US3435273A - Slow-wave structure encasing envelope with matching thermal expansion properties - Google Patents

Slow-wave structure encasing envelope with matching thermal expansion properties Download PDF

Info

Publication number
US3435273A
US3435273A US529517A US3435273DA US3435273A US 3435273 A US3435273 A US 3435273A US 529517 A US529517 A US 529517A US 3435273D A US3435273D A US 3435273DA US 3435273 A US3435273 A US 3435273A
Authority
US
United States
Prior art keywords
envelope
slow
tape
rods
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US529517A
Inventor
Joseph B Kennedy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Hughes Aircraft Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hughes Aircraft Co filed Critical Hughes Aircraft Co
Application granted granted Critical
Publication of US3435273A publication Critical patent/US3435273A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/12Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/24Slow-wave structures, e.g. delay systems
    • H01J23/26Helical slow-wave structures; Adjustment therefor

Definitions

  • This invention relates to the encasement of devices in an envelope having thermal expansion properties essentially the same as the device material.
  • the invention relates to a sealed envelope for a slow-wave structure of the type used in a traveling-wave tube.
  • a stream of electrons is caused to interact with a propagating electromagnetic wave in a manner which amplities ,the electromagnetic wave energy.
  • the electromagnetic wave is propagated along a slow-wave structure, such as an electrically conductive helix wound about the path of the electron stream.
  • the slow-wave structure provides a path of propagation for the electromagnetic wave which is considerably longer than the axial length of the structure so that the travelingawave may be made to effectively propagate at nearly the velocity of the electron stream.
  • Slowwave structures of the helix type are usually supported Within a vacuum envelope by means of a plurality of equally circumferentially spaced electrically insulating rods disposed between the slow-wave structure and the envelope.
  • a method which has been used to mount a slow-wave structure and its support rods within the envelope involves making the envelope in the form of a resilient tubular metallic clamp.
  • the cross-section of the clamp is initially circular, with a cross-sectional area greater than that of the structure-rod assembly to be inserted within the clamp, but with a normal diameter which is less than that of the circle circumscribing the structure-rod assembly.
  • the clamp is first distorted by forces applied at a number of points corresponding to the number of rods so as to produce a geometric configuration more nearly identical to that of the structure-rod assembly.
  • the structure-rod assembly is then inserted into the distorted clamp with the rods intermediate the points of application of the forces.
  • the clamp 3,435,273 Patented Mar. 25, 1969 ICC restores itself to nearly its original circular shape, and in doing so compresses the rods and the slow-Wave structure into a rigid assembly.
  • the present invention provides a sealed encasement of a device having given material extending along the perimeter of the device in a predetermined direction in an envelope having thermal expansion properties essentially the same as that of the given material.
  • the envelope includes a plurality of first regions of a selected material disposed about the perimeter of the given material and intersecting a line parallel to the predetermined direction at spaced locations along the line. Each of the first regions has a predetermined extent along the line and is spaced from the next successive rst region by a predetermined spacing along the line.
  • a plurality of second regions of a material different from the selected material are disposed about the perimeter of the given material between successive ones of the iirst regions, the second regions being sealed to the rst regions and to the given material.
  • the relative extent of the rst and second regions along the aforesaid line is such that the net thermal coefficient of expansion of the envelope is essentially equal to the thermal coefcient of expansion of the given material.
  • At least a portion of the outer surface of the given material is rst metallized.
  • a strip of predetermined width of a material having a predetermined thermal coeicient of expansion is wound around the metallized surface of the given material in a manner leaving a preselected spacing between successive windings of the strip.
  • a layer of liller material having a thermal coecient of expansion related to the thermal coefcient of expansion of the strip material and to the strip width and the preselected spacing so as to provide the desired net thermal coefficient of expansion for the envelope is then applied over the windings of the strip and outwardly facing metallized surfaces of the given material not covered by the strip.
  • the assembly is then heated to a temperature sufficient to melt the filler material, after which it is cooled to allow the ller material intermediate the windings of the strip to become sealed to the strip and to the given material.
  • IFIG. l is a simplied diagrammatic illustration of apparatus which may be employed in making an envelope for a slow-wave structure assembly in accordance with the present invention
  • FIG. 2 is a longitudinal view, partly broken away into section, of a portion of the apparatus of FIG. l;
  • FIG. 3 is a cross-sectional view taken along line 3-3 of FIG. 2;
  • FIG. 4 is a cross-sectional view of an encased slow- Wave structure assembly provided in accordance with the present invention.
  • FIG. 5 is a longitudinal view, with the envelope shown in section, of the assembly of FIG. 4.
  • apparatus for encasing a slow-wave structure in accordance with the principles of the present invention may be seen to include a mandrel 1G on which there is carried a slowwave structure 12 to be encased.
  • the slow-wave structure .12 is illustrated as a simple helix, it is to be understood that the principles of the present invention are equally applicable to the encasement of the other forms of slow-wave structures, for example, contrawouud helices, cloverleaf structures, ring-bar structures, etc.
  • Disposed about the slow-wave structure 12 at equally spaced circumferential locations therearound are a plurality of support rods 14 of dielectric material such as ceramic extending in a direction parallel to the mandrel 10.
  • the support rods 14 are secured to the slow-wave structure 12, for example, by brazing, prior to mounting the assembly comprising the slow-Wave structure 12 and the rods 14 on the mandrel 10. It is pointed out that although the assembly is illustrated as having four support rods 14, the principles of the present invention are equally applicable to encasing slow-wave structure assemblies having any number of support rods not less than three.
  • the assembly comprising the slow-wave structure 12 and the support rods 14 is securely held on the mandrel -10 by a pair of identical collars 16 and 18 disposed at opposite ends of the assembly, the mounting of the assembly within the collars 16 and 18 being illustrated more fully in FIGS. 2 and 3.
  • the collar 16 denes a cylindrical bore 20 extending longitudinally through the collar 16.
  • the bore 20 has a diameter suicient to snugly accommodate the mandrel 10, and a radial set screw 22 is provided in the collar 16 to secure the collar 16 to the mandrel 10.
  • the longitudinal bore 20 has a portion 24 of enlarged diameter in a region adjacent the inner end surface of the collar y16, the diameter of the enlarged portion 24 being suflicient to accommodate the slow-wave structure 12.
  • a plurality of radially extending indentations, or recesses, 26 are provided along the circumferential surface of the enlarged bore portion 24.
  • the number, extent, and location of the indentations 26 are selected so as to snugly accommodate the desired number, dimensions and locations of the support rods 14.
  • the end of the mandrel 10 extending beyond the collar -16 is journaled in a bore 28 through a support member 30.
  • the opposite end of the mandrel 10 which extends beyond the collar 18 is journaled in a bore 32 through a support member 34.
  • the mandrel ,10I is driven from a motor 36 by means of suitable gearing 37.
  • a threaded rod 40 mounted parallel to and substantially coextensive with the mandrel 10.
  • the ends of the rod 40 are journaled in respective bores 42 and 44 through support members 46 and 48, respectively.
  • a spoollike dispenser 50 containing envelope-forming tape 52 in rolled form is mounted on the threaded rod 40.
  • the dispenser 50 is provided with a threaded axial bore, the threads of which mesh with the threads of the rod 40 so that when the rod 40 is rotated in the direction indicated in FIG. l the dispenser 50 is moved longitudinally along the rod 40 from the support 48 toward the support 46.
  • the resultant envelope for the slow-wave structure assembly possess thermal expansion properties which are the same as that of the support rods 14.
  • the tape 54 has a width W and is wound about the support rod 14 with a pitch P (the axial distance in which the tape 54 makes one complete revolution about the mandrel 10) which is greater than the tape width W by the spacing S.
  • the material comprising one portion of the envelope (winding 54 or filler 56) has -a thermal ooeicient of expansion greater than that of the rods 14, while the material used for the other portion of the envelope has a thermal coefcient of expansion less than that of the rods 14.
  • the relative width W of the tape 54 and the spacing S between the tape windings are selected so that the net dimensional change of a portion of the composite envelope 54, 56 extending in a direction parallel to the rods 14 over a length equal to the pitch P is essentially equal to the dimensional change of an equal length portion of the rods 14 for a given change in temperature.
  • the desired interrelationship between the spacing S and the tape width W in terms of the thermal coefficients of expansion of the materials used may be determined as follows. As the temperature of a material is raised from an initial temperature T1 to a higher temperature T2, the material undergoes an expansion per unit length e given by i erelug-:111) (l) where a is the thermal coeicient of expansion of the material in expansion per unit length per degree centigrade. As may be readily seen from FIG.
  • Equation 5 At the initial temperature T1 the tape width W and spacing S satisfy the relationship W-l-SzP (2) However, when the temperature is raised from T1 to T2, the tape 54 will undergo an expansion eT, the iiller material 56 will undergo an expansion eF, and the rods 14 will undergo an expansion eR. Thus, at the temperature T2 the relationship becomes Substituting Equation 2 into Equation 3, and solving for the ratio S/ W gives Then, substituting Equation 1 into Equation 4 yields ctT-rxg W- (5) which is the desired relationship between the ratio of the spacing S to the tape width W in terms of the thermal coefficients of expansion aT, an, and aF for te tape material, the rod material, and the iiller material respectively. It may be observed from Equation 5 that as long as one of the coefficients aT or aF is greater than the coelicient R and the other of the coefficients aT or aF is less than aR, the ratio S/ W is positive.
  • molybdenum may be used for the tape 54, beryllia for the rods 14, and copper for the filler material 56.
  • beryllia and copper values of 6.3Xl-6, 8.9)(10"6 and 20.3 l06 per C., respectively, and substituting these values for the respective quantities aT, @R and ap in Equation yields a value of .21 for the desired ratio of spacing S to tape width W.
  • the helix-like winding 54 may be formed from the tape 52 dispensed from the spool-like dispenser 50.
  • the gearing 37 and 38 and the thread pitch of the threaded rod 40 are selected so that the dispenser 50 moves longitudinally by an amount equal to the desired pitch P for each complete revolution of the mandrel 10.
  • the gearing 37 and 38 is made to rotate the rod 40 at the same rate as the mandrel whereas if the threads of the rod 40 have a pitch equal to twice the desired pitch P, then the gearing 37 and 38 is caused to rotate the rod 40 at a rate equal to half the rate of rotation of the mandrel 10.
  • a longitudinally extending portion of the surface of each of the rods 14 is rst metallized, with a coating of a molybdenum-manganese mixture, for example, to permit the subsequent brazing of the envelope to the rods.
  • the surface of each of rods 14 essentially circumferentially opposite the metallized portion is then bonded to the slow-wave structure 12 by conventional methods, such as brazing.
  • the assembly is then inserted on the mandrel 10, with the rods 14 fitting into the recesses 26 in the collars 16 and 18, and the set screws 22 are tightened to rigidly secure the assembly to the mandrel 10.
  • the ldispenser 50 which has been filled With a roll of tape 52 of suitable material is moved to the end of the rod 40 adjacent the support 48, and the end of the tape 52 projecting out of the dispenser 50 is secured to one of the rods 14 at a point adjacent the collar 18.
  • the motor 36 is then turned on to rotate the mandrel 10 and the threaded rod 40.
  • the dispenser 50 moves longitudinally along the rod 40 toward the support 46, causing the tape 52 to be Wound about the rods 14 and form the helix-like configuration 54 of the desired pitch P.
  • the motor is stopped, and the end of the tape is secured to one of the rods 14.
  • the assembly consisting of the rods 14, the slow-wave structure 12 and the wound tape 54 is removed from the apparatus and is covered with a layer of the desired ller material 56.
  • One method for applying the ller material 56 to the assembly is to wrap a sheet of the material 56 around the outer surfaces of the wound tape 54.
  • An alternate method involves spraying the ller material uniformly over the wound tape 54 and outwardly facing surfaces of the rods 14 not covered by the tape 54.
  • the 'llhe assembly is then heated in an inert or a reducing atmosphere, for example hydrogen gas, to a temperature slightly albove the melting point of the filler material 56 to cause the filler material to melt and ow into the space between the windings of the tape 54.
  • the assembly is then cooled to solidify the molten ller material and thereby bond the wound tape 54 to the rods 14 in vacuum tight relationship.
  • the space between the windings of the tape S4 is lled with a material which provides an envelope having a net thermal coeicient of expansion equal to the thermal coefficient of expansion of the rods 14.
  • FIGS. 4 and 5 A completed envelope formed in accordance with the present invention is shown in FIGS. 4 and 5.
  • the support rods 14 are illustrated in FIG. 4 as being semi-circular in cross-section, with their curved surfaces contacting the slow-wave structure 12, it is pointed out that support rods of other cross-sections such a circular may be employed instead.
  • the illustrated configuration does afford a minimization of support rod crosssectional area while ensuring that the resultant envelope Will not contact the slow-wave structure 12.
  • An envelope for forming a sealed encasement of a device having given material extending along the perimeter of the device in a predetermined direction said envelope having thermal expansion properties essentially the same as that of said given material and comprising: a plurality of rst regions of a selected material disposed about the perimeter of said given material and intersecting a line parallel to said predetermined direction at spaced locations therealong, each of said first regions having a predetermined extent along said line and being spaced rfrom the next successive rst region by a predetermined spacing along said line, a plurality of second regions of a material rdiiferent from said selected material disposed about the perimeter of said given material between successive ones of said rst regions, said second regions being sealed to said lirst regions and to said given material, and the relative extent of said rst and second regions along said line lbeing such that the net dimensional change of a portion of said envelope extending along said line over a length equal to the total extent of one of each of said first and
  • An assembly for supporting and encasing a slowwave structure extending longitudinally along a predetermined direction comprising: a plurality of rods of a iirst material disposed about the perimeter of said slowwave structure and extending parallel to said predetermined direction, said rods being bonded to said slow-wave structure, a tape of a second material having a predetermined width wound about said rods in helix-like configuration with a predetermined pitch greater than said predeter ⁇ mined width, a third material disposed between the windings of said tape, said third material being bonded to said rods and to said tape, and said predetermined pitch being so related to said predetermined width that the net dimensional change of a portion of said second and third materials extending along said predetermined direction over a length equal to said pitch is essentially equal to the dimensional change of an equal length portion of said rods for a given change in temperature.
  • An assembly for supporting and encasing a slow- -wave structure extending longitudinally along a predetermined direction comprising: a plurality of rods of a first, material disposed about the perimeter of said slowwave structure and extending parallel to said predetermined direction, said rods being bonded to said slow-wave structure, a tape of a second material having a predetermined width wound about said rods in helix-like configuration with a predetermined spacing between successive windings of said tape, a third material disposed between the windings of said tape, said third material being bonded to said rods and to said tape, and the ratio of said predetermined spacing to said predetermined width being equal to the ratio of the difference between the respective thermal coefficients of expansion of said second and first materials to the difference between the respective thermal coefiicients of expansion of said first and third materials.
  • An assembly for supporting and encasing a slowwave structure extending longitudinally along a predetermined direction comprising: a plurality of support rods disposed about the perimeter of said slow-wave structure and extending parallel to said predetermined direction, said rods being bonded to said slow-wave structure, iirst and second helix-like elements of different material contiguously wound about said rods, and said first and second helix-like elements having respective thermal coeicients of expansion greater and less than the thermal coefiicient of expansion of said rods by amounts so related to the relative extent of said helix-like elements along said predetermined direction that the net thermal coeicient of expansion of said helix-like elements is essentially equal to the thermal coeicient of expansion of said rods.
  • each of said rods has an essentially semicrcular cross-section and is so disposed that its curved surface contacts said slow-wave structure.

Landscapes

  • Laminated Bodies (AREA)

Description

3,435,273 HING Sheet March 25, 1969 J. B. KENNEDY SLOW-WAVE STRUCTURE ENCASING ENVELOPE WITH MATC THERMAL EXPANSION PROPERTIES Filed Feb. 23, 1956 March 25. 1969 B. KENNEDY 31,435,273
NVELO WITH MATCHING SLOW-WAVE STRUCTUR NCA G E THERMAL EXPA ON PROPE ES Filed Feb. 23, 1966 Sheet Of 2 United States Patent O Int. Cl. H01 1/96 U.S. Cl. 313-283 11 Claims ABSTRACT F THE DISCLOSURE In the disclosed enveloping barrel for a slow-wave structure-support rod assembly, a predetermined width tape of selected material is wound about the assembly in a helix-like configuration leaving a preselected spacing between successive windings of the tape. A filler material is disposed between the tape windings and is sealed to the tape and to the slow-wave structure support rods. The ller material has a thermal coefficient of expansion related to that of the tape material and to the tape width and spacing so as to provide a net thermal coeiicient of expansion essentially equal to that of the support rods.
This invention relates to the encasement of devices in an envelope having thermal expansion properties essentially the same as the device material. In particular, the invention relates to a sealed envelope for a slow-wave structure of the type used in a traveling-wave tube.
In electron beam tubes of the traveling-wave type, a stream of electrons is caused to interact with a propagating electromagnetic wave in a manner which amplities ,the electromagnetic wave energy. In order to achieve the desired interaction, the electromagnetic wave is propagated along a slow-wave structure, such as an electrically conductive helix wound about the path of the electron stream. The slow-wave structure provides a path of propagation for the electromagnetic wave which is considerably longer than the axial length of the structure so that the travelingawave may be made to effectively propagate at nearly the velocity of the electron stream. Slowwave structures of the helix type are usually supported Within a vacuum envelope by means of a plurality of equally circumferentially spaced electrically insulating rods disposed between the slow-wave structure and the envelope.
A method which has been used to mount a slow-wave structure and its support rods within the envelope involves making the envelope in the form of a resilient tubular metallic clamp. The cross-section of the clamp is initially circular, with a cross-sectional area greater than that of the structure-rod assembly to be inserted within the clamp, but with a normal diameter which is less than that of the circle circumscribing the structure-rod assembly. The clamp is first distorted by forces applied at a number of points corresponding to the number of rods so as to produce a geometric configuration more nearly identical to that of the structure-rod assembly. The structure-rod assembly is then inserted into the distorted clamp with the rods intermediate the points of application of the forces. Upon removal of the distorting forces, the clamp 3,435,273 Patented Mar. 25, 1969 ICC restores itself to nearly its original circular shape, and in doing so compresses the rods and the slow-Wave structure into a rigid assembly.
Since, with slow-wave structure assemblies made in accordance with ,the foregoing technique, the envelope and the support rods are merely in abutting ycontact |with one another rather than being bonded or fused together, relatively poor heat transfer properties are provided between the rods and the envelope. Moreover, with such an arrangement it is ditiicult to obtain uniform thermal interfaces between the rods and the envelope not only for different similarly dimensioned tubes of the same configuration, but even throughout a single individual tube, because slight dimensional irregularities can result in substantial changes in heat transfer properties.
Attempts have been made to improve the thermal properties of rod-envelope interfaces by brazing the envelope to the support rods. However, since the envelope material differs from the material comprising the support rods, differences in the thermal coelicients of expansion of the two materials subject the rods to tensile or compressive stresses when the assembly is exposed to significant temperature changes such as those which occur during the cooling period subsequent to the brazing operation. Such stresses can result in breakage of the support rods, especially for some of the longer slow-wave structures presently being used.
Accordingly, it is an object of the present invention to provide an envelope for encasing a slow-wave structure and its support rods in a manner providing improved heat transfer properties between the envelope and the support rods, while at the same time minimizing any tendency for breakage of the support rods as a result of temperature-A induced stresses.
It is a further object of the present invention to provide an envelope for encasing a device, such as a plurality of support rods disposed about a slow-wave structure, having given material extending along the perimeter of the device, and which envelope is especially constructed to possess thermal expansion properties essentially the same as the given material.
It is a still further object of the present invention to provide a slow-wave structure mounting and encasing assembly which has more uniform heat transfer properties throughout both a given individual assembly and different similarly dimensioned assemblies of the same configuration than has been achievable with the prior art.
It is still another object of the present invention to provide an envelope for an assembly of a plurality of support rods circumferentially disposed about a slow-Wave structure, and which envelope possesses a smaller crosssectional area than that required by prior art envelopes for the same-sized assembly, thereby allowing greater magnetic focusing fields to be provided in the slow-wave structure region.
In accordance with the objects outlined above, the present invention provides a sealed encasement of a device having given material extending along the perimeter of the device in a predetermined direction in an envelope having thermal expansion properties essentially the same as that of the given material. The envelope includes a plurality of first regions of a selected material disposed about the perimeter of the given material and intersecting a line parallel to the predetermined direction at spaced locations along the line. Each of the first regions has a predetermined extent along the line and is spaced from the next successive rst region by a predetermined spacing along the line. A plurality of second regions of a material different from the selected material are disposed about the perimeter of the given material between successive ones of the iirst regions, the second regions being sealed to the rst regions and to the given material. The relative extent of the rst and second regions along the aforesaid line is such that the net thermal coefficient of expansion of the envelope is essentially equal to the thermal coefcient of expansion of the given material.
In fabricating an envelope in accordance with the present invention, at least a portion of the outer surface of the given material is rst metallized. A strip of predetermined width of a material having a predetermined thermal coeicient of expansion is wound around the metallized surface of the given material in a manner leaving a preselected spacing between successive windings of the strip. A layer of liller material having a thermal coecient of expansion related to the thermal coefcient of expansion of the strip material and to the strip width and the preselected spacing so as to provide the desired net thermal coefficient of expansion for the envelope is then applied over the windings of the strip and outwardly facing metallized surfaces of the given material not covered by the strip. The assembly is then heated to a temperature sufficient to melt the filler material, after which it is cooled to allow the ller material intermediate the windings of the strip to become sealed to the strip and to the given material.
Additional objects, advantages and characteristic features of the present invention will become readily apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings in which:
IFIG. l is a simplied diagrammatic illustration of apparatus which may be employed in making an envelope for a slow-wave structure assembly in accordance with the present invention;
FIG. 2 is a longitudinal view, partly broken away into section, of a portion of the apparatus of FIG. l;
lFIG. 3 is a cross-sectional view taken along line 3-3 of FIG. 2;
FIG. 4 is a cross-sectional view of an encased slow- Wave structure assembly provided in accordance with the present invention; and
FIG. 5 is a longitudinal view, with the envelope shown in section, of the assembly of FIG. 4.
Referring to FIG. l with greater particularity, apparatus for encasing a slow-wave structure in accordance with the principles of the present invention may be seen to include a mandrel 1G on which there is carried a slowwave structure 12 to be encased. Although the slow-wave structure .12 is illustrated as a simple helix, it is to be understood that the principles of the present invention are equally applicable to the encasement of the other forms of slow-wave structures, for example, contrawouud helices, cloverleaf structures, ring-bar structures, etc. Disposed about the slow-wave structure 12 at equally spaced circumferential locations therearound are a plurality of support rods 14 of dielectric material such as ceramic extending in a direction parallel to the mandrel 10. The support rods 14 are secured to the slow-wave structure 12, for example, by brazing, prior to mounting the assembly comprising the slow-Wave structure 12 and the rods 14 on the mandrel 10. It is pointed out that although the assembly is illustrated as having four support rods 14, the principles of the present invention are equally applicable to encasing slow-wave structure assemblies having any number of support rods not less than three.
The assembly comprising the slow-wave structure 12 and the support rods 14 is securely held on the mandrel -10 by a pair of identical collars 16 and 18 disposed at opposite ends of the assembly, the mounting of the assembly within the collars 16 and 18 being illustrated more fully in FIGS. 2 and 3. As is shown in FIG. 2, the collar 16 denes a cylindrical bore 20 extending longitudinally through the collar 16. The bore 20 has a diameter suicient to snugly accommodate the mandrel 10, and a radial set screw 22 is provided in the collar 16 to secure the collar 16 to the mandrel 10. The longitudinal bore 20 has a portion 24 of enlarged diameter in a region adjacent the inner end surface of the collar y16, the diameter of the enlarged portion 24 being suflicient to accommodate the slow-wave structure 12. A plurality of radially extending indentations, or recesses, 26 (FIG. 3) are provided along the circumferential surface of the enlarged bore portion 24. The number, extent, and location of the indentations 26 are selected so as to snugly accommodate the desired number, dimensions and locations of the support rods 14.
The end of the mandrel 10 extending beyond the collar -16 is journaled in a bore 28 through a support member 30. Similarly, the opposite end of the mandrel 10 which extends beyond the collar 18 is journaled in a bore 32 through a support member 34. The mandrel ,10I is driven from a motor 36 by means of suitable gearing 37.
Also driven from the motor 36 by means of suitable gearing 38 is a threaded rod 40 mounted parallel to and substantially coextensive with the mandrel 10. The ends of the rod 40 are journaled in respective bores 42 and 44 through support members 46 and 48, respectively. A spoollike dispenser 50 containing envelope-forming tape 52 in rolled form is mounted on the threaded rod 40. The dispenser 50 is provided with a threaded axial bore, the threads of which mesh with the threads of the rod 40 so that when the rod 40 is rotated in the direction indicated in FIG. l the dispenser 50 is moved longitudinally along the rod 40 from the support 48 toward the support 46.
As has been indicated above, it is desired that the resultant envelope for the slow-wave structure assembly possess thermal expansion properties which are the same as that of the support rods 14. This is accomplished in accordance with the principles of the present invention by constructing the envelope in the form of a helix-like winding of a tape 54 of a selected material, with a predetermined spacing S being provided between successive windings of the tape 54, and with a filler material 56 (FIG. 5) disposed in the space between the windings of the tape 54. The tape 54 has a width W and is wound about the support rod 14 with a pitch P (the axial distance in which the tape 54 makes one complete revolution about the mandrel 10) which is greater than the tape width W by the spacing S. The material comprising one portion of the envelope (winding 54 or filler 56) has -a thermal ooeicient of expansion greater than that of the rods 14, while the material used for the other portion of the envelope has a thermal coefcient of expansion less than that of the rods 14. The relative width W of the tape 54 and the spacing S between the tape windings are selected so that the net dimensional change of a portion of the composite envelope 54, 56 extending in a direction parallel to the rods 14 over a length equal to the pitch P is essentially equal to the dimensional change of an equal length portion of the rods 14 for a given change in temperature.
The desired interrelationship between the spacing S and the tape width W in terms of the thermal coefficients of expansion of the materials used may be determined as follows. As the temperature of a material is raised from an initial temperature T1 to a higher temperature T2, the material undergoes an expansion per unit length e given by i erelug-:111) (l) where a is the thermal coeicient of expansion of the material in expansion per unit length per degree centigrade. As may be readily seen from FIG. 5, at the initial temperature T1 the tape width W and spacing S satisfy the relationship W-l-SzP (2) However, when the temperature is raised from T1 to T2, the tape 54 will undergo an expansion eT, the iiller material 56 will undergo an expansion eF, and the rods 14 will undergo an expansion eR. Thus, at the temperature T2 the relationship becomes Substituting Equation 2 into Equation 3, and solving for the ratio S/ W gives Then, substituting Equation 1 into Equation 4 yields ctT-rxg W- (5) which is the desired relationship between the ratio of the spacing S to the tape width W in terms of the thermal coefficients of expansion aT, an, and aF for te tape material, the rod material, and the iiller material respectively. It may be observed from Equation 5 that as long as one of the coefficients aT or aF is greater than the coelicient R and the other of the coefficients aT or aF is less than aR, the ratio S/ W is positive.
As an example of a particular combination of materials which may be employed in forming an envelope in accordance with the principles of the present invention, molybdenum may be used for the tape 54, beryllia for the rods 14, and copper for the filler material 56. Using as the respective thermal coeicients of expansion for molybdenum, beryllia and copper values of 6.3Xl-6, 8.9)(10"6 and 20.3 l06 per C., respectively, and substituting these values for the respective quantities aT, @R and ap in Equation yields a value of .21 for the desired ratio of spacing S to tape width W. A molybdenum tape having a width W of .012 inch, for example, would thus be wound so as to leave a spacing S of .0025 inch between the tape windings. It is pointed out that the specific materials and dimensions set forth above are given solely for purposes of illustration, and other materials and different dimensions are also suitable so long as Equation 5 is satisfied.
When using the apparatus of FIG. l to fabricate a slowwave structure envelope in accordance with the principles discussed above, the helix-like winding 54 may be formed from the tape 52 dispensed from the spool-like dispenser 50. The gearing 37 and 38 and the thread pitch of the threaded rod 40 are selected so that the dispenser 50 moves longitudinally by an amount equal to the desired pitch P for each complete revolution of the mandrel 10. For example, if the threads of the rod 40 are constructed with a pitch equal to the desired pitch P, then the gearing 37 and 38 is made to rotate the rod 40 at the same rate as the mandrel whereas if the threads of the rod 40 have a pitch equal to twice the desired pitch P, then the gearing 37 and 38 is caused to rotate the rod 40 at a rate equal to half the rate of rotation of the mandrel 10.
In carrying out the encasement of a slow-wave structure and its support rods in accordance with the method of the present invention, a longitudinally extending portion of the surface of each of the rods 14 is rst metallized, with a coating of a molybdenum-manganese mixture, for example, to permit the subsequent brazing of the envelope to the rods. The surface of each of rods 14 essentially circumferentially opposite the metallized portion is then bonded to the slow-wave structure 12 by conventional methods, such as brazing. The assembly is then inserted on the mandrel 10, with the rods 14 fitting into the recesses 26 in the collars 16 and 18, and the set screws 22 are tightened to rigidly secure the assembly to the mandrel 10.
The ldispenser 50 which has been filled With a roll of tape 52 of suitable material is moved to the end of the rod 40 adjacent the support 48, and the end of the tape 52 projecting out of the dispenser 50 is secured to one of the rods 14 at a point adjacent the collar 18. The motor 36 is then turned on to rotate the mandrel 10 and the threaded rod 40. The dispenser 50 moves longitudinally along the rod 40 toward the support 46, causing the tape 52 to be Wound about the rods 14 and form the helix-like configuration 54 of the desired pitch P. When the tape 52 has reached the end of the rods adjacent the collar 16 the motor is stopped, and the end of the tape is secured to one of the rods 14.
The assembly consisting of the rods 14, the slow-wave structure 12 and the wound tape 54 is removed from the apparatus and is covered with a layer of the desired ller material 56. One method for applying the ller material 56 to the assembly is to wrap a sheet of the material 56 around the outer surfaces of the wound tape 54. An alternate method involves spraying the ller material uniformly over the wound tape 54 and outwardly facing surfaces of the rods 14 not covered by the tape 54.
'llhe assembly is then heated in an inert or a reducing atmosphere, for example hydrogen gas, to a temperature slightly albove the melting point of the filler material 56 to cause the filler material to melt and ow into the space between the windings of the tape 54. The assembly is then cooled to solidify the molten ller material and thereby bond the wound tape 54 to the rods 14 in vacuum tight relationship. As a result of selection of materials having thermal coefficients of expansion in accordance with Equation 5, the space between the windings of the tape S4 is lled with a material which provides an envelope having a net thermal coeicient of expansion equal to the thermal coefficient of expansion of the rods 14.
A completed envelope formed in accordance with the present invention is shown in FIGS. 4 and 5. Althoulgh the support rods 14 are illustrated in FIG. 4 as being semi-circular in cross-section, with their curved surfaces contacting the slow-wave structure 12, it is pointed out that support rods of other cross-sections such a circular may be employed instead. The illustrated configuration, however, does afford a minimization of support rod crosssectional area while ensuring that the resultant envelope Will not contact the slow-wave structure 12.
It will fbe apparent that while the present invention is particularly suited to encasing a slow-wave structure and its support rods in a vacuum envelope, the principles of the invention may be employed to encase any device having a given material extending `along the perimeter of the device in an envelope having essentially the same thermal expansion properties as the given material. Thus, although the invention has been shown and described with reference to a specific method, apparatus, and resultant device, nevertheless various changes and modifications obvious to a person skilled in the art to which the invention pertains are deemed to lie Within the spirit and scope of the invention as set forth in the appended claims.
What is claimed is:
1. An envelope for forming a sealed encasement of a device having given material extending along the perimeter of the device in a predetermined direction, said envelope having thermal expansion properties essentially the same as that of said given material and comprising: a plurality of rst regions of a selected material disposed about the perimeter of said given material and intersecting a line parallel to said predetermined direction at spaced locations therealong, each of said first regions having a predetermined extent along said line and being spaced rfrom the next successive rst region by a predetermined spacing along said line, a plurality of second regions of a material rdiiferent from said selected material disposed about the perimeter of said given material between successive ones of said rst regions, said second regions being sealed to said lirst regions and to said given material, and the relative extent of said rst and second regions along said line lbeing such that the net dimensional change of a portion of said envelope extending along said line over a length equal to the total extent of one of each of said first and second regions along said line is essentially equal to the dimensional change of an equal length portion of said given material for a given change in temperature.
2. An envelope for forming a sealed encasement of a device having given material extending along the perimeter of the device in a predetermined direction, said envelope lhaving thermal expansion properties essentially the same as that of said given material and comprising:V a plurality of first regions of a selected material disposed about the perimeter of said given material and intersecting a line parallel to said predetermined direction at spaced locations therealong, each of said dirst regions having a predetermined extent along said line and being spaced from the next successive first region by a predetermined spacing along said line, a plurality of second regions of a material different from said selected material disposed about the perimeter of said given material between successive ones of said first regions, said second regions being sealed to said first regions and to said given material, and the ratio of said predetermined spacing to said predetermined extent Ibeing equal to the ratio of the difference lbetween the respective thermal coetiicients of expansion of said selected and said `given materials to the difference between the respective thermal coefficients of expansion of said given and said different materials.
3. An envelope for forming a sealed encasement of a device having given material extending along the perimeter of the device in a predetermined direction, said envelope having thermal expansion properties essentially the same as that of said given material and comprising: a plurality of iirst regions of a selected material disposed about the perimeter of said given material and intersecting a line parallel to said predetermined direction at spaced locations therealong, each of said iirst regions having a predetermined extent along said line and being spaced from the next successive first region by a predetermined spacing along said line, a plurality of second regions of a material different from said selected material disposed about the perimeter of said given material between successive ones of said first regions, said second regions being sealed to said first regions and to said given material, and said selected and said different materials having respective thermal coetlicients of expansion differing from the thermal coefiicient of expansion of said given material by amounts so related to the relative extent of said first and second regions along said line that the net thermal coefiicient of expansion of said envelope is essentially equal to the thermal coefiicient of expansion of said given material.
4. An envelope for forming a sealed encasement of a device having given material extending along the perimeter of the device in a predetermined direction, said envelope having thermal expansion properties essentially the same as that of said given material and comprising: a tape of selected material having a predetermined width wound about said given material in helix-like configuration with a predetermined pitch greater than said predetermined width, a filler material disposed between the windings of said tape and being sealed to said given material and to said tape, and said predetermined pitch being so related to said predetermined width that the net dimensional change of a portion of said envelope extending along said predetermined direction over a length equal to said pitch is essentially equal to the dimensional change of an equal length portion of said given material for a given change in temperature.
5. An envelope for forming a sealed encasement of a device having given material extending along the perimeter of the device in a predetermined direction, said er1- velope having thermal expansion properties essentially the same as that of said given material and comprising: a tape of selected material having a predetermined width wound about said given material in helix-like configuration with a predetermined spacing between successive windings of said tape, a filler material disposed between the windings of said tape and being sealed to said given material and to said tape, and the ratio of said predetermined spacing to said predetermined width being equal to the ratio of the difference between the respective thermal coefficients of expansion of said selected and said given materials to the difference between the respective thermal coefiicients of expansion of said given and said filler materials.
6. An envelope for forming a sealed encasement of a device having given material extending along the perimeter of the device in a predetermined direction, said envelope having thermal expansion properties essentially the same as that of said given material and comprising: first and second helix-like elements of dierent material contiguously wound about said given material, and said first and second helix-like elements having respective thermal coefficients of expansion greater and less than the thermal coetiicient of expansion of said given material by amounts so related to the relative extent of said helix-like elements along said predetermined direction that the net thermal coefiicient of expansion of said envelope is essentially equal to the thermal coeicient of expansion of said given material.
7. An assembly for supporting and encasing a slowwave structure extending longitudinally along a predetermined direction comprising: a plurality of rods of a iirst material disposed about the perimeter of said slowwave structure and extending parallel to said predetermined direction, said rods being bonded to said slow-wave structure, a tape of a second material having a predetermined width wound about said rods in helix-like configuration with a predetermined pitch greater than said predeter` mined width, a third material disposed between the windings of said tape, said third material being bonded to said rods and to said tape, and said predetermined pitch being so related to said predetermined width that the net dimensional change of a portion of said second and third materials extending along said predetermined direction over a length equal to said pitch is essentially equal to the dimensional change of an equal length portion of said rods for a given change in temperature.
8. An assembly for supporting and encasing a slow- -wave structure extending longitudinally along a predetermined direction comprising: a plurality of rods of a first, material disposed about the perimeter of said slowwave structure and extending parallel to said predetermined direction, said rods being bonded to said slow-wave structure, a tape of a second material having a predetermined width wound about said rods in helix-like configuration with a predetermined spacing between successive windings of said tape, a third material disposed between the windings of said tape, said third material being bonded to said rods and to said tape, and the ratio of said predetermined spacing to said predetermined width being equal to the ratio of the difference between the respective thermal coefficients of expansion of said second and first materials to the difference between the respective thermal coefiicients of expansion of said first and third materials.
9. An assembly for supporting and encasing a slowwave structure extending longitudinally along a predetermined direction comprising: a plurality of support rods disposed about the perimeter of said slow-wave structure and extending parallel to said predetermined direction, said rods being bonded to said slow-wave structure, iirst and second helix-like elements of different material contiguously wound about said rods, and said first and second helix-like elements having respective thermal coeicients of expansion greater and less than the thermal coefiicient of expansion of said rods by amounts so related to the relative extent of said helix-like elements along said predetermined direction that the net thermal coeicient of expansion of said helix-like elements is essentially equal to the thermal coeicient of expansion of said rods.
10. An assembly according to claim 8 wherein said first material is beryllia, said second material is molybdenum, and said third material is copper` 9 11. An assembly according to claim 8 wherein each of said rods has an essentially semicrcular cross-section and is so disposed that its curved surface contacts said slow-wave structure.
References Cited UNTED STATES PATENTS 4/1955 Best 313-283 X 10 FOREIGN PATENTS 1,200,216 6/1959 France.
JOHN W. HUCKERT, Primary Examiner. 5 A. I. JAMES, Assistant Examiner.
U.S. C1. X.R.
US529517A 1966-02-23 1966-02-23 Slow-wave structure encasing envelope with matching thermal expansion properties Expired - Lifetime US3435273A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US52951766A 1966-02-23 1966-02-23

Publications (1)

Publication Number Publication Date
US3435273A true US3435273A (en) 1969-03-25

Family

ID=24110231

Family Applications (1)

Application Number Title Priority Date Filing Date
US529517A Expired - Lifetime US3435273A (en) 1966-02-23 1966-02-23 Slow-wave structure encasing envelope with matching thermal expansion properties

Country Status (1)

Country Link
US (1) US3435273A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3548345A (en) * 1966-09-15 1970-12-15 Hughes Aircraft Co Brazed dielectric-to-metal joints for slow-wave structure assemblies
US3903449A (en) * 1974-06-13 1975-09-02 Varian Associates Anisotropic shell loading of high power helix traveling wave tubes
US4178533A (en) * 1976-09-21 1979-12-11 Thomson-Csf Microwave delay line for travelling wave tube
US4270069A (en) * 1978-08-03 1981-05-26 Siemens Aktiengesellschaft Traveling wave tube and method of making same
US4278914A (en) * 1979-10-18 1981-07-14 The United States Of America As Represented By The Secretary Of The Navy Diamond supported helix assembly and method
US4358705A (en) * 1980-01-31 1982-11-09 Siemens Aktiengesellschaft Supporting system for the delay line of a travelling wave tube

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2706366A (en) * 1950-11-25 1955-04-19 Bell Telephone Labor Inc Method of constructing a helix assembly
FR1200216A (en) * 1957-02-23 1959-12-18 Rohrenwerk Castrop G M B H Multi-layered metal tube
US3300677A (en) * 1962-03-30 1967-01-24 Rca Corp Electrode mount and method of manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2706366A (en) * 1950-11-25 1955-04-19 Bell Telephone Labor Inc Method of constructing a helix assembly
FR1200216A (en) * 1957-02-23 1959-12-18 Rohrenwerk Castrop G M B H Multi-layered metal tube
US3300677A (en) * 1962-03-30 1967-01-24 Rca Corp Electrode mount and method of manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3548345A (en) * 1966-09-15 1970-12-15 Hughes Aircraft Co Brazed dielectric-to-metal joints for slow-wave structure assemblies
US3903449A (en) * 1974-06-13 1975-09-02 Varian Associates Anisotropic shell loading of high power helix traveling wave tubes
US4178533A (en) * 1976-09-21 1979-12-11 Thomson-Csf Microwave delay line for travelling wave tube
US4270069A (en) * 1978-08-03 1981-05-26 Siemens Aktiengesellschaft Traveling wave tube and method of making same
US4278914A (en) * 1979-10-18 1981-07-14 The United States Of America As Represented By The Secretary Of The Navy Diamond supported helix assembly and method
US4358705A (en) * 1980-01-31 1982-11-09 Siemens Aktiengesellschaft Supporting system for the delay line of a travelling wave tube

Similar Documents

Publication Publication Date Title
US3692637A (en) Method of fabricating a hollow structure having cooling channels
US3813764A (en) Method of producing laminated pancake type superconductive magnets
US2499977A (en) Method of forming grid-like structures
US2905919A (en) Electric heating cables
US3496622A (en) Method of manufacturing superconductive nb3sn-wrapped wire
US3435273A (en) Slow-wave structure encasing envelope with matching thermal expansion properties
US4161062A (en) Method for producing hollow superconducting cables
US3607447A (en) Nonwelded thermocouple junctions
US5173669A (en) Slow-wave structure having block supported helix structure
US4278914A (en) Diamond supported helix assembly and method
GB1360720A (en) Tubular thermal insulation
US3271615A (en) Traveling wave electron discharge device having means exerting a radial force upon the envelope
US3473217A (en) Manufacture of superconductors
KR19990023988A (en) Coaxial high frequency cable
US2845690A (en) Electrical components and methods
US3500534A (en) Method of making a slow-wave structure encasement
US4270069A (en) Traveling wave tube and method of making same
US5006671A (en) Glass-clad superconducting wire
CA1121858A (en) Electron multiplier device
US3624678A (en) Method for making dielectric-to-metal joints for slow-wave structure assemblies
US3475643A (en) Ceramic supported slow wave circuits with the ceramic support bonded to both the circuit and surrounding envelope
US3306793A (en) Method of making coaxial cables
US3601720A (en) Helical waveguide with varied wall impedance zones
US1213881A (en) Sheathed wire and terminal therefor.
US3548345A (en) Brazed dielectric-to-metal joints for slow-wave structure assemblies