US3434961A - Production of liquefied petroleum gas from olefin hydrogenation during catalytic reforming - Google Patents
Production of liquefied petroleum gas from olefin hydrogenation during catalytic reforming Download PDFInfo
- Publication number
- US3434961A US3434961A US653454A US3434961DA US3434961A US 3434961 A US3434961 A US 3434961A US 653454 A US653454 A US 653454A US 3434961D A US3434961D A US 3434961DA US 3434961 A US3434961 A US 3434961A
- Authority
- US
- United States
- Prior art keywords
- hydroforming
- naphtha
- olefins
- liquefied petroleum
- feed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 150000001336 alkenes Chemical class 0.000 title description 36
- 239000003915 liquefied petroleum gas Substances 0.000 title description 11
- 238000004519 manufacturing process Methods 0.000 title description 8
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 title description 8
- 238000001833 catalytic reforming Methods 0.000 title description 3
- 238000005984 hydrogenation reaction Methods 0.000 title description 2
- 238000000034 method Methods 0.000 description 27
- 239000003054 catalyst Substances 0.000 description 16
- 239000001257 hydrogen Substances 0.000 description 16
- 229910052739 hydrogen Inorganic materials 0.000 description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 15
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 15
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 13
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 12
- 229920006395 saturated elastomer Polymers 0.000 description 10
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- 238000009835 boiling Methods 0.000 description 6
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 6
- 239000001294 propane Substances 0.000 description 6
- 239000012530 fluid Substances 0.000 description 5
- 125000001931 aliphatic group Chemical group 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000002407 reforming Methods 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000011874 heated mixture Substances 0.000 description 2
- 208000003173 lipoprotein glomerulopathy Diseases 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005899 aromatization reaction Methods 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 235000013844 butane Nutrition 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical class CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/02—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
- C07C5/03—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/02—Boron or aluminium; Oxides or hydroxides thereof
- C07C2521/04—Alumina
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
- C07C2523/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
- C07C2523/42—Platinum
Definitions
- the present invention relates to a method for producing liquefied petroleum gases by injecting normally gaseous olefins directly into a catalytic reformer with a conventional naphtha feed without decreasing the space velocity of the feed.
- the invention is thus related to the petroleum processing or petroleum refinery field.
- Hydrofor-ming is a process used to increase the octane number of hydrocarbon fractions boiling in the naphtha boiling range.
- Hydroforming has been defined as an operation conducted at elevated temperatures and pressures in which the naphtha feed is contacted with a solid catalytic material in the presence of hydrogen. The process is so operated that there is usually a net production of hydrogen. Hydrogen produced may be recycled.
- hydroforming will be used to refer to the process of catalytic reforming in the presence of hydrogen.
- fixed bed hydroforming there are two principal methods of hydroforming. These methods are referred to as fixed bed hydroforming and fluid hydroforming.
- the fixed bed method of hydroforming the usual procedure is to pass a naphtha feed mixed with hydrogen rich gas successively through a bank or group of reactors with reheating of the reaction mixture between each reactor.
- Such a hydroforming system normally comprises three or four reactors operating in series and the system may be regenerative, semiregenerative, or nonregenerative.
- the fluid bed method of hydroforming consists of only one reactor zone or vessel and utilizes the fluid solids technique to maintain circulation of the finely divided catalyst particles between the reactor and regenerator. It is to be understood that the present invention may be utilized in either the fixed bed or fluid bed method of hydroforming.
- the reforming of straight-nun gasolines or naphthas is endothermic, but the degree of endothermicity depends primarily upon the extent of conversion, particularly the relevant amounts of hydrocracking, which is exothermic, and aromatization, which is endothermic.
- the over-all temperature drop can be as much as 200 F. or more.
- the object of this invention is to provide a method for producing saturated aliphatic hydrocarbons from normally gaseous olefins by injecting such olefins into a hydroforming zone together with the conventional hydroformer feed.
- the saturated aliphatic hydrocarbons so produced are suitable for use as liquefied petroleum gas.
- saturated aliphatic hydrocarbons may be produced by injecting normally gaseous olefins into the hydroformer or hydroforming zone with a conventional naphtha feed without a decrease in space velocity of the feed. Almost complete conversion of the normally gaseous olefins is obtained in this manner. The octane number of the reformate is increased even when the overall space velocity is increased. The heat from hydrogenation of the normally gaseous olefins compensates partly for the temperature drop caused by the dehydrogenation of naphthenes during reforming. Smaller furnaces may thus the used for reheating during the hydroforming process.
- Singular features of this invention are the use of one conventional hydroforming catalyst to carry out two reactions in the hydroforming zone and the use of normally gaseous olefins, which the prior art taught were undesirable in the hydroformer process, to produce saturated aliphatics for LPG production with an increase in the quantity and quality of the naphtha yield.
- This process enables a refiner to produce liquefied petroleum gases from normally gaseous olefin streams available in the refinery without large additional capital investment.
- the great demand for liquefied petroleum gases usually a seasonal demand, can thus be met using existing streams in the refinery without the necessity for constructing special equipment for this process, since hydroforming is a process generally found in refineries today, especially refineries geared to the production of high octane gasolines.
- This invention is of special utility since an additional product can be produced with existing equipment with an actual increase in the efficiency of the normal hydroforming process.
- Reactor 7 will be referred to as a fixed bed type reactor, but this in no way limits the scope of the invention.
- a hydrofined or low sulfur naphtha fraction, boiling in the range of 400 F. is introduced into line 2.
- hydrogen or hydrogen rich recycle gas is introduced into line 2 by means of line 4, and normally gaeous olefins are introduced into line 2 by means of line 3.
- This mixture passes through line 2 and enters furnace 5 where it is heated to a temperature of about 900 to about 1000 F.
- the heated mixture passes through line 6 to reactor 7 wherein the heated mixture contacts a fixed bed of platinum on alumina-based catalyst contained in the reactor.
- the temperature, pressure and other operating conditions in reactor 7, which will be hereinafter described, are adjusted to secure a hydroforming operation.
- the hydroformed mixture leaves reactor 7 via line 8 and is cooled and partially condensed in cooler 9. From cooler 9, the hydroformate is introduced into separator 11 via line 10 where hydrogen containing gas which passes out the top is separated from the remaining mixture of liquid product. The hydrogen-containing gas passes out of separator 10 through line 4 and is recycled to line 2.
- the liquid from separator 11 passes through line 13 to depropanizer 17 where the saturated aliphatic hydrocarbons and lighter materials suitable for liquefied petroleum gas manufacture are withdrawn overhead through line 15.
- the liquid material remaining in depropanizer 14 is passed via line 16 to debutanizer 17 where butanes are separated and withdrawn via line 18.
- the debutanized reformate is withdrawn via line 19.
- the feedstock which is used in the present invention is a naphtha fraction boiling in the range of 140 to 400 F.
- the naphtha fraction may be virgin naphtha, cracked naphtha or paraffinic naphtha. It is usually preferred that the feedstock be hydrofined or at least that the sulfur content of the feed to the hydroformer be kept at a level which does not poison the hydroformer catalyst.
- the catalyst used in this invention is a platinum catalyst supported on an acidic alumina base.
- the acidity of the base of this catalyst is equivalent to from 0 to about 0.5 wt. percent chlorine based on the total catalyst composition.
- a commonly used composition of a catalyst used in normal hydroforming operation is one containing from 0.001 to 2.0 wt. percent platinum, 0.5 to 1.5 wt. percent chlorine and the remainder an absorptive alumina spacing agent or base.
- the catalyst may be made by methods known to the art. The process of the present invention may be more fully understood by the following examples illustrating the same.
- Table II shows a propylene balance for the three operating temperatures assuming that the addition of propylene did not change the C yield from virgin naphtha. About wt. percent of the propylene was recovered as propane. The remainder could be attributed to increase in C C C and C reformate.
- Table III presents a hydrogen balance. As expected, the addition of propylene reduced the hydrogen yield. The measured decrease in hydrogen yield agreed well with the calculated amount of hydrogen required to saturate the portion of propylene that was recovered as propane.
- olefins in the C C range are preferred, since the best quality LPGs are most efficiently produced from the saturated aliphatics produced from such olefins.
- this invention shows a method of converting normally gaseous olefins to saturated aliphatic hydrocarbons which can then be converted to liquefied petroleum gases.
- This invention requires no additional capital expenditure in the normal refinery and enables desirable liquefied petroleum gas products to be produced without adversely affecting yields of high octane gasoline.
- olefins such as ethylene and butylenes may be employed.
- the purity of the gaseous olefin is not critical. Mixtures of olefins which may also contain paraflins can also be processed by this invention.
- a process for converting normally gaseous olefins to the corresponding saturated aliphatic hydrocarbons which comprises injecting a feedstream comprising said olefins and naphtha into a hydroforming zone under hydroforming conditions in the presence of a hydroforming catalyst to convert the olefins to said saturated aliphatic hydrocarbons, and then separating said saturated aliphatic hydrocarbons from the hydroformate produced in the hydroforming zone.
- hydroforming conditions comprise a temperature of from about 600 to about 950 F. and a pressure of from about atmospheric to about 1500' p.s.i.g.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US65345467A | 1967-07-14 | 1967-07-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3434961A true US3434961A (en) | 1969-03-25 |
Family
ID=24620958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US653454A Expired - Lifetime US3434961A (en) | 1967-07-14 | 1967-07-14 | Production of liquefied petroleum gas from olefin hydrogenation during catalytic reforming |
Country Status (3)
Country | Link |
---|---|
US (1) | US3434961A (en:Method) |
BE (1) | BE718050A (en:Method) |
FR (1) | FR1572015A (en:Method) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2630404A (en) * | 1949-08-17 | 1953-03-03 | Universal Oil Prod Co | Hydrocarbon conversion process |
US2865837A (en) * | 1956-09-04 | 1958-12-23 | Exxon Research Engineering Co | Reforming hydrocarbons for enhanced yields |
US3156640A (en) * | 1960-09-09 | 1964-11-10 | Shell Oil Co | Combined hydroisomerization-desulfurization process |
US3248316A (en) * | 1963-05-01 | 1966-04-26 | Standard Oil Co | Combination process of hydrocracking and isomerization of hydrocarbons with the addition of olefins in the isomerization zone |
-
1967
- 1967-07-14 US US653454A patent/US3434961A/en not_active Expired - Lifetime
-
1968
- 1968-07-12 BE BE718050D patent/BE718050A/xx unknown
- 1968-07-12 FR FR1572015D patent/FR1572015A/fr not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2630404A (en) * | 1949-08-17 | 1953-03-03 | Universal Oil Prod Co | Hydrocarbon conversion process |
US2865837A (en) * | 1956-09-04 | 1958-12-23 | Exxon Research Engineering Co | Reforming hydrocarbons for enhanced yields |
US3156640A (en) * | 1960-09-09 | 1964-11-10 | Shell Oil Co | Combined hydroisomerization-desulfurization process |
US3248316A (en) * | 1963-05-01 | 1966-04-26 | Standard Oil Co | Combination process of hydrocracking and isomerization of hydrocarbons with the addition of olefins in the isomerization zone |
Also Published As
Publication number | Publication date |
---|---|
FR1572015A (en:Method) | 1969-06-20 |
BE718050A (en:Method) | 1969-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4457832A (en) | Combination catalytic reforming-isomerization process for upgrading naphtha | |
US4673488A (en) | Hydrocarbon-conversion process with fractionator overhead vapor recycle | |
US5401386A (en) | Reforming process for producing high-purity benzene | |
US4401554A (en) | Split stream reforming | |
US4058452A (en) | Alkylaromatic hydrocarbon dealkylation process | |
US2758064A (en) | Catalytic reforming of high nitrogen and sulfur content gasoline fractions | |
EP0083762B1 (en) | Recovery of c3+hydrocarbon conversion products and net excess hydrogen in a catalytic reforming process | |
US3018244A (en) | Combined isomerization and reforming process | |
US3520799A (en) | Purifying hydrogen separated from a catalytic reforming effluent | |
US4374726A (en) | Separation of hydrogen from a catalytic reforming zone effluent stream | |
US3006841A (en) | Hydrocarbon conversion process | |
US2490287A (en) | Upgrading of naphtha | |
US4174271A (en) | High severity reforming | |
US4222854A (en) | Catalytic reforming of naphtha fractions | |
US4333818A (en) | Separation of normally gaseous hydrocarbons from a catalytic reforming effluent and recovery of purified hydrogen | |
US2770578A (en) | Saturating of a hydrocarbon fraction with hydrogen and then hydrodesulfurizing said fraction | |
US4333820A (en) | Recovery of normally gaseous hydrocarbons from net excess hydrogen in a catalytic reforming process | |
US2773007A (en) | Process for hydrofining and reforming feed stocks | |
US3328289A (en) | Jet fuel production | |
US2985583A (en) | Catalytic reforming process | |
US4333817A (en) | Separation of normally gaseous hydrocarbons from a catalytic reforming effluent and recovery of purified hydrogen | |
US4333819A (en) | Separation and recovery of hydrogen and normally gaseous hydrocarbons from net excess hydrogen from a catalytic reforming process | |
US2889263A (en) | Hydroforming with hydrocracking of recycle paraffins | |
US3050456A (en) | Conversion process for the production of high octane number gasoline components | |
EA002641B1 (ru) | Способ получения компонентов моторных топлив |