US3433852A - Process for c6-c24 alkenes by pretreatment of phosphate catalysts - Google Patents
Process for c6-c24 alkenes by pretreatment of phosphate catalysts Download PDFInfo
- Publication number
- US3433852A US3433852A US592348A US3433852DA US3433852A US 3433852 A US3433852 A US 3433852A US 592348 A US592348 A US 592348A US 3433852D A US3433852D A US 3433852DA US 3433852 A US3433852 A US 3433852A
- Authority
- US
- United States
- Prior art keywords
- percent
- catalyst
- phosphate
- bed
- lhsv
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003054 catalyst Substances 0.000 title description 67
- 238000000034 method Methods 0.000 title description 48
- 150000001336 alkenes Chemical class 0.000 title description 28
- 229910019142 PO4 Inorganic materials 0.000 title description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 title description 5
- 239000010452 phosphate Substances 0.000 title description 5
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 29
- 239000000047 product Substances 0.000 description 27
- 229910000159 nickel phosphate Inorganic materials 0.000 description 24
- JOCJYBPHESYFOK-UHFFFAOYSA-K nickel(3+);phosphate Chemical compound [Ni+3].[O-]P([O-])([O-])=O JOCJYBPHESYFOK-UHFFFAOYSA-K 0.000 description 24
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 23
- 239000001506 calcium phosphate Substances 0.000 description 22
- 235000011010 calcium phosphates Nutrition 0.000 description 22
- 229910000389 calcium phosphate Inorganic materials 0.000 description 21
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 14
- 125000004432 carbon atom Chemical group C* 0.000 description 13
- GQDHEYWVLBJKBA-UHFFFAOYSA-H copper(ii) phosphate Chemical compound [Cu+2].[Cu+2].[Cu+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GQDHEYWVLBJKBA-UHFFFAOYSA-H 0.000 description 13
- 229930195733 hydrocarbon Natural products 0.000 description 13
- 150000002430 hydrocarbons Chemical class 0.000 description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 239000011575 calcium Substances 0.000 description 10
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 10
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 10
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 229910052791 calcium Inorganic materials 0.000 description 9
- 238000005336 cracking Methods 0.000 description 9
- 238000006356 dehydrogenation reaction Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 229940094933 n-dodecane Drugs 0.000 description 9
- 239000004215 Carbon black (E152) Substances 0.000 description 8
- CBFCDTFDPHXCNY-UHFFFAOYSA-N icosane Chemical compound CCCCCCCCCCCCCCCCCCCC CBFCDTFDPHXCNY-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000002131 composite material Substances 0.000 description 7
- RZJRJXONCZWCBN-UHFFFAOYSA-N octadecane Chemical compound CCCCCCCCCCCCCCCCCC RZJRJXONCZWCBN-UHFFFAOYSA-N 0.000 description 6
- YCOZIPAWZNQLMR-UHFFFAOYSA-N pentadecane Chemical compound CCCCCCCCCCCCCCC YCOZIPAWZNQLMR-UHFFFAOYSA-N 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- FIQNIRPYLPNUDK-UHFFFAOYSA-K calcium;nickel(2+);phosphate Chemical compound [Ca+2].[Ni+2].[O-]P([O-])([O-])=O FIQNIRPYLPNUDK-UHFFFAOYSA-K 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 4
- NDJKXXJCMXVBJW-UHFFFAOYSA-N heptadecane Chemical compound CCCCCCCCCCCCCCCCC NDJKXXJCMXVBJW-UHFFFAOYSA-N 0.000 description 4
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 4
- 239000012188 paraffin wax Substances 0.000 description 4
- POOSGDOYLQNASK-UHFFFAOYSA-N tetracosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCC POOSGDOYLQNASK-UHFFFAOYSA-N 0.000 description 4
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000004254 Ammonium phosphate Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 3
- 235000019289 ammonium phosphates Nutrition 0.000 description 3
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 150000005673 monoalkenes Chemical class 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- LAIUFBWHERIJIH-UHFFFAOYSA-N 3-Methylheptane Chemical compound CCCCC(C)CC LAIUFBWHERIJIH-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- LTEQMZWBSYACLV-UHFFFAOYSA-N Hexylbenzene Chemical compound CCCCCCC1=CC=CC=C1 LTEQMZWBSYACLV-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 239000001282 iso-butane Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910001463 metal phosphate Inorganic materials 0.000 description 2
- VAMFXQBUQXONLZ-UHFFFAOYSA-N n-alpha-eicosene Natural products CCCCCCCCCCCCCCCCCCC=C VAMFXQBUQXONLZ-UHFFFAOYSA-N 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- LQERIDTXQFOHKA-UHFFFAOYSA-N nonadecane Chemical compound CCCCCCCCCCCCCCCCCCC LQERIDTXQFOHKA-UHFFFAOYSA-N 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 238000005949 ozonolysis reaction Methods 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- ZHJGWYRLJUCMRT-UHFFFAOYSA-N 5-[6-[(4-methylpiperazin-1-yl)methyl]benzimidazol-1-yl]-3-[1-[2-(trifluoromethyl)phenyl]ethoxy]thiophene-2-carboxamide Chemical compound C=1C=CC=C(C(F)(F)F)C=1C(C)OC(=C(S1)C(N)=O)C=C1N(C1=C2)C=NC1=CC=C2CN1CCN(C)CC1 ZHJGWYRLJUCMRT-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 208000036366 Sensation of pressure Diseases 0.000 description 1
- SIDXXPCRKZPXKE-UHFFFAOYSA-J [Cl-].[Ca+2].[Ni](Cl)Cl.[Cl-] Chemical compound [Cl-].[Ca+2].[Ni](Cl)Cl.[Cl-] SIDXXPCRKZPXKE-UHFFFAOYSA-J 0.000 description 1
- RAOSIAYCXKBGFE-UHFFFAOYSA-K [Cu+3].[O-]P([O-])([O-])=O Chemical compound [Cu+3].[O-]P([O-])([O-])=O RAOSIAYCXKBGFE-UHFFFAOYSA-K 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000005899 aromatization reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007630 basic procedure Methods 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- -1 calcium phosphate-nickel phosphate Chemical compound 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- SXTLQDJHRPXDSB-UHFFFAOYSA-N copper;dinitrate;trihydrate Chemical compound O.O.O.[Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O SXTLQDJHRPXDSB-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- WAEPVJZPPWJVCO-UHFFFAOYSA-N hexadecane octadecane tetradecane Chemical compound CCCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCC.CCCCCCCCCCCCCC WAEPVJZPPWJVCO-UHFFFAOYSA-N 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 150000005172 methylbenzenes Chemical class 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- HOWGUJZVBDQJKV-UHFFFAOYSA-N n-propyl-nonadecane Natural products CCCCCCCCCCCCCCCCCCCCCC HOWGUJZVBDQJKV-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- LAIZPRYFQUWUBN-UHFFFAOYSA-L nickel chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Ni+2] LAIZPRYFQUWUBN-UHFFFAOYSA-L 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- RZJRJXONCZWCBN-NJFSPNSNSA-N octadecane Chemical class CCCCCCCCCCCCCCCCC[14CH3] RZJRJXONCZWCBN-NJFSPNSNSA-N 0.000 description 1
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000006385 ozonation reaction Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- ZDLBWMYNYNATIW-UHFFFAOYSA-N tetracos-1-ene Chemical compound CCCCCCCCCCCCCCCCCCCCCCC=C ZDLBWMYNYNATIW-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/188—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/16—Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
- B01J27/18—Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
- B01J27/1802—Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
- B01J27/1817—Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with copper, silver or gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/185—Phosphorus; Compounds thereof with iron group metals or platinum group metals
- B01J27/1853—Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/32—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
- C07C5/327—Formation of non-aromatic carbon-to-carbon double bonds only
- C07C5/333—Catalytic processes
- C07C5/3332—Catalytic processes with metal oxides or metal sulfides
Definitions
- This invention relates to a process for the preparation of olefins. More particularly this invention relates to a process for catalytically dehydrogenating paraffins having 6 or more carbon atoms to the corresponding monoolefin.
- the catalytic dehydrogenation of paraffins is well known in the art.
- the primary products are the corresponding olefin and cracking products.
- the product contains a substantial quantity of aromatics as well as the olefins and cracking products.
- the primary product desired is the olefin, it is desirable to improve the yield of the olefin when C and higher parafiins are dehydrogenated.
- the present process provides a method for improving the olefin yield in such a case.
- the improved olefin yield is accompanied generally by a reduction in aromatic by-product obtained.
- An embodiment of this invention is a process for preparing olefins by dehydrogenating n-paraflins having from 6 to about 24 carbon atoms, said process comprising contacting (1) a feed containing at least one of said paraflins with a catalyst consisting substantially of (a) 50 to 95 percent calcium phosphate,
- said catalyst having been pretreated by contacting with a fluid hydrocarbon at a liquid hourly space velocity of 0.5 to about 6, at a temperature of from 525 C. to about 560 C. and for from about 30 minutes to about 6 hours.
- said dehydrogenation process being carried out (2) at a temperature of from 400 C. to about 500 C.
- a preferred embodiment of this invention is the process described above wherein the n-paraifin has from about 10 to about 18 carbon atoms.
- a more preferred embodiment of this invention is the process described above wherein component (b) of said catalyst is nickel phosphate.
- component (b) of said catalyst is cupric phosphate.
- Still more preferred embodiments of this invention are the process as described above wherein the catalyst has one of the following compositions: 8.6 percent calcium phosphate, 12 percent nickel phosphate, 2 percent chromia; 86 percent calcium phosphate and 14 percent cupric phosphate.
- a most preferred embodiment of this is the process described above wherein the catalyst consists of substantially 86 percent calcium phosphate and 14 percent nickel phosphate.
- the parafiins which are useful in practicing this invention are hydrocarbons having 6 or more carbon atoms. Examples of these are hexane, 2-ethyl hexane, Z-methyln-nona-decane and the like. Straight chain paraflins, that is those having no branching are preferred. These are the n-parafiins. Examples of useful n-parafiins are n-hexane, n-octane, n-decane, n-eicosane, n-pentadecane and the like. The n-paraffins which are more preferred are those having from about 10 to about 20 carbon atoms.
- paraflins are n-dodecane, n-tetradecane, n-heptadecane, n-octadecane and the like. Mixtures of these paraffins are also useful in the practice of this invention. Thus, mixed streams containing the paraflins enumerated above can be used. Mixed streams containing paraflins having less than 6 carbon atoms may also be dehydro genated according to the process of this invention. In other words, mixed streams containing ethane, isobutane and the like and at least one of the C or higher parafiins can be utilized.
- the catalyst which effects the dehydrogenation in the process of this invention is a composite comprising metal phosphates.
- the metal phosphate composites which are useful are (a) calcium phosphate and nickel phosphate and b) calcium phosphate and cupric phosphate.
- the weight ratio of the calcium phosphate to the nickel phosphate or the cupric phosphate may range from 50:50 up to 95:5.
- the catalyst composite may also contain up to 2 weight percent chromia.
- the preferred weight ratio of calcium phosphate to nickel phosphate or copper phosphate is from 20 up to 10.
- a most preferred catalyst is one in which the weight ratio is 86 calcium phosphate and 14 percent nickel phosphate or cupric phosphate.
- the catalysts of this invention may be prepared by using any number of methods available in the art.
- a requirement for the preparation is that the final catalyst composite contains the phosphates described above in the weight ratios enumerated.
- a convenient method of preparation is the procedure of E. C. Britton, A. J. Dretzler and C. J. Noddings described in 1nd. and Eng. Chem, 43, 2871 (1951).
- the procedure outlined in the Britton et al. article includes two percent chromia in the calcium phosphate, nickel phosphate composite. It is to be understood, however, that the procedure can be utilized to prepare a catalyst having no chromia. Briefly, the Britton ct al.
- procdeure involves the precipitation of calcium phosphate and nickel phosphate from a calcium chloride-nickel chloride solution using ammonium phosphate.
- calcium-nickel phosphate precipitation can also be carried out using calcium nitrate and nickel nitrate solutions.
- the latter salts are employed, more concentrated solutions can be used.
- the latter process that is, using the nitrates rather than the chlorides, offers an advantage by allowing for the use of smaller volumes of solution.
- Representative preparations of the catalysts will be given in examples to follow. Although in discussing the preparation of the catalyst, reference was made to calcium phosphate-nickel phosphate, it is understood that the comments apply equally to calcium phosphate-cupric phosphate catalysts.
- the temperature at which the dehydrogenation is carried out may be varied over a wide range.
- the process can be carried out at temperatures from 400 C. to about 500 C.
- a preferred temperature range is 425 C. to about 500 C.
- the process may be carried out at atmospheric pres sure.
- the pressures above and below atmospheric may also be utilized. Generally, pressures of from 0.5 to about 50 atmospheres are used. Pressures of 0.5 to about 10 atmospheres are preferred and pressures from 0.5 to about 2.0 atmospheres are most preferred.
- the process of this invention is characterized as being a continuous process. That is, the paraffin feed stream is continuously passing over or through the catalyst. Depending on the temperature and pressure used, the hydrocarbon feed may be either in a liquid or gaseous state. The rate at which this stream flows, however, is measured as a liquid hourly space velocity. Thus, the liquid hourly space velocity (LHSV) is the ratio of liquid volume of feed stream per hour to the volume of catalyst.
- LHSV liquid hourly space velocity
- a suitable LHSV for the present process is 0.5 to about 10. LHSV of about 0.5 to about 6 are preferred and 0.5 to about 2.0 are more preferred.
- inert gaseous diluents such as nitrogen, carbon dioxide or steam may be advantageously employed.
- the ratio in moles of diluents to paraifin feed is generally in the range of 1:1 to :1.
- Example 1 In a suitable vessel 194 parts of 2.5 N-ammonium hydroxide was added to 2000 parts of 0.075 molar phosphoric acid. In a second vessel, 21.7 parts calcium chloride and 5.4 parts of nickel chloride hexahydrate were dissolved in 800 parts of water. The calcium chloridenickel chloride solution was then added to the ammonium phosphate solution with stirring. The final pH of the solution was 8.0. The solution was stirred for 30 minutes. Stirring was then discontinued and the solution was allowed to settle overnight. The liquid was then decanted from the settled precipitate. The precipitate was then resuspended in 3,000 parts of water and filtered. This washing procedure was repeated six times. After the final filtration, the precipitate cake was dried at 60 C. for 15 hours and then at 130 C. for 24 hours. The yield of calcium nickel phosphate composite was 83.4 parts.
- the dried powder was then ground to pass a No. 40 mesh screen. This screened powder was then mechanically blended to contain 2 percent powdered graphite and 2 percent powdered chromia. The powder blend was then pelletized. The pellets /s long by Ms" diameter) were used in the dehydrogenation process.
- the graphite serves as a lubricant in the pelletizing operation.
- the catalyst composite analyzed 31 percent calcium, 5 percent nickel, 56 percent phosphate and 2 percent chromia. Using the same basic procedure, a catalyst composite containing 84 percent calcium phosphate and 16 percent nickel phosphate was also prepared.
- Example 2 In a suitable vessel approximately 141 parts of 14.8 M ammonium hydroxide was added to approximately 2,000 parts of 0.3 M phosphoric acid. To the resulting ammonium phosphate solution was then added slowly with stirring a solution of 208 parts of calcium nitrate tetrahydrate and 24.2 parts of cupric nitrate trihydrate. The final pH was 8.0. The solution was stirred for thirty minutes after the addition was complete. After standing overnight, the precipitate which separated was filtered and washed twice by dispersing the residue in two liters of Water. The solid precipitate was then dried for 14 hours at 60 C. and for 24 hours at C. Yield was 104 parts of powdered catalyst, which analyzed 86 percent Ca (PO and 14 percent Cu (PO The powder was ground to pass a 40 mesh screen. Two percent graphite was added to this powder and the powder was pelletized.
- Examples 1 and 2 illustrate convenient methods of preparing the catalysts of this invention. As pointed out above, other suitable procedures may be used.
- Example 3 A catalyst bed was prepared using the calcium phosphate-nickel phosphate-chromia catalyst of Example 1. The catalyst bed was then heated to 501 C. An n-dodecane feed was passed through the heated bed at LHSV of 1.0. The product was 40 percent C olefins, 40 percent aromatics and 20 percent cracking products at a 22.5 percent conversion.
- Example 4 A catalyst bed was prepared using the calcium phosphate-nickel phosphate-chromia catalyst of Example 1. This bed was then heated to 540 C. and contacted with n-dodecane feed for three hours at a LHSV of 1.0. The LHSV was increased to 4.0 for about 4 minutes.
- the bed temperature was then lowered to 500 C.
- the n-dodecane feed was passed through the bed at a LHSV of 1.0.
- the product stream was analyzed at this point. It contained 47 percent C olefins, 12 percent aromatics and 31 percent cracking products at a conversion of 16.9 percent.
- Examples 3 and 4 demonstrate the striking improvement in olefin yield and decrease in aromatics which pretreatment of the catalyst efiFects.
- Example 5 A catalyst bed was prepared using the calcium phosphate/nickel phosphate/chromia catalyst of Example 1. The bed was heated to 540 C. and was contacted with dodecane at a LHSV of 1.0 for three hours. The LHSV was increased to 4.0 for about three minutes.
- the catalyst bed was then cooled to 450 C. Dodecane was passed through the catalyst at LHSV of 0.4. The product at this point was 77 percent C olefins, 6 percent aromatics and 17 percent cracking products at a conversion of 9.8 percent.
- Example 6 The catalyst bed temperature in Example 5 was raised from 450 C. to 475 C. and dodecane was passed through the bed at a LHSV of 0.6. The product at this point was 68 percent C olefin, 8 percent aromatics, and 24 percent cracking products at a conversion of 12.8 percent.
- Example 7 A catalyst bed was prepared using 86 percent calcium phosphate, 14 percent nickel phosphate catalyst prepared as in Example 1. The catalyst bed was heated to 540 C. and dodecane was passed through the bed at an LHSV of 1.0 for three hours. The dodecane LHSV was increased to 4.0 for about 4 minutes. The catalyst tem' perature was then lowered to 500 C. Dodecane was passed through the catalyst at a LHSV of 3.0. The prod not at this point was 74 percent C olefins, percent aromatics and 26 percent cracking products at a conver' sion of 12.7 percent.
- Example 9 A catalyst bed was prepared using an 86 percent calcium phosphate, 14 percent nickel phosphate catalyst prepared as per the Example 2 procedure. The catalyst was then heated to 540 C. and feed of n-dodecane was passed through the catalyst bed at an LHSV of 1.0 for 3 hours. The LHSV was increased to 4.0 for about 4 minutes.
- the catalyst temperature was lowered to 500 C. and n-dodecane was passed through the bed at a LHSV of 2.0.
- the product at this point was 71 percent C olefins, 29 percent cracking products and 0 percent aromatics Similar results are obtained when the n-dodecane feed which contacts the catalyst at 540 C.
- hydrocarbon compositions 50 percent dodecane, 50 percent benzene; 10 percent ethylene, 30 percent n-butane, 10 percent toluene and 30 percent cyclohexane; 10 percent octadecene, 20 percent isobutane, 30 percent n-butane, 10 percent toluene and 30 percent eicosane; 50 percent tetracosane, 30 percent nonadecane, 10 percent tetracosene, 20 percent hexylbenzene; 100 percent paraflin wax; 40 percent benzene, 25 percent toluene, 35 percent xylene; 3 percent octene, 8 percent C -C parafiins, 25 percent methyl benzenes, 5 percent ethyl benzene, and 59 percent octane.
- hydrocarbon compositions 50 percent dodecane, 50 percent benzene; 10 percent ethylene, 30 percent n-butane, 10
- Example 10 A catalyst bed was prepared using the catalyst of Example 2. The bed was heated to 540 C. and n-dodecane was passed through the bed at LHSV of 1.0 for 3 hours. The LHSV was then increased to 4.0 for 4 minutes.
- the catalyst temperature was then lowered to 500 C. and dodecane was passed through the bed at LHSV of 2.0.
- the product at this point was 60 percent C olefins, 20 percent aromatics and 20 percent cracking products at 15.1 percent conversion.
- catalyst compositions are 95 percent calcium phosphateS percent cupric phosphate; 55 percent calcium phosphate-'45 percent cupric phosphate; 72 percent calcium phosphate28 percent cupric phosphate; 90 percent calcium phosphate- 10 percent nickel phosphate; 70 percent calcium phosphate-30 percent nickel phosphate; 50 percent calcium phosphate-5 0 percent nickel phosphate and 95 percent calcium phosphate-5 percent nickel phosphate.
- Example 11 -A catalyst bed is prepared using a 90 percent calcium phosphate/ 10 percent nickel phosphate catalyst. The bed is heated to 600 C. and a feed containing percent decane, 10 percent decene, 3 percent mixed C -C benzenes and 2 percent C and lower paratfins, is passed through the bed at a LHSV of 6.0 for 0.5 hours.
- the catalyst temperature is then lowered to about 440 C. and n-octadecane feed is passed through the bed at a LHSV of 10.0 under a pressure of 0.5 atmosphere.
- the products obtained at this point are analogous to those obtained in Examples 4 through '10.
- Example 12 A catalyst bed is prepared using 75 percent calcium phosphate and 25 percent nickel phosphate catalyst. The bed is heated to 565 C. and is contacted with 1-0 percent benzene, percent hexane feed for 6.0 hours at an LHSV of 0.5.
- the bed is then cooled to 400 C. and a mixed tetradecane-hexadecane-octadecane stream is passed through the bed at an LHSV of 0.2 under a pressure of 50 atmospheres.
- the products obtained at this point are analogous to those obtained in Examples 4 through 10.
- Example 12 Similar results are obtained when the fresh catalyst bed in Example 12 is heated to 525 C. instead of 565 C. and is contacted with 10 percent benzene, 90 percent hexane feed for six hours at a LHSV of 0.5.
- the type of fluid hydrocarbon used to pretreat the catalyst at from 525 C. to about 600 C. is not critical.
- the fluid hydrocarbon can be suitably selected from parafiins, parafiin wax, olefins, aromatics, alkylated aromatics and mixtures thereof.
- hydrocarbons which are useful for this pretreatment are C to C n-parafiins, their isomers and mixtures thereof; kerosenes; C to C cyclic saturated and olefinic hydrocarbons; C to C paraflins containing up to 10 percent olefins and up to 50 percent aromatics; alkylated aromatics having 7 to 20 carbon atoms; paraflin wax and the like. It is possible then to use a waste or commercially unattractive hydrocarbon stream to pretreat the catalyst.
- any of the fluid hydrocarbons described above can be used effectively in pretreating the catalysts in the examples presented above.
- the products produced by the process of this invention are mixtures of monoolefin isomers having the same number of carbon atoms as the paraffin starting material.
- the olefin portion of the product obtained is a mixture of octadecane isomers.
- the olefins produced by the process of this invention are well known compounds and have the many utilities which are known for them. For example, they are valuable chemical intermediates and can be transformed into acids by an ozonolysis reaction. Thus, for example, tetradecene-Z can be reacted with ozone to yield lauric acid, a detergent range acid. Similarly, the other olefins produced by this process can be ozonized to yield the corresponding acids.
- the reaction is generally carried out at a low temperature; e.g., from 50 to about 10 C. After the ozonization reaction is completed, the resultant reaction mixture is usually treated with another oxidant such as air or oxygen to obtain the product acid.
- Solvents which can be employed in the ozonolysis of olefins include inert solvents such as chloroform and carbon tetrachloride or hydroxylic solvents such as methanol and acetic acid.
- a dehydrogenation process for preparing olefins from n-parafiins having from 6 to about 24 carbon atoms comprising contacting (1) a feed containing at least one of said paraffins with a catalyst consisting substantially of (a) 50 to 95 percent calcium phosphate,
- said catalyst having been pretreated by contacting it with a fluid hydrocarbon at a liquid hourly space velocity of 0.5 to about 6 at a temperature of from 525 C. to about 560 C. and for from about 30 minutes to about 6 hours, said dehydrogenation proces being carried out (2) at a temperature of from 400 C.
- n-paraffin has from about 10 to about 18 carbon atoms.
- component (b) of said catalyst is nickel phosphate.
- component (b) of said catalyst is cupric phosphate.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
United States Patent 3,433,852 PROCESS FOR C -C ALKENES BY PRETREAT- MENT OF PHOSPHATE CATALYSTS Kestutis A. Keblys, Southfield, Mich., assignor to Ethyl Corporation, New York, N.Y., a corporation of Virginia No Drawing. Filed Nov. 7, 1966, Ser. No. 592,348 US. Cl. 260-6833 7 Claims Int. Cl. C07c 5/18 ABSTRACT OF THE DISCLOSURE In dehydrogenation of dodecane to C alkenes over a heterogeneous catalyst, poor selectivity (unwanted aromatization) occurs during the initial time on stream. Operation at higher temperatures (525-600 C.) during such initial period (0.5-6.0 hours) for each of several fresh calcium nickel phosphate and calcium cupric phosphate catalysts gave better selectivity during the subsequent period at lower temperatures (400 5'0'1 C.) compared to the unfavorable product distribution during an initial period at such lower temperatures. Any of a variety of hydrocarbon feeds may be used for the line-out period.
This invention relates to a process for the preparation of olefins. More particularly this invention relates to a process for catalytically dehydrogenating paraffins having 6 or more carbon atoms to the corresponding monoolefin.
The catalytic dehydrogenation of paraffins is well known in the art. When the paraffin being dehyd'rogenated has less than six carbon atoms, the primary products are the corresponding olefin and cracking products. However, when n-parafiins having 16 or more carbon atoms are catalytically dehydrogenated by prior art processes, the product contains a substantial quantity of aromatics as well as the olefins and cracking products. Since the primary product desired is the olefin, it is desirable to improve the yield of the olefin when C and higher parafiins are dehydrogenated. The present process provides a method for improving the olefin yield in such a case. The improved olefin yield is accompanied generally by a reduction in aromatic by-product obtained.
It is therefore an object of this invention to provide a process for catalytically dehydrogenating n-paraflins having 6 or more carbon atoms. It is another object of this invention to improve the yield of olefin on catalytically dehydrogenating C and higher paraffins and reduce the aromatic by-products obtained. This and other objects of this invention will be made clear from the detailed description and claims which follow.
An embodiment of this invention is a process for preparing olefins by dehydrogenating n-paraflins having from 6 to about 24 carbon atoms, said process comprising contacting (1) a feed containing at least one of said paraflins with a catalyst consisting substantially of (a) 50 to 95 percent calcium phosphate,
(b) 5 to 50 percent of a phosphate selected from the group of nickel phosphate and cupric phosphate, and
(c) -0 to 2 percent chromia,
said catalyst having been pretreated by contacting with a fluid hydrocarbon at a liquid hourly space velocity of 0.5 to about 6, at a temperature of from 525 C. to about 560 C. and for from about 30 minutes to about 6 hours. said dehydrogenation process being carried out (2) at a temperature of from 400 C. to about 500 C.,
(3) at a pressure of from 0.5 to about 50 atmospheres,
and
(4) at a liquid hourly space velocity of 0.2 to about 10.
A preferred embodiment of this invention is the process described above wherein the n-paraifin has from about 10 to about 18 carbon atoms.
A more preferred embodiment of this invention is the process described above wherein component (b) of said catalyst is nickel phosphate.
Another more preferred embodiment of this invention, is the process described above wherein component (b) of said catalyst is cupric phosphate.
Still more preferred embodiments of this invention are the process as described above wherein the catalyst has one of the following compositions: 8.6 percent calcium phosphate, 12 percent nickel phosphate, 2 percent chromia; 86 percent calcium phosphate and 14 percent cupric phosphate.
A most preferred embodiment of this is the process described above wherein the catalyst consists of substantially 86 percent calcium phosphate and 14 percent nickel phosphate.
The parafiins which are useful in practicing this invention are hydrocarbons having 6 or more carbon atoms. Examples of these are hexane, 2-ethyl hexane, Z-methyln-nona-decane and the like. Straight chain paraflins, that is those having no branching are preferred. These are the n-parafiins. Examples of useful n-parafiins are n-hexane, n-octane, n-decane, n-eicosane, n-pentadecane and the like. The n-paraffins which are more preferred are those having from about 10 to about 20 carbon atoms. More preferred paraflins are n-dodecane, n-tetradecane, n-heptadecane, n-octadecane and the like. Mixtures of these paraffins are also useful in the practice of this invention. Thus, mixed streams containing the paraflins enumerated above can be used. Mixed streams containing paraflins having less than 6 carbon atoms may also be dehydro genated according to the process of this invention. In other words, mixed streams containing ethane, isobutane and the like and at least one of the C or higher parafiins can be utilized.
The catalyst which effects the dehydrogenation in the process of this invention is a composite comprising metal phosphates. The metal phosphate composites which are useful are (a) calcium phosphate and nickel phosphate and b) calcium phosphate and cupric phosphate. The weight ratio of the calcium phosphate to the nickel phosphate or the cupric phosphate may range from 50:50 up to 95:5. The catalyst composite may also contain up to 2 weight percent chromia. The preferred weight ratio of calcium phosphate to nickel phosphate or copper phosphate is from 20 up to 10. A most preferred catalyst is one in which the weight ratio is 86 calcium phosphate and 14 percent nickel phosphate or cupric phosphate.
The catalysts of this invention may be prepared by using any number of methods available in the art. A requirement for the preparation is that the final catalyst composite contains the phosphates described above in the weight ratios enumerated. A convenient method of preparation is the procedure of E. C. Britton, A. J. Dretzler and C. J. Noddings described in 1nd. and Eng. Chem, 43, 2871 (1951). The procedure outlined in the Britton et al. article includes two percent chromia in the calcium phosphate, nickel phosphate composite. It is to be understood, however, that the procedure can be utilized to prepare a catalyst having no chromia. Briefly, the Britton ct al. procdeure involves the precipitation of calcium phosphate and nickel phosphate from a calcium chloride-nickel chloride solution using ammonium phosphate. 'I he calcium-nickel phosphate precipitation can also be carried out using calcium nitrate and nickel nitrate solutions. When the latter salts are employed, more concentrated solutions can be used. Thus, the latter process, that is, using the nitrates rather than the chlorides, offers an advantage by allowing for the use of smaller volumes of solution. Representative preparations of the catalysts will be given in examples to follow. Although in discussing the preparation of the catalyst, reference was made to calcium phosphate-nickel phosphate, it is understood that the comments apply equally to calcium phosphate-cupric phosphate catalysts.
The temperature at which the dehydrogenation is carried out may be varied over a wide range. Thus, the process can be carried out at temperatures from 400 C. to about 500 C. A preferred temperature range is 425 C. to about 500 C.
The process may be carried out at atmospheric pres sure. The pressures above and below atmospheric may also be utilized. Generally, pressures of from 0.5 to about 50 atmospheres are used. Pressures of 0.5 to about 10 atmospheres are preferred and pressures from 0.5 to about 2.0 atmospheres are most preferred.
The process of this invention is characterized as being a continuous process. That is, the paraffin feed stream is continuously passing over or through the catalyst. Depending on the temperature and pressure used, the hydrocarbon feed may be either in a liquid or gaseous state. The rate at which this stream flows, however, is measured as a liquid hourly space velocity. Thus, the liquid hourly space velocity (LHSV) is the ratio of liquid volume of feed stream per hour to the volume of catalyst. A suitable LHSV for the present process is 0.5 to about 10. LHSV of about 0.5 to about 6 are preferred and 0.5 to about 2.0 are more preferred.
The unexpected results obtained using the process of this invention are that in addition to producing monoolefins in relatively good yields, only small amounts of aromatic products are obtained. In other words, the overall yield of olefin is increased at the expense of the aromatic products.
In practicing this invention, inert gaseous diluents such as nitrogen, carbon dioxide or steam may be advantageously employed. The ratio in moles of diluents to paraifin feed is generally in the range of 1:1 to :1.
The following examples are provided to illustrate methods of preparing the catalyst and the dehydrogenation process of this invention. All parts and percentages are by weight unless otherwise stated. All results were obtained by gas chromatographic analysis.
Example 1 In a suitable vessel 194 parts of 2.5 N-ammonium hydroxide was added to 2000 parts of 0.075 molar phosphoric acid. In a second vessel, 21.7 parts calcium chloride and 5.4 parts of nickel chloride hexahydrate were dissolved in 800 parts of water. The calcium chloridenickel chloride solution was then added to the ammonium phosphate solution with stirring. The final pH of the solution was 8.0. The solution was stirred for 30 minutes. Stirring was then discontinued and the solution was allowed to settle overnight. The liquid was then decanted from the settled precipitate. The precipitate was then resuspended in 3,000 parts of water and filtered. This washing procedure was repeated six times. After the final filtration, the precipitate cake was dried at 60 C. for 15 hours and then at 130 C. for 24 hours. The yield of calcium nickel phosphate composite was 83.4 parts.
The dried powder was then ground to pass a No. 40 mesh screen. This screened powder was then mechanically blended to contain 2 percent powdered graphite and 2 percent powdered chromia. The powder blend was then pelletized. The pellets /s long by Ms" diameter) were used in the dehydrogenation process.
The graphite serves as a lubricant in the pelletizing operation.
The catalyst composite analyzed 31 percent calcium, 5 percent nickel, 56 percent phosphate and 2 percent chromia. Using the same basic procedure, a catalyst composite containing 84 percent calcium phosphate and 16 percent nickel phosphate was also prepared.
This is the procedure of Britton et al. referred to above.
Example 2 In a suitable vessel approximately 141 parts of 14.8 M ammonium hydroxide was added to approximately 2,000 parts of 0.3 M phosphoric acid. To the resulting ammonium phosphate solution was then added slowly with stirring a solution of 208 parts of calcium nitrate tetrahydrate and 24.2 parts of cupric nitrate trihydrate. The final pH was 8.0. The solution was stirred for thirty minutes after the addition was complete. After standing overnight, the precipitate which separated was filtered and washed twice by dispersing the residue in two liters of Water. The solid precipitate was then dried for 14 hours at 60 C. and for 24 hours at C. Yield was 104 parts of powdered catalyst, which analyzed 86 percent Ca (PO and 14 percent Cu (PO The powder was ground to pass a 40 mesh screen. Two percent graphite was added to this powder and the powder was pelletized.
Examples 1 and 2 illustrate convenient methods of preparing the catalysts of this invention. As pointed out above, other suitable procedures may be used.
Example 3 A catalyst bed was prepared using the calcium phosphate-nickel phosphate-chromia catalyst of Example 1. The catalyst bed was then heated to 501 C. An n-dodecane feed was passed through the heated bed at LHSV of 1.0. The product was 40 percent C olefins, 40 percent aromatics and 20 percent cracking products at a 22.5 percent conversion.
Example 4 A catalyst bed was prepared using the calcium phosphate-nickel phosphate-chromia catalyst of Example 1. This bed was then heated to 540 C. and contacted with n-dodecane feed for three hours at a LHSV of 1.0. The LHSV was increased to 4.0 for about 4 minutes.
The bed temperature was then lowered to 500 C. The n-dodecane feed was passed through the bed at a LHSV of 1.0. The product stream was analyzed at this point. It contained 47 percent C olefins, 12 percent aromatics and 31 percent cracking products at a conversion of 16.9 percent.
The pressure under which Examples 3 and 4 were carried out was substantially atmospheric.
Examples 3 and 4 demonstrate the striking improvement in olefin yield and decrease in aromatics which pretreatment of the catalyst efiFects.
The following examples further illustrate how the process of this invention is carried out. Parts and percentages are by weight unless otherwise indicated. The pressure is substantially atmospheric except where otherwise specified.
Example 5 A catalyst bed was prepared using the calcium phosphate/nickel phosphate/chromia catalyst of Example 1. The bed was heated to 540 C. and was contacted with dodecane at a LHSV of 1.0 for three hours. The LHSV was increased to 4.0 for about three minutes.
The catalyst bed was then cooled to 450 C. Dodecane was passed through the catalyst at LHSV of 0.4. The product at this point was 77 percent C olefins, 6 percent aromatics and 17 percent cracking products at a conversion of 9.8 percent.
Example 6 The catalyst bed temperature in Example 5 was raised from 450 C. to 475 C. and dodecane was passed through the bed at a LHSV of 0.6. The product at this point was 68 percent C olefin, 8 percent aromatics, and 24 percent cracking products at a conversion of 12.8 percent.
Example 7 A catalyst bed was prepared using 86 percent calcium phosphate, 14 percent nickel phosphate catalyst prepared as in Example 1. The catalyst bed was heated to 540 C. and dodecane was passed through the bed at an LHSV of 1.0 for three hours. The dodecane LHSV was increased to 4.0 for about 4 minutes. The catalyst tem' perature was then lowered to 500 C. Dodecane was passed through the catalyst at a LHSV of 3.0. The prod not at this point was 74 percent C olefins, percent aromatics and 26 percent cracking products at a conver' sion of 12.7 percent.
Analogous results are obtained when the dodecane is replaced by any of the following hydrocarbons: hexane; n-eicosane; n-nonane; n-heptadecane; n-tetracosane; a mixture of n-dodecane and n-tetradecane; a mixture 01 n-octane, n-pentadecane and eicosane.
Example 9 A catalyst bed was prepared using an 86 percent calcium phosphate, 14 percent nickel phosphate catalyst prepared as per the Example 2 procedure. The catalyst was then heated to 540 C. and feed of n-dodecane was passed through the catalyst bed at an LHSV of 1.0 for 3 hours. The LHSV was increased to 4.0 for about 4 minutes.
The catalyst temperature was lowered to 500 C. and n-dodecane was passed through the bed at a LHSV of 2.0. The product at this point was 71 percent C olefins, 29 percent cracking products and 0 percent aromatics Similar results are obtained when the n-dodecane feed which contacts the catalyst at 540 C. is substituted with one of the following hydrocarbon compositions: 50 percent dodecane, 50 percent benzene; 10 percent ethylene, 30 percent n-butane, 10 percent toluene and 30 percent cyclohexane; 10 percent octadecene, 20 percent isobutane, 30 percent n-butane, 10 percent toluene and 30 percent eicosane; 50 percent tetracosane, 30 percent nonadecane, 10 percent tetracosene, 20 percent hexylbenzene; 100 percent paraflin wax; 40 percent benzene, 25 percent toluene, 35 percent xylene; 3 percent octene, 8 percent C -C parafiins, 25 percent methyl benzenes, 5 percent ethyl benzene, and 59 percent octane.
Example 10 A catalyst bed was prepared using the catalyst of Example 2. The bed was heated to 540 C. and n-dodecane was passed through the bed at LHSV of 1.0 for 3 hours. The LHSV was then increased to 4.0 for 4 minutes.
The catalyst temperature was then lowered to 500 C. and dodecane was passed through the bed at LHSV of 2.0. The product at this point was 60 percent C olefins, 20 percent aromatics and 20 percent cracking products at 15.1 percent conversion.
Similar results are obtained when catalyst compositions are 95 percent calcium phosphateS percent cupric phosphate; 55 percent calcium phosphate-'45 percent cupric phosphate; 72 percent calcium phosphate28 percent cupric phosphate; 90 percent calcium phosphate- 10 percent nickel phosphate; 70 percent calcium phosphate-30 percent nickel phosphate; 50 percent calcium phosphate-5 0 percent nickel phosphate and 95 percent calcium phosphate-5 percent nickel phosphate.
Example 11 -A catalyst bed is prepared using a 90 percent calcium phosphate/ 10 percent nickel phosphate catalyst. The bed is heated to 600 C. and a feed containing percent decane, 10 percent decene, 3 percent mixed C -C benzenes and 2 percent C and lower paratfins, is passed through the bed at a LHSV of 6.0 for 0.5 hours.
The catalyst temperature is then lowered to about 440 C. and n-octadecane feed is passed through the bed at a LHSV of 10.0 under a pressure of 0.5 atmosphere. The products obtained at this point are analogous to those obtained in Examples 4 through '10.
Example 12 A catalyst bed is prepared using 75 percent calcium phosphate and 25 percent nickel phosphate catalyst. The bed is heated to 565 C. and is contacted with 1-0 percent benzene, percent hexane feed for 6.0 hours at an LHSV of 0.5.
The bed is then cooled to 400 C. and a mixed tetradecane-hexadecane-octadecane stream is passed through the bed at an LHSV of 0.2 under a pressure of 50 atmospheres. The products obtained at this point are analogous to those obtained in Examples 4 through 10.
Similar results are obtained when the fresh catalyst bed in Example 12 is heated to 525 C. instead of 565 C. and is contacted with 10 percent benzene, 90 percent hexane feed for six hours at a LHSV of 0.5.
The type of fluid hydrocarbon used to pretreat the catalyst at from 525 C. to about 600 C. is not critical. The fluid hydrocarbon can be suitably selected from parafiins, parafiin wax, olefins, aromatics, alkylated aromatics and mixtures thereof. Examples of hydrocarbons which are useful for this pretreatment are C to C n-parafiins, their isomers and mixtures thereof; kerosenes; C to C cyclic saturated and olefinic hydrocarbons; C to C paraflins containing up to 10 percent olefins and up to 50 percent aromatics; alkylated aromatics having 7 to 20 carbon atoms; paraflin wax and the like. It is possible then to use a waste or commercially unattractive hydrocarbon stream to pretreat the catalyst.
Thus, any of the fluid hydrocarbons described above can be used effectively in pretreating the catalysts in the examples presented above.
The products produced by the process of this invention are mixtures of monoolefin isomers having the same number of carbon atoms as the paraffin starting material. Thus, when n-octadecane is used as a paraflin feed, the olefin portion of the product obtained is a mixture of octadecane isomers.
=The olefins produced by the process of this invention are well known compounds and have the many utilities which are known for them. For example, they are valuable chemical intermediates and can be transformed into acids by an ozonolysis reaction. Thus, for example, tetradecene-Z can be reacted with ozone to yield lauric acid, a detergent range acid. Similarly, the other olefins produced by this process can be ozonized to yield the corresponding acids. When ozonizing the products of the process of this invention, the reaction is generally carried out at a low temperature; e.g., from 50 to about 10 C. After the ozonization reaction is completed, the resultant reaction mixture is usually treated with another oxidant such as air or oxygen to obtain the product acid. ;T he secondary oxidation is usually carried out at a temperature within the range of 20 to 90 C. Solvents which can be employed in the ozonolysis of olefins include inert solvents such as chloroform and carbon tetrachloride or hydroxylic solvents such as methanol and acetic acid.
The present invention is described above. substantiating data is also presented. Claims to this invention follow. It is intended that this invention be limited only within the spirit and lawful scope of these claims.
I claim:
1. A dehydrogenation process for preparing olefins from n-parafiins having from 6 to about 24 carbon atoms, said process comprising contacting (1) a feed containing at least one of said paraffins with a catalyst consisting substantially of (a) 50 to 95 percent calcium phosphate,
(b) 5 to 50 percent of a phosphate selected from the group consisting of nickel phosphate and cupric phosphate, and
(c) 0 to 2 percent chromia,
said catalyst having been pretreated by contacting it with a fluid hydrocarbon at a liquid hourly space velocity of 0.5 to about 6 at a temperature of from 525 C. to about 560 C. and for from about 30 minutes to about 6 hours, said dehydrogenation proces being carried out (2) at a temperature of from 400 C.
500 C., (3) at a pressure of from 0.5 to about 50 atmospheres,
and (4) at a liquid hourly space velocity of 0.2 to about 10. 2. The process of claim 1 wherein the n-paraffin has from about 10 to about 18 carbon atoms.
3. The process of claim 2 wherein component (b) of said catalyst is nickel phosphate.
4. The process of claim 3 wherein the catalyst conto about sists substantially of 86 percent calcium phosphate, 12 percent nickel phosphate and 2 percent chromia.
5. The process of claim 3 wherein the catalyst consists substantially of 86 percent calcium phosphate and 14 percent nickel phosphate.
6. The process of claim 2 wherein component (b) of said catalyst is cupric phosphate.
7. The process of claim 6, wherein said catalyst consists substantially of 86 percent calcium phosphate and 14 percent cupric phosphate.
References Cited UNITED STATES PATENTS 12/1966 Haensel et a1. 260-683.3 4/1967 Abell et al. 260683.3
DELBERT E. GANTZ, Primary Examiner.
G. E. SCHMITKONS, Assistant Examiner.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,433,852 March 18, 1969 Kestutis A. Keblys It is certified that error appears in the above identified patent and that said Letters Patent are hereby corrected as shown below:
Column 5, line 42, after "10 percent ethylene," insert 30 percent hexane, 20 percent hexene and 40 percent cyclohexane; 10 percent octadecene, 20 percent isobutane,
Signed and sealed this 7th day of April 1970.
(SEAL) Attest:
Edward M. Fletcher, Jr.
Attesting Officer Commissioner of Patents WILLIAM E. SCHUYLER, JR.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US59234866A | 1966-11-07 | 1966-11-07 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3433852A true US3433852A (en) | 1969-03-18 |
Family
ID=24370290
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US592348A Expired - Lifetime US3433852A (en) | 1966-11-07 | 1966-11-07 | Process for c6-c24 alkenes by pretreatment of phosphate catalysts |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3433852A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11406970B2 (en) * | 2019-03-22 | 2022-08-09 | Purdue Research Foundation | Phosphate-promoted nickel catalyst for high temperature oligomerization |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3293319A (en) * | 1966-02-14 | 1966-12-20 | Universal Oil Prod Co | Catalytic dehydrogenation of paraffinic hydrocarbons |
| US3315007A (en) * | 1964-12-28 | 1967-04-18 | Monsanto Co | Dehydrogenation of saturated hydrocarbons over noble-metal catalyst |
-
1966
- 1966-11-07 US US592348A patent/US3433852A/en not_active Expired - Lifetime
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3315007A (en) * | 1964-12-28 | 1967-04-18 | Monsanto Co | Dehydrogenation of saturated hydrocarbons over noble-metal catalyst |
| US3293319A (en) * | 1966-02-14 | 1966-12-20 | Universal Oil Prod Co | Catalytic dehydrogenation of paraffinic hydrocarbons |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11406970B2 (en) * | 2019-03-22 | 2022-08-09 | Purdue Research Foundation | Phosphate-promoted nickel catalyst for high temperature oligomerization |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5936135A (en) | Process for the preparation of hydrocarbons | |
| US3770619A (en) | Process for hydrocarbon purification by selective hydrogenation | |
| US2754345A (en) | Catalytic dehydrogenation of hydrocarbons | |
| US3810953A (en) | Dehydrogenation of organic compounds | |
| US3662015A (en) | Method of preventing double bond migration of mono-olefinic hydrocarbons in selective hydrogenation | |
| US3836603A (en) | Process for preparing para-xylene | |
| DE2210751A1 (en) | Process for the production of n-butenes from ethylene | |
| US3106590A (en) | Iodinative hydrocarbon conversion process | |
| DE2256449C3 (en) | Process for the continuous production of ethylbenzene | |
| US3784483A (en) | Cobalt,iron,phosphorus and oxygen containing oxidatice dehydrogenation catalyst | |
| US3801672A (en) | Oxidative dehydrogenation process and catalysts | |
| US4229320A (en) | Catalyst for making para-xylene | |
| US3926845A (en) | Catalysts compositions | |
| US2148140A (en) | Dehydrogenation of paraffin hydrocarbons | |
| US3321545A (en) | Olefins by hydrogen transfer | |
| US3290404A (en) | Process for the isomerization of olefins | |
| US3793225A (en) | Oxidative dehydrogenation catalyst | |
| US3433852A (en) | Process for c6-c24 alkenes by pretreatment of phosphate catalysts | |
| US3801671A (en) | Oxidative dehydrogenation of organic compounds | |
| US3745194A (en) | Oxidative dehydrogenation of paraffinic hydrocarbons | |
| US3781223A (en) | Catalyst for oxidative dehydrogenation | |
| DE2109648A1 (en) | Oxidative dehydrogenation catalysts | |
| US3267170A (en) | Process for forming olefins by hydrogen transfer | |
| US4247726A (en) | Para-xylene process and catalyst | |
| US2397218A (en) | Conversion of hydrocarbons |