US3447302A - Yarn processing - Google Patents

Yarn processing Download PDF

Info

Publication number
US3447302A
US3447302A US790789A US3447302DA US3447302A US 3447302 A US3447302 A US 3447302A US 790789 A US790789 A US 790789A US 3447302D A US3447302D A US 3447302DA US 3447302 A US3447302 A US 3447302A
Authority
US
United States
Prior art keywords
yarn
jet
core
denier
yarns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US790789A
Inventor
Frederick C Field Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Application granted granted Critical
Publication of US3447302A publication Critical patent/US3447302A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/08Interlacing constituent filaments without breakage thereof, e.g. by use of turbulent air streams
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/16Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/34Yarns or threads having slubs, knops, spirals, loops, tufts, or other irregular or decorative effects, i.e. effect yarns

Definitions

  • a chenille-like yarn characterized by high bulk and stability under tensile stress is provided by feeding at least two groups of filaments at considerably different rates through a zone of turbulence, produced by a fluid jet, so that the groups are combined with one forming a stress-bearing core and the other forming highly convoluted filaments extending outward in a multiude of elongated loops.
  • This invention relates to processing of yarn so as to impart chenille-like and other desirable properties thereto.
  • chenille from the French for caterpiH-ar
  • Chenille yarns find use in bedspreads, curtains, draperies, rugs, and other textile articles, as well as in decorative ropes and trimmings.
  • Manufacture of conventional chenille yarn is a relatively slow and costly operation.
  • a primary object of the present invention is production of yarn having to a desirable extent the outward appearance of a chenille yarn. Another object is formation of yarn into a novel bulky yarn. Other objects of the invention will be apparent from the following description and the accompanying diagrams.
  • FIGURE 1 is a schematic representation of apparatus useful according to the present invention.
  • FIGURE 2 is a front elevation of a jet or nozzle element of the ap paratus of FIGURE 1.
  • FIGURE 3 is a side section of the apparatus of FIGURE 2.
  • FIGURE 4 is a longitudinal view of multifilament yarn treated by the apparatus of FIGURE 2.
  • FIGURE 5 is a transverse section of treated multifilament yarn containing unconvoluted filamentary core.
  • the objects of the present invention are accomplished by forming along the length of yarn a multitude of elongated loops whose presence therein is maintained upon application of substantial extensional stress thereto and optionally including an unconvoluted filamentary stress-bearing core in the yarn.
  • a particularly desirable yarn characterized by high bulk and stability under tensile stresses, is provided when a filamentary stress-bearing core member is combined with the loopy yarn.
  • the highly convoluted component is known hereinafter as the effect member. This duplex structure is held together by an entanglement between the elements of the two members.
  • the invention comprehends provision of a highly twisted yarn structure characterized by presence of elon- 3,447,302 Patented June 3, 1969 gated loops spaced therealong protruding to a considerable extent from the yarn axis and at angles greater than about 30, preferably substantially perpendicular thereto for maximum bulk.
  • the elongated lOOpS of the effect member also extend outwardly from the core members at angles greater than about 30.
  • the elongated loops are produced conveniently by passing the yarn through a zone of fluid turbulence as described hereinafter.
  • yarn 1 to be treated according to this invention may be supplied from package 6 through pigtail guides 2 and 3, to pass about cork cot 5 rotating in contact with drive roll 7 and into the nip of this feed-roll arrangement.
  • the yarn then enters jet or nozzle 9; from the jet outlet the yarn is drawn through pigtail 8 about drive roll 11 and into the nip of it with cot 10, about which are yarn passes on its way to the twister.
  • the yarn goes through center guide 13 and through traveler 14 moving about ring 15 mounted on rail 16, then onto bobbin 17, rotated on spindle 18 by belt 19.
  • Core yarn 21, which is supplied from package 22 through pigtail guide 23, also passes through guide 8, the forwarding rolls, center guide, the traveler, and onto bobbin 17, along with the yarn treated by the jet.
  • FIGURES 2 and 3 Details of jet or nozzle 9 appear in FIGURES 2 and 3.
  • Housing receives casing 31 of tube 32 in bore 33, and screw 34 holds the tube adjustably therein.
  • Side 35 of the housing, through which screw 34 passes into threaded side 36, is separated therefrom by slit 37 extending vertically for a considerable part of the housing length.
  • Screw 38 threaded into the top of the housing fastens clamp 39 to hold venturi member 40 in place.
  • Coaxial with bore 33 of the housing when the elements are assembled is bore 41 through one side of the venturi member, which has recess 42 as an extension of the bore in the opposite side across venturi throat 43.
  • Gasket 47 encircles neck 48 of the venturi member and fits between it and a step or recess in the top of the housing.
  • Threaded air-intake 51 is visible at the base of the housing, which has main bore 52 coaxial with throat 43 of the venturi member; a considerable angle intervenes between bore 33 and the main bore of the housing and
  • the operator also normally introduces at least one ordinary unconvoluted monofilament, multifilament or spun yarn member along with that treated by the jet and strings both of them through a guide and between windup rolls then through the traveler of the ring twister and onto the bobbin. Windup proceeds in normal manner, accomplishing the additional function of incorporating the unconvoluted yarn as a stress-bearing core member in the product.
  • FIGURE 5 which is a section taken in a plane perpendicular to the axis of the yarn, shows the distribution of loops completely about the body of the yarn. Three unconvoluted core members are distinguishable from filaments of the looped component in the drawing by somewhat larger diameter. The external appearance of the product is substantially unchanged from that of the yarn treated by the jet.
  • Example I Commercial multifilament nylon yarn of 80-68-13Z count (i.e., having 68 filaments, 80 total denier, and Z twist of 13 turns per inch) is fed at a rate of 487 yards per minute (y.p.m.) to a jet of the type described, supplied with air at gage pressure of 84 pounds per square inch (p.s.i.g.). From the jet outlet the yarn, which takes on a pronounced chenille-like appearance is fed together with 40-34- /2Z nylon multifilament, supplied at 90 y.p.m., to a down twister (Whitin type C-2) and is wound on a bobbin at the rate of supply of the added core. This amounts to an overfeed of 650% or 6.5 x of the chenilleat the indicated feed rates into various air jets and wound up onto rolls at the indicated rates.
  • a down twister Woodin type C-2
  • worsted count W.C.
  • cotton count C.C.
  • a 1/25 WC. 3 denier Orion (trademark for E. I. du Pont de Nemours acrylic fiber) yarn comprises a single end of 25 worsted count yarn and 20/1 C.C. Egyptian cotton yarn comprises a single end of 20 cotton count yarn.
  • the designation 2/ 32 W.C. indicates a 2 ply, 32 worsted count yarn.
  • the type 9 air jet of the Enterprise Machine and Development Corporation is used.
  • the abbreviations BS, DU, and EV indicate the size of the air jet; the first letter indicates the venturi size, the second, the needle size.
  • the uncored intermediate yarn which exhibits a low yield point (tension at which slippage of the yarn owing to distortion or removal of the loops overcomes the effect of the elastic modulus)
  • the final product resists permanent extension in the absence of sufiicient force to break the added core filaments.
  • the yarn appears to have a multitude of loose ends extending therefrom more or less perpendicular thereto; only upon close inspection do these apparent ends visually resolve themselves into elongated loops.
  • the elongated loops are readily apparent, the yarns having the general appearance of a boucl type yarn. Again, it is seen that the loops and free ends are entangled among themselves and the core yarn. These products appear on first glance to be a fuzzy, angora-like yarn, except for the presence of elongated loops entangled within the fuzzy effect system.
  • Example XVII'I the Helanca yarn is a trademark of the Heberlin Patent Corporation for a stretch nylon yarn. This yarn is entangled with the composite yarn to provide a bulky product comprising a core and effect system resembling the products of the other examples, particularly those of Examples I, II, III, and IV in a chenille-like appearance which has the additional characteristic of stretching under tensile stresses, with a return to its original length after removal of the stress.
  • the elongated loop characteristic of yarn treated according to this invention outlines an area closely resembling a teardrop section.
  • the longitudinal extent of the loop is at least twice the greatest transverse extent, which itself usually occurs at least about two-thirds of the way from the apex of the loop outward.
  • the mean outermost extent of loops, measured from the yarn axis is about ten or more times the radius of the body of the yarn, which itself is fairly dense and well defined.
  • An individual loop usually approximates a plane curve, and a perpendicular to the plane of the loop is more or less parallel to the axis of the yarn, often intersecting the axis at a slight-to-moderate angle, most of the loops extending outward substantially perpendicular to the axis.
  • An outstanding characteristic of a substantial number of the loops in a yarn of this invention is a closed portion, usually twisted, at the base of the individual loop, as denoted at V in FIGURE 5; this desirable feature, which serves to support the loop proper away from the yarn body is attributable at least in part to the appreciable twist in the starting yarn.
  • the loops are not spaced at regular intervals along the lengths of filament but appear instead to occur at random, frequently overlapping one another.
  • Overfeed (ratio of supply or feed rate to windup rate) of the effect component should be on the order of several X and preferably for some uses should be on the order of thousands of percent. Attempted operation at lower speeds is conducive to intermittent action, giving a product having sections of apparently non-treated multifilamerits, and lower overfeeds are detrimental to production of the desired elongated loops, overfeed and loop size being related more or less directly.
  • the jet itself may be operated at almost any pressure sufficient to provide a flow of air to overfeed the yarn to the desired extent.
  • Termination of the yarn tube in a plane perpendicular to the axis of the tube has proved satisfactory in jets whose main bore of air passage intersects the tube axis at an angle in the vicinity of forty-five degrees. Best results are obtained by insertion of the tube in the jet somewhat more than halfway across the venturi throat, which usually is at least three times as large in diameter as the bore of the tube and about twice the outside diameter of the tube.
  • the yarn issuing therefrom assumes a characteristic configuration, shown in elevation at I in FIGURE 1; although being drawn away from the jet outlet by forwarding rolls, the yarn neither bends abruptly over the edge of the jet outlet nor issues in a smooth arc from the mouth of the jet; instead it moves away from the jet for some distance in line with the axis of the throat then makes an abrupt U-turn, returning in the opposite direction for part of that distance before being drawn off sideways by the rolls.
  • the operator may feed the core yarn into the jet along with the yarn to be convoluted into the described configuration.
  • This path for the core yarn (shown as a dashed line in FIGURE 1) requires sufficient tensioning, conveniently provided by gate tensioner 25 interposed between pigtails 23 and 24, to prevent convolution of this component by action of the jet, but low enough to permit opening of the core bundle to entangle with the effect system.
  • gate tensioner 25 interposed between pigtails 23 and 24
  • Early combination of the two components not only minimizes separate accumulation of like static charges otherwise sufficient to hinder introduction of the filamentary core but also facilitates distribution of the core filaments throughout the product, making for desirable uniformity.
  • the core and effect yarns are normally fed into the air jet at different rates of speed.
  • the ratio of effect speed to core speed is preferably in the range of from about 2 to about 10 times, but may be less than 2 and as high as 50 times where special decorative effects are desired.
  • the products of this invention may be prepared solely from any type yarn, both natural and synthetic.
  • the synthetic yarns may be either continuous filament, spun yarns of staple fibers, or elastic yarns.
  • either or both of the elements may be any one of the above'yarns.
  • the elongated loops are formed along the length of the individual filaments in the yarn.
  • the elongated loops are also formed along the lengths of individual staple fibers of the spun yarns.
  • a spun yarn effect system is further characterized by the presence of a plurality of free ends extending outwardly from the effect system, thereby presenting a fuzzy, very soft surface, which is obviously very desirably in fabrics, towels, draperies, decorative fabrics and the like.
  • the product of this invention is useful for conventional chenille applications and additionally is suited to use in articles subject to considerable handling or laundering, inasmuch as the protruding portion does not consist of separate filamentary pieces but instead is integral with the body of the yarn.
  • Articles made from this yarn have a pleasantly soft handle free from any scratchiness attributable in some chenille products to the characteristic protruding ends.
  • Woven and knit fabrics of these yarns have a nappy or pile-like surface that provides bulk and obscures the body of the constituent yarns.
  • Yarns characterized by an effect system having elongated loops of different average heights may be prepared in accordance with this invention, for example, by feeding at different rates at least two yarns into the air jet as the effect system, in addition to the core member.
  • Such a yarn is also provided where the effect system comprises both free ends and elongated loops, where the ends and loops are of different average heights.
  • Fabrics may be prepared from such yarn for use as outergarments, interlinings, carpeting, upholstery, drapery, and other decorative effect uses whether knitted, woven, or nonwoven.
  • a process for forming a bulky yarn comprising feeding a plurality of filamentary structures at considerably different rates into a zone of fluid turbulence and withdrawing them together therefrom as a composite yarn at a rate substantially equal to the lower feed rate, the yarn having the higher feed rate beingfed at a rate at least greater than its speed of withdrawal, whereupon the individual filaments of the structure having the higher feed rate are convoluted into elongated loops extending outward from the body of the yarn, which includes the other structure in unconvoluted form as a stress-bearing member thereof.
  • Process comprising feeding at least two groups of twisted filamentary structures at considerably different rates into a zone of fluid turbulence, one filamentary structure group being fed at a rate of from about 2 to about 50 times the rate of another group, and winding them together therefrom as a composite yarn at a rate substantially equal to the lower feed rate, whereupon the filaments of the structure having the higher feed rate are convoluted into elongated loops extending outward from the body of the yarn, which includes the other structure in unconvoluted form as a stress-bearing member thereof.

Description

June 3, 1969 F, c. FIELD, JR 3,447,302
YARN PROCESSING Filed Jan. 30. 1959 INVENTOR FREDERICK C. FIELD, J1:
ATTORNEY United States Patent M 3,447,302 YARN PROCESSING Frederick C. Field, Jr., Wilmington, Del., assignor to E. I. du Pont de Nemours and Company, Wilmington, Del., a corporation of Delaware Continuation-impart of application Ser. No. 450,075, Aug. 16, 1954. This application Jan. 30, 1959, Ser. No. 790,789
Int. Cl. D02g 3/04 US. Cl. 57-157 4 Claims ABSTRACT OF THE DISCLOSURE A chenille-like yarn characterized by high bulk and stability under tensile stress is provided by feeding at least two groups of filaments at considerably different rates through a zone of turbulence, produced by a fluid jet, so that the groups are combined with one forming a stress-bearing core and the other forming highly convoluted filaments extending outward in a multiude of elongated loops.
REFERENCE TO RELATED APPLICATION This is a continuation-in-part of copending application Ser. No. 450,075, filed Aug. 16, 1954, and now abandoned.
This invention relates to processing of yarn so as to impart chenille-like and other desirable properties thereto.
A well-known type of novelty yarn is denoted by the term chenille (from the French for caterpiH-ar), which signifies a generally bristly or tufted construction conventionally produced by extensive cutting and twisting of a woven structure or by interlacing of relatively short lengths among elements of a twisted filamentary structure. Chenille yarns find use in bedspreads, curtains, draperies, rugs, and other textile articles, as well as in decorative ropes and trimmings. Manufacture of conventional chenille yarn is a relatively slow and costly operation.
A primary object of the present invention is production of yarn having to a desirable extent the outward appearance of a chenille yarn. Another object is formation of yarn into a novel bulky yarn. Other objects of the invention will be apparent from the following description and the accompanying diagrams.
FIGURE 1 is a schematic representation of apparatus useful according to the present invention. FIGURE 2 is a front elevation of a jet or nozzle element of the ap paratus of FIGURE 1. FIGURE 3 is a side section of the apparatus of FIGURE 2. FIGURE 4 is a longitudinal view of multifilament yarn treated by the apparatus of FIGURE 2. FIGURE 5 is a transverse section of treated multifilament yarn containing unconvoluted filamentary core.
In general, the objects of the present invention are accomplished by forming along the length of yarn a multitude of elongated loops whose presence therein is maintained upon application of substantial extensional stress thereto and optionally including an unconvoluted filamentary stress-bearing core in the yarn. A particularly desirable yarn, characterized by high bulk and stability under tensile stresses, is provided when a filamentary stress-bearing core member is combined with the loopy yarn. In the combination, the highly convoluted component is known hereinafter as the effect member. This duplex structure is held together by an entanglement between the elements of the two members.
The invention comprehends provision of a highly twisted yarn structure characterized by presence of elon- 3,447,302 Patented June 3, 1969 gated loops spaced therealong protruding to a considerable extent from the yarn axis and at angles greater than about 30, preferably substantially perpendicular thereto for maximum bulk. Likewise, in the core-effect yarn, the elongated lOOpS of the effect member also extend outwardly from the core members at angles greater than about 30. The elongated loops are produced conveniently by passing the yarn through a zone of fluid turbulence as described hereinafter.
As shown in FIGURE 1, yarn 1 to be treated according to this invention may be supplied from package 6 through pigtail guides 2 and 3, to pass about cork cot 5 rotating in contact with drive roll 7 and into the nip of this feed-roll arrangement. The yarn then enters jet or nozzle 9; from the jet outlet the yarn is drawn through pigtail 8 about drive roll 11 and into the nip of it with cot 10, about which are yarn passes on its way to the twister. The yarn goes through center guide 13 and through traveler 14 moving about ring 15 mounted on rail 16, then onto bobbin 17, rotated on spindle 18 by belt 19. Core yarn 21, which is supplied from package 22 through pigtail guide 23, also passes through guide 8, the forwarding rolls, center guide, the traveler, and onto bobbin 17, along with the yarn treated by the jet.
Details of jet or nozzle 9 appear in FIGURES 2 and 3. Housing receives casing 31 of tube 32 in bore 33, and screw 34 holds the tube adjustably therein. Side 35 of the housing, through which screw 34 passes into threaded side 36, is separated therefrom by slit 37 extending vertically for a considerable part of the housing length. Screw 38 threaded into the top of the housing fastens clamp 39 to hold venturi member 40 in place. Coaxial with bore 33 of the housing when the elements are assembled is bore 41 through one side of the venturi member, which has recess 42 as an extension of the bore in the opposite side across venturi throat 43. Gasket 47 encircles neck 48 of the venturi member and fits between it and a step or recess in the top of the housing. Threaded air-intake 51 is visible at the base of the housing, which has main bore 52 coaxial with throat 43 of the venturi member; a considerable angle intervenes between bore 33 and the main bore of the housing and between bore 41 and the throat of the venturi.
Operation of the apparatus is easily understood. An operator strings up the yarn to be treated by the jet, drawing it from the package and passing it through the various guides and between the feed rolls and then placing it at the nut-like entrance of the intake or yarn tube. Flow of air through the jet carries the yarn through the yarn tube and out the end thereof into the venturi throat and thence out the mouth thereof. T urbulance attends the passage through the jet, and the yarn emerging therefrom is changed greatly in appearance. A longitudinal view of this yarn appears in FIGURE 4. Except for increased twist the consolidated central region or body of the yarn is essentially like that of the starting yarn,
and the striking difference lies in the appearance of a great many elongated loops extending from this central region to a distance therefrom equivalent to many times the diameter of the body of the yarn.
The operator also normally introduces at least one ordinary unconvoluted monofilament, multifilament or spun yarn member along with that treated by the jet and strings both of them through a guide and between windup rolls then through the traveler of the ring twister and onto the bobbin. Windup proceeds in normal manner, accomplishing the additional function of incorporating the unconvoluted yarn as a stress-bearing core member in the product. FIGURE 5, which is a section taken in a plane perpendicular to the axis of the yarn, shows the distribution of loops completely about the body of the yarn. Three unconvoluted core members are distinguishable from filaments of the looped component in the drawing by somewhat larger diameter. The external appearance of the product is substantially unchanged from that of the yarn treated by the jet.
Example I Commercial multifilament nylon yarn of 80-68-13Z count (i.e., having 68 filaments, 80 total denier, and Z twist of 13 turns per inch) is fed at a rate of 487 yards per minute (y.p.m.) to a jet of the type described, supplied with air at gage pressure of 84 pounds per square inch (p.s.i.g.). From the jet outlet the yarn, which takes on a pronounced chenille-like appearance is fed together with 40-34- /2Z nylon multifilament, supplied at 90 y.p.m., to a down twister (Whitin type C-2) and is wound on a bobbin at the rate of supply of the added core. This amounts to an overfeed of 650% or 6.5 x of the chenilleat the indicated feed rates into various air jets and wound up onto rolls at the indicated rates.
The method of designating the continuous filament yarns of these examples is the same as in Example I.
To define the spun and cotton yarns of these examples conventional worsted count (W.C.) and cotton count (C.C.), respectively, are used. For example, a 1/25 WC. 3 denier Orion (trademark for E. I. du Pont de Nemours acrylic fiber) yarn comprises a single end of 25 worsted count yarn and 20/1 C.C. Egyptian cotton yarn comprises a single end of 20 cotton count yarn. The designation 2/ 32 W.C. indicates a 2 ply, 32 worsted count yarn.
The type 9 air jet of the Enterprise Machine and Development Corporation is used. The abbreviations BS, DU, and EV indicate the size of the air jet; the first letter indicates the venturi size, the second, the needle size.
TABLE I Windup Core Efiect Example Jet/Air, Speed, Speed, Speed,
Number Core Yarn-Eflect Yarn(s) p.s.l. y.p.m. y.p.m. y.p.m.
II 21034%Z N ylon- 138/70.... 20 20.1 93
300-8H Bright Acetate, 300-80-0 Scarlet Acetate.
III 14068%Z Ny1on DU/60... 9 9.5 62
1/25W.O. 3 denier "Oriorf Blue.
IV 20/1 (10. Egyptian Cotton- 138/60... 13 13. 5 50 600-160-0 Scarlet Acetate.
V 2/32W.O. 3 denierrlon DU/70 20 21.5 151 1/31W.C. 80-20 Orlon-wooi.
VI 2/32W.C. 3 denier0rlon- EV/70 9 9. 42
36/2 0.0. Nylon, 1/25W.O. 3 denier Orion, 2/27W.C. 3 denier Orion, 1/31W.O. 80-20 Orlon"-wool, 1/20W.O. 100% Wool, 15/1 0.0. Dacr0n-cotton, /1 0.0. Egyptian cotton.
VII 2/32W.C. 3 denier Orlon EVI70....- 9 9. 5 29 1/14W.O. 3 denier Orion.
VIII 2/32W.O. 3 denier Orlon EV/70. 9 9. 5 57 1/14W.O. 3 denier Orion.
IX 2/32W.C. 3 denier Orl0n- EV/70 9 9. 5 57 1/14W.O. 3 denier Orion.
X 20/1 0.0. Egyptian cotton- EV/ 9 9. 5 37 15/1 0.0. Daeron-cotton.
XI 20/1 O.C. Egyptian cotton EV/35 9 9. 5 100 15/1 C.C. Daeron-cotton.
XII 2/32W.C. 3 denier Orlon-- DU/ 9 9. 5 62 l/25W.C. 3 denier Orion.
XIII 1/20W.O.Wool EV/35.. 9 9. 5
1/31W.O. -20 Orlon-wool.
XIV 1/25W.O. 3 denierOrlon- EV/50- 9 9. 5 57 2/32W.C. 3 denier Orion.
XV -68%Z Nylon DU/70.... 20 20.5 61
2/32W.C. 3 denier Orion, 2/27W.O. 3 denier Orion.
XVI 140-68%Z Nylon 20 20 93 2/32W.C. 3 denier Orion, 2/27W.O. 3 denier Orion.
XVII 1/14W.O. 3 denierOrlon-- EV/50 9 9.5 57
2/32W.O. 3 denier Orion."
XVIII 4 ends 70/34 %Z Nylon- BS/70... 9 10 57 2 ends, 300-80-2 Scarlet Acetate; 2 ends, 300-80-0 Bright Acetate; 1 end, 70/2 Helanca, tensioned -t (5) like component. Unlike the uncored intermediate yarn, which exhibits a low yield point (tension at which slippage of the yarn owing to distortion or removal of the loops overcomes the effect of the elastic modulus), the final product resists permanent extension in the absence of sufiicient force to break the added core filaments. Viewed at arms length, the yarn appears to have a multitude of loose ends extending therefrom more or less perpendicular thereto; only upon close inspection do these apparent ends visually resolve themselves into elongated loops.
Repetition of the above procedure with commercial nylon multifilament yarn of 210-107-7Z count as the loopy effect component and two ends of 40-34- /2Z nylon multifilament as the core component gave similarly satisfactory results. Other continuous-filament materials, regardless of chemical constituents, are similarly suitable, as the process of this invention is independent of the filament composition.
Examples I-IXVHI In these examples, various core and efiect yarns are fed as to remain fully extended during processing.
In the products of the other examples, the elongated loops are readily apparent, the yarns having the general appearance of a boucl type yarn. Again, it is seen that the loops and free ends are entangled among themselves and the core yarn. These products appear on first glance to be a fuzzy, angora-like yarn, except for the presence of elongated loops entangled within the fuzzy effect system.
This fuzziness is not quite so apparent in the products of Examples X and XI, where the elongated loops are present in a much higher percentage than the free ends, so that the product resembles more clearly a boucl type structure, consisting primarily of elongated loops twisted about the core system.
In Example XVII'I, the Helanca yarn is a trademark of the Heberlin Patent Corporation for a stretch nylon yarn. This yarn is entangled with the composite yarn to provide a bulky product comprising a core and effect system resembling the products of the other examples, particularly those of Examples I, II, III, and IV in a chenille-like appearance which has the additional characteristic of stretching under tensile stresses, with a return to its original length after removal of the stress.
The elongated loop characteristic of yarn treated according to this invention outlines an area closely resembling a teardrop section. The longitudinal extent of the loop is at least twice the greatest transverse extent, which itself usually occurs at least about two-thirds of the way from the apex of the loop outward. Furthermore, in the product of this invention the mean outermost extent of loops, measured from the yarn axis, is about ten or more times the radius of the body of the yarn, which itself is fairly dense and well defined. An individual loop usually approximates a plane curve, and a perpendicular to the plane of the loop is more or less parallel to the axis of the yarn, often intersecting the axis at a slight-to-moderate angle, most of the loops extending outward substantially perpendicular to the axis. An outstanding characteristic of a substantial number of the loops in a yarn of this invention is a closed portion, usually twisted, at the base of the individual loop, as denoted at V in FIGURE 5; this desirable feature, which serves to support the loop proper away from the yarn body is attributable at least in part to the appreciable twist in the starting yarn. As is apparent from FIGURE 4, the loops are not spaced at regular intervals along the lengths of filament but appear instead to occur at random, frequently overlapping one another.
Overfeed (ratio of supply or feed rate to windup rate) of the effect component should be on the order of several X and preferably for some uses should be on the order of thousands of percent. Attempted operation at lower speeds is conducive to intermittent action, giving a product having sections of apparently non-treated multifilamerits, and lower overfeeds are detrimental to production of the desired elongated loops, overfeed and loop size being related more or less directly.
The jet itself may be operated at almost any pressure sufficient to provide a flow of air to overfeed the yarn to the desired extent. Termination of the yarn tube in a plane perpendicular to the axis of the tube has proved satisfactory in jets whose main bore of air passage intersects the tube axis at an angle in the vicinity of forty-five degrees. Best results are obtained by insertion of the tube in the jet somewhat more than halfway across the venturi throat, which usually is at least three times as large in diameter as the bore of the tube and about twice the outside diameter of the tube. When the jet is adjusted properly for operation according to this invention the yarn issuing therefrom assumes a characteristic configuration, shown in elevation at I in FIGURE 1; although being drawn away from the jet outlet by forwarding rolls, the yarn neither bends abruptly over the edge of the jet outlet nor issues in a smooth arc from the mouth of the jet; instead it moves away from the jet for some distance in line with the axis of the throat then makes an abrupt U-turn, returning in the opposite direction for part of that distance before being drawn off sideways by the rolls.
If desired, the operator may feed the core yarn into the jet along with the yarn to be convoluted into the described configuration. This path for the core yarn (shown as a dashed line in FIGURE 1) requires sufficient tensioning, conveniently provided by gate tensioner 25 interposed between pigtails 23 and 24, to prevent convolution of this component by action of the jet, but low enough to permit opening of the core bundle to entangle with the effect system. Early combination of the two components not only minimizes separate accumulation of like static charges otherwise sufficient to hinder introduction of the filamentary core but also facilitates distribution of the core filaments throughout the product, making for desirable uniformity.
The core and effect yarns are normally fed into the air jet at different rates of speed. The ratio of effect speed to core speed is preferably in the range of from about 2 to about 10 times, but may be less than 2 and as high as 50 times where special decorative effects are desired.
The products of this invention may be prepared solely from any type yarn, both natural and synthetic. Among the natural yarns, wool and cotton are most readily adaptable to the process of this invention. The synthetic yarns may be either continuous filament, spun yarns of staple fibers, or elastic yarns. In preparing the core-effect type yarns, either or both of the elements may be any one of the above'yarns.
Where a continuous filament yarn is used as the effect yarn, the elongated loops are formed along the length of the individual filaments in the yarn. The elongated loops are also formed along the lengths of individual staple fibers of the spun yarns. A spun yarn effect system is further characterized by the presence of a plurality of free ends extending outwardly from the effect system, thereby presenting a fuzzy, very soft surface, which is obviously very desirably in fabrics, towels, draperies, decorative fabrics and the like.
The product of this invention is useful for conventional chenille applications and additionally is suited to use in articles subject to considerable handling or laundering, inasmuch as the protruding portion does not consist of separate filamentary pieces but instead is integral with the body of the yarn. Articles made from this yarn have a pleasantly soft handle free from any scratchiness attributable in some chenille products to the characteristic protruding ends. Woven and knit fabrics of these yarns have a nappy or pile-like surface that provides bulk and obscures the body of the constituent yarns. Yarns characterized by an effect system having elongated loops of different average heights, i.e., a multi height pile, may be prepared in accordance with this invention, for example, by feeding at different rates at least two yarns into the air jet as the effect system, in addition to the core member. Such a yarn is also provided where the effect system comprises both free ends and elongated loops, where the ends and loops are of different average heights.
Fabrics may be prepared from such yarn for use as outergarments, interlinings, carpeting, upholstery, drapery, and other decorative effect uses whether knitted, woven, or nonwoven.
I claim:
1. A process for forming a bulky yarn comprising feeding a plurality of filamentary structures at considerably different rates into a zone of fluid turbulence and withdrawing them together therefrom as a composite yarn at a rate substantially equal to the lower feed rate, the yarn having the higher feed rate beingfed at a rate at least greater than its speed of withdrawal, whereupon the individual filaments of the structure having the higher feed rate are convoluted into elongated loops extending outward from the body of the yarn, which includes the other structure in unconvoluted form as a stress-bearing member thereof.
2. Process comprising feeding at least two groups of twisted filamentary structures at considerably different rates into a zone of fluid turbulence, one filamentary structure group being fed at a rate of from about 2 to about 50 times the rate of another group, and winding them together therefrom as a composite yarn at a rate substantially equal to the lower feed rate, whereupon the filaments of the structure having the higher feed rate are convoluted into elongated loops extending outward from the body of the yarn, which includes the other structure in unconvoluted form as a stress-bearing member thereof.
3. Process of claim 2 wherein at least one of the fila 2,504,523 4/1950 Harris et a1 57140 'mentary structure groups comprises staple fibersv 2,783,609 3/ 1957 Breen 57140 4. Process of claim 2 wherein at least one of the fila- 2,575,753 11/1951 Foster 57157 mental-y structure groups comprises continuous filaments. 2,864,230 12/ 1958 Moore 57157 2,026,736 1/1936 Gruber 5734 References Cited 2,852,906 9/1958 Breen 57 34 UNITED STATES PATENTS 2,869,967 1/1959 Breen. 3,007,298 11/1961 Williams et al. US. 01. X.R. 3,009,309 11/1961 Breen 6161. 10 57143,160
MERVIN STEIN, Primary Examiner.
US790789A 1959-01-30 1959-01-30 Yarn processing Expired - Lifetime US3447302A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US79078959A 1959-01-30 1959-01-30

Publications (1)

Publication Number Publication Date
US3447302A true US3447302A (en) 1969-06-03

Family

ID=25151749

Family Applications (1)

Application Number Title Priority Date Filing Date
US790789A Expired - Lifetime US3447302A (en) 1959-01-30 1959-01-30 Yarn processing

Country Status (2)

Country Link
US (1) US3447302A (en)
BE (1) BE586960R (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3596459A (en) * 1967-03-08 1971-08-03 Teijin Ltd Process of producing a nonstretch or low-stretch composite yarn of super high bulkiness
US3756005A (en) * 1972-03-24 1973-09-04 Chavanoz Sa Process and apparatus for forming novelty effect yarns
US3952496A (en) * 1969-02-19 1976-04-27 Akzona Incorporated Composite thread
US3959962A (en) * 1973-02-23 1976-06-01 Imperial Chemical Industries Limited Method of forming a bulked polyester textile yarns
US3971202A (en) * 1974-08-08 1976-07-27 E. I. Du Pont De Nemours And Company Cobulked continuous filament yarns
US4069657A (en) * 1975-07-18 1978-01-24 E. I. Du Pont De Nemours And Company Yarn texturing process
US4248036A (en) * 1979-03-08 1981-02-03 E. I. Du Pont De Nemours And Company Bulky yarn
US4319447A (en) * 1979-03-08 1982-03-16 E. I. Du Pont De Nemours And Company Method of forming a bulky yarn
US4525564A (en) * 1975-11-05 1985-06-25 National Research Development Corporation High modulus, low creep strain polyalkene polymer materials
US4610131A (en) * 1985-01-07 1986-09-09 Milliken Research Corporation Method of forming air textured boucle yarn
ITBO20120240A1 (en) * 2012-05-03 2013-11-04 Gorgaini Graziano PROCEDURE FOR THE PRODUCTION OF INTERLACED YARNS

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2026736A (en) * 1932-12-01 1936-01-07 Alexander Wacker Ges Fur Elect Process for the manufacture of woolly threads
US2504523A (en) * 1948-05-28 1950-04-18 Godfrey Bloch Inc Fabric-making material
US2575753A (en) * 1948-12-29 1951-11-20 Us Rubber Co Method of producing chenillelike yarn
US2783609A (en) * 1951-12-14 1957-03-05 Du Pont Bulky continuous filament yarn
US2852906A (en) * 1951-12-14 1958-09-23 Du Pont Method and apparatus for producing bulky continuous filament yarn
US2864230A (en) * 1953-06-02 1958-12-16 Deering Milliken Res Corp Method of making novelty yarn
US2869967A (en) * 1957-08-23 1959-01-20 Du Pont Bulky yarn
US3007298A (en) * 1955-05-31 1961-11-07 British Cclanese Ltd Method and apparatus for jet bulking of yarn
US3009309A (en) * 1956-07-16 1961-11-21 Du Pont Fluid jet twist crimping process

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2026736A (en) * 1932-12-01 1936-01-07 Alexander Wacker Ges Fur Elect Process for the manufacture of woolly threads
US2504523A (en) * 1948-05-28 1950-04-18 Godfrey Bloch Inc Fabric-making material
US2575753A (en) * 1948-12-29 1951-11-20 Us Rubber Co Method of producing chenillelike yarn
US2783609A (en) * 1951-12-14 1957-03-05 Du Pont Bulky continuous filament yarn
US2852906A (en) * 1951-12-14 1958-09-23 Du Pont Method and apparatus for producing bulky continuous filament yarn
US2864230A (en) * 1953-06-02 1958-12-16 Deering Milliken Res Corp Method of making novelty yarn
US3007298A (en) * 1955-05-31 1961-11-07 British Cclanese Ltd Method and apparatus for jet bulking of yarn
US3009309A (en) * 1956-07-16 1961-11-21 Du Pont Fluid jet twist crimping process
US2869967A (en) * 1957-08-23 1959-01-20 Du Pont Bulky yarn

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3596459A (en) * 1967-03-08 1971-08-03 Teijin Ltd Process of producing a nonstretch or low-stretch composite yarn of super high bulkiness
US3952496A (en) * 1969-02-19 1976-04-27 Akzona Incorporated Composite thread
US3756005A (en) * 1972-03-24 1973-09-04 Chavanoz Sa Process and apparatus for forming novelty effect yarns
US3959962A (en) * 1973-02-23 1976-06-01 Imperial Chemical Industries Limited Method of forming a bulked polyester textile yarns
US3971202A (en) * 1974-08-08 1976-07-27 E. I. Du Pont De Nemours And Company Cobulked continuous filament yarns
US4069657A (en) * 1975-07-18 1978-01-24 E. I. Du Pont De Nemours And Company Yarn texturing process
US4525564A (en) * 1975-11-05 1985-06-25 National Research Development Corporation High modulus, low creep strain polyalkene polymer materials
US4248036A (en) * 1979-03-08 1981-02-03 E. I. Du Pont De Nemours And Company Bulky yarn
US4319447A (en) * 1979-03-08 1982-03-16 E. I. Du Pont De Nemours And Company Method of forming a bulky yarn
US4610131A (en) * 1985-01-07 1986-09-09 Milliken Research Corporation Method of forming air textured boucle yarn
ITBO20120240A1 (en) * 2012-05-03 2013-11-04 Gorgaini Graziano PROCEDURE FOR THE PRODUCTION OF INTERLACED YARNS

Also Published As

Publication number Publication date
BE586960R (en) 1960-07-26

Similar Documents

Publication Publication Date Title
US2852906A (en) Method and apparatus for producing bulky continuous filament yarn
US2783609A (en) Bulky continuous filament yarn
US2869967A (en) Bulky yarn
US3017737A (en) Method and apparatus for producing bulky continuous filament yarn
US3978648A (en) Helically wrapped yarn
US3309855A (en) Process and apparatus for producing bulked plied yarn
US3043088A (en) Process for making bulky yarn
US3447302A (en) Yarn processing
US3177557A (en) Process for producing bulk yarns from film strips
US3091913A (en) Variable denier composite yarn
US3104516A (en) Process for preparing a variable denier composite multifilament yarn
US3103098A (en) Variable luster yarn and method of manufacture
US3433007A (en) Slub yarn process and product
US3543358A (en) Process for increasing the bulk of multifilament yarn
US3116589A (en) Process for forming a slub yarn
US3640064A (en) Novelty yarn
US4196574A (en) Composite yarn and method of manufacture
US3453709A (en) Apparatus for treating filamentary material
USRE31376E (en) Yarn structure and method for producing same
US3462813A (en) Method of producing volumized yarn
US3303640A (en) Method of producing composite elastic yarn
US4559772A (en) False twist texturized yarn, and a process for its preparation
US4519200A (en) Textile yarns with loops and free protruding ends
US3010270A (en) Apparatus for producing voluminous yarn
US4026099A (en) Differentially drafted lofted multi-component continuous filament yarn and process for making same