated to propel the wires 13 along the grooves 51, through the cores 4 and through the comb 45.
  • a locking bar is inserted in the comb 45 to lock the wires 13.
  • the comb 45 is then repositioned and clamped at the end of its channel in the jig surface 31.
  • the feed apparatus 37 is restored to its original position on the support channel 36 by a reverse rotation of the feed roller 53.
  • a second comb is inserted beneath the wires 13 which are in a taut condition as a result of the reverse movement of the roller 53 while the ends are locked by the comb 45.
  • the second comb is positioned and clamped adjacent to the exit face of the guide 50 with the wires 13 passing through wire slots in the comb.
  • a locking bar is inserted in this comb to lock the Wires 13, and the point forming operation described above is repeated.
  • the turntable 30 is rotated to position a second arm of the jig surface 31 in alignment with the guide channel 36. This movement is effective to remove the ends of the wires 13 strung through the cores 4 from the grooves 51.
  • the above-described operation is now repeated to insert a second set of wires 13 in the cores 4 perpendicular to the first set of wires.
  • These two sets of wires may be designated as the X and Y wires shown in FIGURE 1.
  • the point forming operation is repeated and the turntable 30 is,again rotated to position a third arm of the jig 31 facing the wire drive apparatus 37.
  • this arm and its counterpart on the other side of jig surface 31 have a set of Wires and rocking combs from the first threading operation, these parts must be displaced from their present locations on both sides of the jig surface 31 before a second set of Wires and locking combs can be introduced on these arms of the jig surface 31.
  • the jig 80 may be provided with two L-shaped clips 81 which are arranged to fit on support pads 82, shown in FIGURE 5, located at the inside corners of the jib surface 31.
  • the jig 80 is arranged as a U-shaped member 83 having a suitable opening to clear the core assembly and to allow the wire feed mechanism 37 to approach the core plates 2, 2a during the threading of the aforesaid third set of wires.
  • a plurality of comb-carrying arms 84 are mounted on swivel pins on the top of the member 83. Additional combholding arms or similar devices may be provided in the arms of the U-shaped member 83 to enable additional locking combs to be carried.
  • a handle 86 is supplied at the closed end of the member 83 to transport the jig
  • the further stringing of wires in the core 4, thus, is facilitated by the transfer jig 80 which is effective to provide a support for the locking combs and the attached wires of a prior threading operation.
  • the third set of vwires can, accordingly, be threaded through the cores 4 after the combs and wires of the first threading operation are supported on the transfer jig 80.
  • Additional sets of Wires may be threaded through the cores 4 up to their inner diameter capacityby rotating the turntable 30 and repeating the aforesaid operations while the layers of wires in the cores 4 are positioned in separate layers while the wires in a preceding layer are held in an appropriate position by the jig 80.
  • the cover 2a is removed from the cores 4.
  • the locking combs are all positioned on the transfer jig 80, and the cores and wires are lifted out of the support plate 2 by the lifting of the transfer jig 80 with the locking combs 45.
  • the wired core plane is now ready to be connected to a printed circuit board or some means for providing terminals for the ends of the wires threading the cores 4.
  • a jig 90 arranged to hold the printed circuit board 91 in a predetermined precise alignment with respect to a plurality of comb-holding slots 92 and comb clamps 93.
  • the spacing of the clamped combs from the center of the jig 90 is arranged to coincide with the clamped position of the combs 45 on the core threading jig 31. Acocrdingly, when the combs 45 are clamped in the jig 90 the wires 13 threading the cores 4 are restored to the taut condition of the core threading operation from the slack state imposed during the transfer operation on the transfer jig 80.
  • the printed circuit board is provided with two sets of wire attaching points on each edge of an inner opening 95 arranged to accommodate the wired core plane.
  • a first set of attaching points comprises four groups of printed rectangular pads 96 adjacent to each edge of the opening 95.
  • the pads 96 are each arranged to underlie the spatial position of two wires coming from two adjoining columns in the core plane. Further, the pads on opposite sides of the opening 95 are staggered as a group with respect to each other so that the wires connected to a pad on one side of the opening 95 will be positioned for connection to two pads on the other side.
  • the pads connect the wires in an appropriate layer into a continuous winding as may be required for the sense and inhibit wires. The ends of this winding, i.e., the first and last wires may be connected to individual pads and printed wiring on the board 91, shown in dotted form as printed segments 97, 98.
  • a second set of attaching points on the board 91 may be four groups of printed wires 99 with each extending from a point behind a respective one of the pads 96 to a spaced location on the adjacent edge of the board 91.
  • the number of printed wires in each of the four groups is equal to the number wires coming from a corresponding side of the core matrix.
  • the wires to be connected to the pads 96 are first positioned by inserting their combs into the slots 92. In this position of the combs, the wires attached thereto are accurately positioned over the pads 96. These wires are then soldered and the excess Wire removed. The respective combs are removed from the slots 92, and the combs for the wires to be connected to the printed wires 99 are inserted therein.
  • These insulated wires pass over the previously soldered pads 96 and are also accurately positioned for soldering to the printed wires 99. If desired, these wires may be anchored to the board 91 by an adhesive and a dip-soldering process may be used after the excess wires and combs are removed.
  • the core matrix and the board 91 may, subsequently, be attached to individual input connectors or wired into a mass core memory having a plurality of similar core planes 8 interconnected in a stack by any suitable prior art means.
  • a method of aligning a plurality of continuous wires each having a free end comprising the steps of introducing said free end of each of said wires into respective predetermined locations in a first wire locking means, locking said first ends in said locking means, clamping said first locking means, placing said wires in a taut state extending from said locking means past a predetermined transverse line extending across said wires, introducing said wires into respective locations in a second wire locking means at said line, locking said wires in said second locking means, severing each of the wires at a point past the second means, unclamping said first locking means, transferring said first and second locking means to an alignment jig, and clamping said first and said second means on said jig to restore said taut state of said wires.
  • An apparatus for aligning a plurality of continuous wires each having a free end comprising a first wire locking means operative to fixedly position said free end of each of said wires in respective predetermined locations on said locking means, means for clamping said first locking means in a fixed position, means for placing said wires in a taut state extending from said first locking means past a predetermined transverse line extending across said wires, second locking means operative to fixedly position each of said wires in respective predetermined locations at said line, means for severing each of said wires at a point past said second locking means, an alignment jig, means for transferring said wires and said first and second locking means to said jig and clamping means operative to clamp said first and said second locking means on said jig to restore said taut state.
  • first and second locking means include rigid combs having teeth spaced apart to receive one of said wires and means for locking said wires in the spaces between said comb teeth.
  • said jig includes means operative to accurately position a printed circiut board with respect to the clamped position of said first and second locking means on said jig.

Description

June 10,1969 H. D. G. SCHEFFER WIRE HANDLING APPARATUS Sheet Filed June 22, 1967 I YEIITOR 65A 6/050 Ja/ifi'rik BY M 691 arm/1:7 4'
II If 1 June 10; 1969 v H. D. G. SCHEFF'ER WIRE HANDLING APPARATUS She e1:
Filed June 22, 1967 mvnvran hf 0. 675504 JC/IEFFE? Arm? Juhe 1969 D. G. SCHEFFER 3,448,777
' WIRE HANDLING APPARATUS Filed June 22'. 1967 Sheet 3 or 5.
' l N YEN TOR bf 0. 675.904 JEWi/FER June 10,1969 H. :3. G.SCHEFFER 3,448,777
WIRE HANDLING APPARATUS Filed June 22 1967 Sheet of 5 )wturon l7! 0. 6/550 Jain-5K June 10,1969 H. D. G. SCHEFFER 3,448,777
WIRE HANDLING APPARATUS Filed June 22, 1967 She et 5 of 5 mvw ran United States Patent C 3,448,777 WIRE HANDLING APPARATUS Harvey D. Gibson Schelfer, Westfield, N.J., assignor to Radio Corporation of America, a corporation of Delaware Filed June 22, 1967, Ser. No. 648,008 Int. 'Cl. B21f 45/00 US. Cl. 140-921 4 Claims ABSTRACT OF THE DISCLOSURE A method and apparatus for aligning and terminating the ends of a plurality of wires to automatically eliminate termination errors. The arrangement is particularly adapted to the concurrent termination of a large number of fine wires, such as those used for stringing a core matrix, on a printed circuit board.
Background of the invention The conventional prior art termination of the lead wires issuing from a core matrix has been largely a manual operation where the individual wires are connected to terminals located on a supporting structure for the core matrix. Such prior art wire termination techniques are slow, tedious, and of primary importance, subject to errors due to wire identification mistakes by the operator as well as defects in the connection of the wires to the terminals. Moreover, the manual termination technique results in misalignment of the wires within the core matrix as a result of a change of tension in the wires produced by cyclic variations in operator proficiency. This varying tension results in variations in the electrical parameters within a core matrix and between successive core matrices which is effective to degrade the performance of the resulting core memory systems.
The present invention is effective to accurately and automatically position the lead wires from the core matrix Brief summary of the invention The present invention rel-ates to a wire aligning and termination method and apparatus. More specifically, the present invention is directed to a method and apparatus for concurrently aligning a plurality of groups of fine wires with respect to a printed circuit board for subsequent termination thereon.
The present invention will be described in the environment of a core stringing machine which is claimed in my copending application entitled Wire Stringing Machine, filed concurrently herewith and assigned to the same assignee. According to the present invention, the first and second ends of a group of wires, are positioned in an accurate spatial relationship with respect to similar ends by corresponding wire locking means. A printed circuit board is precisely positioned in a termination jig. The jig is provided with clamping means for retaining the wire locking means in predetermined first and second positions with respect to the printed circuit board to position the wires in each group adjacent to terminal locations on the printed circuit board and to uniformly tension the wires.
Brief description of the drawing A better understanding of the present invention may be had when the following detailed description is read in connection with the accompanying drawings, in which:
FIGURE 1 is a pictorial view of a typical core and 3,448,777 Patented June 10, 1969 the signal wires passing therethrough as found in a prior art core plane;
FIGURE 2 is an enlarged cross-section of a corner of a support plate for supporting cores in the wire stringing machine of the present invention;
FIGURE 3 is a pictorial side view of a wire stringing machine embodying the present invention;
FIGURE 4 is a view of an enlarged cross-section of a portion of the machine shown in FIGURE 3;
FIGURE 5 is a top view of the apparatus shown in FIGURE 4;
FIGURE 6 is an elongated cross-section of a portion of the apparatus shown in FIGURE 4;
FIGURE 7 is a pictorial illustration of a transfer tray used during the stringing of multiple sets of wires and for handling the completed core plane; and
FIGURE 8 is a pictorial illustration of a jig used to connect the core plane to a printed circuit board.
Detailed description of the invention Referring to FIGURE 1 there is shown a pictorial illustration of a typical prior art core 1 with the signal wires threading the core as found in a core plane having an X wire, a Y wire, an INHIBIT wire and a SENSE wire. Each core in the plane has all of these wires passing through its center opening. A small core commonly used in current core matrices would have an approximate outer diameter of .030 and an inner diameter of .018. Such a core could be referred to as a 30/ 18 core. The wires used to string such a core could be a so-called No. 42 wire having a nominal outside diameter of .0030 inch including the insulating layer on the wire. In a core plane having 64 cores on each side, there would be 4096' cores, each with the aforesaid four wires passing therethrough. It is to be noted that the method and apparatus of the present invention is suitable for use with smaller cores and thinner wires without departing from the teachings of the present invention.
FIGURE 2 is an enlarged pictorial illustration of a corner portion of a core support plate 2. The plate 2 is provided with a plurality of recesses 3 which are arranged to hold half of a ferrite core. A typical core 4 is shown in one of the recesses 3. The recesses 3 are arranged to hold the cores 4 in a suitable predetermined configuration, which is well-known in the prior art, to enable the aforesaid wires to be passed through the cores 4 in a straight line from one side of the core matrix to the other. A hole 5 may be provided in the bottom of each recess 3 in order to enable a vacuum loading technique to be used to fill the recessse 3 with the cores 4. Such loading techniques are well-known in the prior art and comprise a means for applying vacuum to the underside of the plate 2 while the cores 4 are brushed or vibrated into the recesses 3. The vacuum which is communicated into each of the recesses 3 by the holes 5 is effective to induce a core 4 to enter the recess 3 and to retain the core 4 while the other cores are being positioned in the other ones of the recesses 3.
A plurality of row wire guide grooves 6 are provided in the surface of the plate 2 with the grooves 6 being coaxially aligned with the center opening of the cores 4 across the plate 2. Similarly, a plurality of column wire guide grooves 7 are provided in the face of the plate 2. The column grooves 7 are also axially aligned with the cores 4 and are arranged to intersect the row grooves 6 at the center of the recesses 3 to provide separate levels for the wires threading the cores. The width of the row and column grooves 6, 7 is arranged to accommodate respective wires which are to be guided through the cores 4. A cover plate 2a shown in dotted outline, having an internal configuration similar to the support plate 2 is positioned on top of the plate 2 after the plate 2 is filled withthe cores 4. The recesses in the cover 2a and the support plate 2 are arranged to mate to form closed boxes holding the cores 4 therein. Also, the row and column grooves in the cover plate are longitudinally aligned with the grooves 6, 7 in the support plate 2. The total height of the mated grooves is arranged to accommodate the number of layers of wires which are to be positioned in each row and column. For example, each of the row grooves 6 would be arranged to hold two layers of wires which would be the Y and INHIBIT wires shown in FIGURE 1. The grooves 6 and 7 may, also, be outwardly tapered at their ends at the outside faces of the plate 2 to facilitate the guiding of a wire into one of the grooves 6, 7.
The complete core assembly comprising the support plate 2, the cover 2a and the cores 4 positioned in their individual recesses are placed in a precisely predetermined position on a wire stringing apparatus shown generally in FIGURE 3 and in more detail in enlarged cross-section in FIGURES 4, and 6.
Referring to FIGURE 3 in more detail, there is shown a pictorial representation of Wire stringing apparatus embodying the present invention. A wire storage box 11 is arranged to store a plurality of individual containers of insulated wire 12, e.g. 64, which wires are used in the stringing of a core matrix. The insulated wires 13 are brought out of the box 11 through individual ports 14 which may be fitted with smooth guide bushings 15 to prevent damage to the insulating coating on the wires 13. The wires 13 are, next, directed to a wire stringing apparatus starting with a support plate 16 having guide holes therein corresponding in number to the number of the wires 13. After emerging from the guide plate 16, the wires 13 are arranged in individual grooves in a curved transition plate 17 whereby their individual location is precisely determined. From the curved transition plate 17, the Wires 13 enter a wire handling apparatus 18, described fully hereinafter, having individual Wire grooves for supporting the wires 13, drive means operative to move the wires 13 out of the storage box 11, and means for forming integral leaders in each of the wires 13.
A support structure 19, also described hereinafter, is provided at the exit side of the apparatus 18 to support a core matrix support plate 2 having the cores 4 to be strung individually positioned therein to receive the insulated wires 13 as previously discussed. Thus, the wires 13 are extracted from their individual containers 12 within the storage box 11 by the Wire drive means within the apparatus 18 and are introduced into the core support assembly supported by the turntable 19. A bench 20 with a shelf 21 is provided to support the wire storage box 11, and the Wire guiding assembly in an operative relationship as shown in exemplary form in FIGURE 3. A support arm 22 is attached to the base of the apparatus 18 to rigidly support the guide plate 16.
Referring now to FIGURES 4 and 5, there are shown detailed pictorial representations of the wire handling portion of the present invention. A turntable 30 is provided with a jig surface 31 for precisely locating the core assembly. The turntable 30 is rotatably mounted by means of a center support spindle 32 having a bearing 33 mounted thereon. The bearing means 33 is arranged to space the turntable 30 from a spindle sleeve 34 attached to the base 20. The jig surface 31 is arranged to hold the plate 2 with the cores 4 and the top cover 2a in a predetermined location in the center of the turntable 30. A clamp mechanism may be provided to further retain the plate 2 and cover 2a. In FIGURE 5, there is shown a partial cross-sectional top view of the apparatus shown in FIGURE 4. The jig turntable 30 and jig surface 31 are shaped to form a cross with equal length arms having depressed center areas to form a pair of similar intersecting channels. The intersection of these channels is arranged to hold the plate 2, core 4 and cover 2a in a precise location with respect to the edges of the aforesaid channels.
Adjacent to the jig surface 31 and the turntable is a wire feeding mechanism including a support bracket 35 mounted on the base 20 and a guide channel member 36 mounted on the bracket 35. A wire driving apparatus 37 is positioned in the channel of the guide member 36. This channel is arranged to be the same size as the channels in the jig surface 31 to enable the drive apparatus 37 to slide from the guide member 36 to the jig surface 31. The alignment of the channels in the jig surface 31 with the channel in the guide member 36 is effected by a spring-loaded indexing pin 40 which is arranged to cooperate with recesses 41 in the ends of the arms of the turntable 30. The drive apparatus 37 is arranged to have a sliding fit in the aforesaid channel to enable it to be moved from the guide member 36 to a precise location next to the facing side of the core plates 2, 2a wherein the wires 13 are aligned with the grooves 6, 7. In the latter position, the wires 13 are driven by the drive apparatus 37 through the cores 4 in a manner hereinafter described.
A I-shaped wire locking comb 45 is positioned in the channel of the jig surface 31 adjacent to the side of the plates 2, 2a opposite to that facing the drive apparatus 37. The spaces between the teeth of comb 45 on the long leg of the I are arranged to form a continuous wire channel with the respective wire slots in the the plates 2, 2a. Thus, a wire driven by the drive apparatus 37 is ultimately positioned in the teeth of the comb 45 and sufficient wire is fed to straddle the gap across the J. A wire locking member 45a in the form of a bar fitting between the legs of the comb 45 is inserted into this gap to lock the wires in the comb and to equalize the tension in the individual Wires. The comb 45 may be temporarily retained against the plates 2, 2a by any suitable means which allows free movement of the Wires through the comb 45 during the stringing operation.
Referring now to FIGURE 6, an enlarged view of the drive apparatus 37 is shown with a bottom wire guide plate having longitudinal grooves 51 of approximately square cross-section therein to accommodate individual ones of the wires 13. The depth of these grooves 51 is arranged to accommodate the diameter of the wires 13 with cross-cut slots of predetermined locations to allow the drive mechanism of the apparatus 37 to exert a driving force thereon and for other reasons explained fully hereinafter. The wire drive means is a spring-loaded transverse resilient roller 53 positioned in contact with the Wires 13 near the entrance end of the plate 50. The roller 53 is provided with a pair of drive knobs 54 attached to respective ends of an axle 55 supporting the roller 53. The axle 55 is journaled in a cover housing 56 forming an upward extension of the guide plate 50. A cross-cut arcuate slot 57 is provided across the grooves 51 under the roller 53 to expose the wires 13 to the roller 53 with a small portion of the grooves 51 being retained to guide the wires 13.
A transverse clamp block 60 is centrally located in the cover block 56 and spaced from the roller 53. A screw 61 is attached to the top of the block 60 and is threaded into the housing 56. The other end of the screw 61 is attached to a knob 62 positioned above the housing 56. The block 60 has a flat bottom surface and substantially the same width as the roller 53 to enable all of the wires 13 to be clamped upon the plate 50 by a rotation of the clamp knob 62. A second cross-cut slot 63 is provided under the block 60 to expose the wires 13 to the bottom surface of the block 60. The slot 63 is arranged to expose approximately 30 percent of the diameter of the wires 13 to the block 60.
A transverse knife edge 65 is positioned in a slot 66 in the housing 56 adjacent to the exit side of the guide plate 50 and spaced from the clamp block 60. The knife edge 65 is connected to a spring-biased actuating lever 67 positioned above the housing 56. The slot 66 is con tinued to the bottom of the grooves 51 to prevent damage to the knife-edge 65. The depth of the cut is controlled by a stop 68 shown in FIGURE 4. The knife edge 65 is arranged to be normally out of contact with the wires 13. A matching cover 69 is provided on the transition guide plate 17 to restrain the wires 13 in the grooves of the plate 7.
Since, as previously discussed, the wires entering a side of the core plates 2, 2a are on two levels, the bottom surface of the jig surfacechannels 31 must have a depth which will place the exit side of the wire grooves in the wire drive apparatus 37 in alignment with the spatial position of the desired wire location in the core assembly. In other words, the vertical location of the wires 13 exiting from the drive apparatus 37 with respect to the bottom of the guide plate 50 is fixed by this mechanical dimension. Additionally, the position of the core plates 2, 2a is fixed on the jig surface 31. Accordingly, the depths of the various channels in the jig surface 31 are effective to vertically locate the wires 13 in the various Wire layers in the slots of the plates 2, 2a. However, it is desirable to have the bottom face of the operative channel in the jig surface 31 and the guide channel in the support 36 in alignment to facilitate movement of the drive apparatus 37. Thus, for a deeper channel in the jig surface 31, the jig surface 31 must be raised slightly to align the aforesaid channel bottoms. This vertical motion is accommodated in the movement of the shaft 32 in the cylindrical housing 34; The extent of the vertical movement is determined by a camming action between the bottom of the turntable 30 and a fixed cam plate 70 attached to the support 35 under the index pin 40. The cam plate 70 is arranged to contact a bottom edge 71 of the outer periphery of the turntable 30. The thickness of the turntable 30 at this point for each of the four jig guide channels is arranged to provide the necessary positioning action of the jig surface 31.
In operation, the present invention is initially used to prepare the ends of the wires 13 to allow leaderless stringing of the wires through the cores 4. In this operation, the knife edge 65 is used to produce a notch 72 in each of the wires 13 with the stop 68 serving to limit the depth of the notch 72. The clamp block 60', on the other hand, is positioned by the knob 62 on the wires 13 in the crosscut slot 63 behind the notch produced by the knife edge 65. The block 60 is forced down on the wire 13 until it reaches the top of the slot 63. This squeezing, or flattening of the top and bottom, of the wires 13 is effective to workharden a substantial length of each insulated wire behind its respective notch.
An exemplary sequence of operations to produce leaderless wires ready for core stringing is now described for an initial state without a preceding core stringing operation. A locking comb similar to comb 45 is positioned and clamped by any suitable means in front of the drive apparatus 37 which would be positioned on the guide support 36. The feed roller 53 is operated to drive the wires 13 into the comb 45. The locking bar 45a is inserted in the comb 45 to lock the wires 13 in place. The wire 13 is then placed in a taut condition by reverse rotation of the feed roller 53. The clamp block 60 is lowered on the wires 13 and is effective to work-harden the wires 13 by a controlled deformation wherein they are taken past their yield point in the taut condition. The knife edge 65 is then used to produce the notches 72 in each of the wires. The drive apparatus 37 is then moved slightly backwards away from the locking comb 45 and the wires 13 are broken at the notches 72. This wire breaking step is effective to form a cone-shaped end on each of the wires since they neck down at the notches 72 just before the actual break takes place. The clamp 60 is released, and the wires 13 and the points may then be fed back under the clamp block 60 to work-harden the point by repeating the clamping and unclamping operations. The comb 45 and the locking bar 45a are removed and the short pieces of wire therein are discarded.
The wire feeding apparatus 37 is now slid along the support channel 36 and into the waiting arm of the jig surface 31 until the exit end of the guide plate 50 is adjacent to the pre-positioned face of the core plates 2, 2a. As previously discussed, the edges of the jig surface 31 are effective to transversely align the wire grooves 51 with the slots in the core plates 2, 2a, while the cam plate 70 positions the grooves 51 at the proper height. The feed roller 53 is then operated to propel the wires 13 along the grooves 51, through the cores 4 and through the comb 45. A locking bar is inserted in the comb 45 to lock the wires 13. The comb 45 is then repositioned and clamped at the end of its channel in the jig surface 31. The feed apparatus 37 is restored to its original position on the support channel 36 by a reverse rotation of the feed roller 53. A second comb is inserted beneath the wires 13 which are in a taut condition as a result of the reverse movement of the roller 53 while the ends are locked by the comb 45. The second comb is positioned and clamped adjacent to the exit face of the guide 50 with the wires 13 passing through wire slots in the comb. A locking bar is inserted in this comb to lock the Wires 13, and the point forming operation described above is repeated.
After the new point is formed, the turntable 30 is rotated to position a second arm of the jig surface 31 in alignment with the guide channel 36. This movement is effective to remove the ends of the wires 13 strung through the cores 4 from the grooves 51. The above-described operation is now repeated to insert a second set of wires 13 in the cores 4 perpendicular to the first set of wires. These two sets of wires may be designated as the X and Y wires shown in FIGURE 1. The point forming operation is repeated and the turntable 30 is,again rotated to position a third arm of the jig 31 facing the wire drive apparatus 37. Since this arm and its counterpart on the other side of jig surface 31 have a set of Wires and rocking combs from the first threading operation, these parts must be displaced from their present locations on both sides of the jig surface 31 before a second set of Wires and locking combs can be introduced on these arms of the jig surface 31.
In FIGURE 7 there is a transfer jig 80 which is used to hold the locking combs and wires of a preceeding wire layer in a non-interfering position during multiple wire threading on a single axis and to transfer the=wired core matrix to other locations for subsequent operations. In order to position this jig 80' on the jig surface 31, the jig 80 may be provided with two L-shaped clips 81 which are arranged to fit on support pads 82, shown in FIGURE 5, located at the inside corners of the jib surface 31. The jig 80 is arranged as a U-shaped member 83 having a suitable opening to clear the core assembly and to allow the wire feed mechanism 37 to approach the core plates 2, 2a during the threading of the aforesaid third set of wires. A plurality of comb-carrying arms 84 are mounted on swivel pins on the top of the member 83. Additional combholding arms or similar devices may be provided in the arms of the U-shaped member 83 to enable additional locking combs to be carried. A handle 86 is supplied at the closed end of the member 83 to transport the jig The further stringing of wires in the core 4, thus, is facilitated by the transfer jig 80 which is effective to provide a support for the locking combs and the attached wires of a prior threading operation. The third set of vwires can, accordingly, be threaded through the cores 4 after the combs and wires of the first threading operation are supported on the transfer jig 80. Additional sets of Wires may be threaded through the cores 4 up to their inner diameter capacityby rotating the turntable 30 and repeating the aforesaid operations while the layers of wires in the cores 4 are positioned in separate layers while the wires in a preceding layer are held in an appropriate position by the jig 80.
After all of the sets of wires have been threaded, the cover 2a is removed from the cores 4. The locking combs are all positioned on the transfer jig 80, and the cores and wires are lifted out of the support plate 2 by the lifting of the transfer jig 80 with the locking combs 45. The wired core plane is now ready to be connected to a printed circuit board or some means for providing terminals for the ends of the wires threading the cores 4. In FIGURE 8, there is shown a jig 90 arranged to hold the printed circuit board 91 in a predetermined precise alignment with respect to a plurality of comb-holding slots 92 and comb clamps 93. The spacing of the clamped combs from the center of the jig 90 is arranged to coincide with the clamped position of the combs 45 on the core threading jig 31. Acocrdingly, when the combs 45 are clamped in the jig 90 the wires 13 threading the cores 4 are restored to the taut condition of the core threading operation from the slack state imposed during the transfer operation on the transfer jig 80.
The printed circuit board is provided with two sets of wire attaching points on each edge of an inner opening 95 arranged to accommodate the wired core plane. A first set of attaching points comprises four groups of printed rectangular pads 96 adjacent to each edge of the opening 95. The pads 96 are each arranged to underlie the spatial position of two wires coming from two adjoining columns in the core plane. Further, the pads on opposite sides of the opening 95 are staggered as a group with respect to each other so that the wires connected to a pad on one side of the opening 95 will be positioned for connection to two pads on the other side. Thus, the pads connect the wires in an appropriate layer into a continuous winding as may be required for the sense and inhibit wires. The ends of this winding, i.e., the first and last wires may be connected to individual pads and printed wiring on the board 91, shown in dotted form as printed segments 97, 98.
A second set of attaching points on the board 91 may be four groups of printed wires 99 with each extending from a point behind a respective one of the pads 96 to a spaced location on the adjacent edge of the board 91. The number of printed wires in each of the four groups is equal to the number wires coming from a corresponding side of the core matrix. The wires to be connected to the pads 96 are first positioned by inserting their combs into the slots 92. In this position of the combs, the wires attached thereto are accurately positioned over the pads 96. These wires are then soldered and the excess Wire removed. The respective combs are removed from the slots 92, and the combs for the wires to be connected to the printed wires 99 are inserted therein. These insulated wires pass over the previously soldered pads 96 and are also accurately positioned for soldering to the printed wires 99. If desired, these wires may be anchored to the board 91 by an adhesive and a dip-soldering process may be used after the excess wires and combs are removed. The core matrix and the board 91 may, subsequently, be attached to individual input connectors or wired into a mass core memory having a plurality of similar core planes 8 interconnected in a stack by any suitable prior art means.
What is claimed is:
1. A method of aligning a plurality of continuous wires each having a free end comprising the steps of introducing said free end of each of said wires into respective predetermined locations in a first wire locking means, locking said first ends in said locking means, clamping said first locking means, placing said wires in a taut state extending from said locking means past a predetermined transverse line extending across said wires, introducing said wires into respective locations in a second wire locking means at said line, locking said wires in said second locking means, severing each of the wires at a point past the second means, unclamping said first locking means, transferring said first and second locking means to an alignment jig, and clamping said first and said second means on said jig to restore said taut state of said wires.
2. An apparatus for aligning a plurality of continuous wires each having a free end comprising a first wire locking means operative to fixedly position said free end of each of said wires in respective predetermined locations on said locking means, means for clamping said first locking means in a fixed position, means for placing said wires in a taut state extending from said first locking means past a predetermined transverse line extending across said wires, second locking means operative to fixedly position each of said wires in respective predetermined locations at said line, means for severing each of said wires at a point past said second locking means, an alignment jig, means for transferring said wires and said first and second locking means to said jig and clamping means operative to clamp said first and said second locking means on said jig to restore said taut state.
3. An apparatus as set forth in claim 2, wherein said first and second locking means include rigid combs having teeth spaced apart to receive one of said wires and means for locking said wires in the spaces between said comb teeth.
4. An apparatus as set forth in claim 2, wherein said jig includes means operative to accurately position a printed circiut board with respect to the clamped position of said first and second locking means on said jig.
References Cited UNITED STATES PATENTS 2,958,126 11/1960 Shaw, et a1 29203 3,314,131 4/1967 Judge 29203 3,331,126 7/1967 Fielder, et al 29203 3,381,357 5/1968 Billingsley, et al 29604 CHARLES W. LANHAM, Primary Examiner.
L. A. LARSON, Assistant Examiner.
US. Cl. X.R. 29203, 604
US3448777D 1967-06-22 1967-06-22 Wire handling apparatus Expired - Lifetime US3448777A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US64800867A 1967-06-22 1967-06-22
US64801967A 1967-06-22 1967-06-22
US64802067A 1967-06-22 1967-06-22

Publications (1)

Publication Number Publication Date
US3448777A true US3448777A (en) 1969-06-10

Family

ID=27417802

Family Applications (3)

Application Number Title Priority Date Filing Date
US3438403D Expired - Lifetime US3438403A (en) 1967-06-22 1967-06-22 Wire handling apparatus
US3438405D Expired - Lifetime US3438405A (en) 1967-06-22 1967-06-22 Wire stringing machine
US3448777D Expired - Lifetime US3448777A (en) 1967-06-22 1967-06-22 Wire handling apparatus

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US3438403D Expired - Lifetime US3438403A (en) 1967-06-22 1967-06-22 Wire handling apparatus
US3438405D Expired - Lifetime US3438405A (en) 1967-06-22 1967-06-22 Wire stringing machine

Country Status (5)

Country Link
US (3) US3438403A (en)
DE (1) DE1774456B2 (en)
FR (1) FR1569400A (en)
GB (1) GB1180309A (en)
NL (1) NL6808771A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694913A (en) * 1970-01-12 1972-10-03 Micro Miniature Parts Corp Method for wiring core memory cores
US3722083A (en) * 1971-01-15 1973-03-27 Xerox Corp Method of making a plated wire memory plane
US3772755A (en) * 1970-01-12 1973-11-20 Micro Miniature Parts Corp Apparatus for wiring core memory cores
US3818464A (en) * 1971-07-26 1974-06-18 Duluth Scient Inc Wiring guides for computer core memories
US3832766A (en) * 1972-11-21 1974-09-03 Xerox Corp Apparatus for assembling a plated wire memory plane
US3857184A (en) * 1973-11-12 1974-12-31 J Seleznev Mask for manufacturing memory matrices
US3868764A (en) * 1973-11-09 1975-03-04 Gen Motors Corp Multiple magnetic alignment of semiconductor devices for bonding

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526957A (en) * 1967-11-28 1970-09-08 Control Data Corp Method and apparatus for preparing wires for threading perforated articles
ITRM20020160A1 (en) * 2002-03-22 2003-09-22 Massimo Criacci METHOD FOR CREATING THROUGH HOLES.
CN105689605B (en) * 2016-04-14 2017-11-24 四川博华工程材料有限公司 A kind of high duty metal net automatic cap seaming machine, system and application method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2958126A (en) * 1956-10-04 1960-11-01 Ibm Method and apparatus for threading perforated articles
US3314131A (en) * 1964-04-29 1967-04-18 Ibm Wire threading method and apparatus
US3331126A (en) * 1963-02-08 1967-07-18 Sperry Rand Corp Assembling apparatus and method
US3381357A (en) * 1965-12-09 1968-05-07 Robert J. Billingsley Ferromagnetic core wiring fixture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2170784A (en) * 1937-11-13 1939-08-22 Gen Electric Apparatus for flattening lead wires
NL142018B (en) * 1964-11-26 1974-04-16 Philips Nv PROCEDURE FOR THE MANUFACTURE OF A SEMI-CONDUCTIVE DEVICE AND DEVICE MANUFACTURED ACCORDING TO THE PROCESS.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2958126A (en) * 1956-10-04 1960-11-01 Ibm Method and apparatus for threading perforated articles
US3331126A (en) * 1963-02-08 1967-07-18 Sperry Rand Corp Assembling apparatus and method
US3314131A (en) * 1964-04-29 1967-04-18 Ibm Wire threading method and apparatus
US3381357A (en) * 1965-12-09 1968-05-07 Robert J. Billingsley Ferromagnetic core wiring fixture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694913A (en) * 1970-01-12 1972-10-03 Micro Miniature Parts Corp Method for wiring core memory cores
US3772755A (en) * 1970-01-12 1973-11-20 Micro Miniature Parts Corp Apparatus for wiring core memory cores
US3722083A (en) * 1971-01-15 1973-03-27 Xerox Corp Method of making a plated wire memory plane
US3818464A (en) * 1971-07-26 1974-06-18 Duluth Scient Inc Wiring guides for computer core memories
US3832766A (en) * 1972-11-21 1974-09-03 Xerox Corp Apparatus for assembling a plated wire memory plane
US3868764A (en) * 1973-11-09 1975-03-04 Gen Motors Corp Multiple magnetic alignment of semiconductor devices for bonding
US3857184A (en) * 1973-11-12 1974-12-31 J Seleznev Mask for manufacturing memory matrices

Also Published As

Publication number Publication date
DE1774456B2 (en) 1974-02-21
DE1774456C3 (en) 1974-09-19
NL6808771A (en) 1968-12-23
FR1569400A (en) 1969-05-30
GB1180309A (en) 1970-02-04
DE1774456A1 (en) 1972-02-17
US3438405A (en) 1969-04-15
US3438403A (en) 1969-04-15

Similar Documents

Publication Publication Date Title
US3448777A (en) Wire handling apparatus
US4126935A (en) Method and apparatus for manufacturing wiring harnesses
US4290179A (en) Cable harness assembly machine
EP0037202B1 (en) A method of, and apparatus for, producing wired electrical connectors
US3837063A (en) Post terminal insertion apparatus
US3686735A (en) Coil transfer tool
US4365398A (en) Method of and apparatus for assembling intermediate-web held terminal pins
US4765376A (en) Lead straightening for leaded packaged electronic components
US4245387A (en) Cable harness assembly fixture
US3815207A (en) Means for aligning coil injection tooling with a stator core
US3129494A (en) Method and apparatus for winding magnetic cores
US4683636A (en) Wire preparation system
KR200449469Y1 (en) Printed Circuit Board Magazine Device
US3157721A (en) Method and apparatus for positioning and assembling wires and the like
US3314131A (en) Wire threading method and apparatus
US4159413A (en) Contact welding machine, particularly for automatic application of tiny contact plates to a substrate carrier
EP0615318A1 (en) Connector housing positioning unit
US4314628A (en) Feed and storage track for DIP devices
US4434551A (en) Conductor termination apparatus
US3719989A (en) Method of assembling and securing articles with a support
US3381357A (en) Ferromagnetic core wiring fixture
US3450359A (en) Multi-feed wire package
US3561088A (en) Matrix core threading apparatus
JPH0366790B2 (en)
EP0058854B1 (en) Conductor termination apparatus