US3432694A - Magnetohydrodynamic generator - Google Patents
Magnetohydrodynamic generator Download PDFInfo
- Publication number
- US3432694A US3432694A US565202A US3432694DA US3432694A US 3432694 A US3432694 A US 3432694A US 565202 A US565202 A US 565202A US 3432694D A US3432694D A US 3432694DA US 3432694 A US3432694 A US 3432694A
- Authority
- US
- United States
- Prior art keywords
- loop
- loops
- gas
- transfer
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007788 liquid Substances 0.000 claims description 62
- 238000012546 transfer Methods 0.000 claims description 41
- 239000000839 emulsion Substances 0.000 claims description 20
- 230000001105 regulatory effect Effects 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 2
- 239000003995 emulsifying agent Substances 0.000 description 9
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000003303 reheating Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K44/00—Machines in which the dynamo-electric interaction between a plasma or flow of conductive liquid or of fluid-borne conductive or magnetic particles and a coil system or magnetic field converts energy of mass flow into electrical energy or vice versa
- H02K44/08—Magnetohydrodynamic [MHD] generators
- H02K44/085—Magnetohydrodynamic [MHD] generators with conducting liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J45/00—Discharge tubes functioning as thermionic generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N3/00—Generators in which thermal or kinetic energy is converted into electrical energy by ionisation of a fluid and removal of the charge therefrom
Definitions
- magnetohydrodynamic loops by means of emulsions of gas in an electrically conductive liquid, which can be subjected completely to a magnetic field and which comprise, in series over the liquid flow path, a region where the emulsion works, a region where separation of the liquid and of the gas is produced, which is drawn off through a suitable pipe, a region where the liquid is restored to its original pressure, and finally a region where the emulsion is formed again by injection of gas bubbles into the liquid.
- these loops can either generate electricity on the whole, in which case the gas expands during its passage, or they consume electricity on the whole, in which case one obtains a compression of the gas.
- the object of the present invention is to provide novel solutions for these various difficulties, separately or in combination, and in a manner which is as simple as possible.
- FIG. 1 represents the prior art
- FIGS. 2 to 7 show various manners of obtaining the transfer of the gas between the several loops
- FIG. 8 shows a generator with gas transfer zones and tengperature regulation by injections of conductive liquid
- FIG. 9 is a diagram showing the function of the generator of FIG. 8.
- the same reference numbers are used in all figures to designate the same elements or parts of elements of the magnetohydrodynamic apparatus, namely; the inlet pipe 1 for the compressed hot gas, the emulsifier 2, the region 3 where the emulsion works, the separator 4, the gas outlet pipe 5, and the region 6 where the liquid is restored to its initial pressure.
- the device producing the magnetic field is not represented nor are the electrodes by which energy is taken out or put in.
- FIG. 1 shows a loop according to the prior art in which the conductive liquid circulates in a closed circuit.
- the part 3 of this loop is effected the transformation of energy by a magnetohydrodynamic effect applied to an emulsion formed at 2 and eliminated at 4.
- this energy transformation is now distributed over several loops .at decreasing pressures, and the gas is transferred from one loop to the next under the effect of a suitable pressure difference.
- a simple means of obtaining this transfer, while maintaining the liquid flow in each loop substantially selfcontained, with the exception of the adventitious recycling flow, if any, consists in establishing concentric loops presenting .a communication between them in a curve with such a radius that suflicient pressure gradients are established; the bubbles pass then from the outer loop to the inner loop, while the liquid flows are substantially kept self-contained in each of these loops.
- a very great advantage of such a device with regard to that in which the gas is separated from the first loop and re-injected into the second is that a separation loss, plus an emulsion loss are replaced by a transfer loss, which is very likely much smaller than the sum of the first two losses.
- liquid flows of the plurality of loops can difler from each other, and consequently can be adapted to varied volumes of the gas flows which circulate in each of these loops.
- auxiliary expedients for example, suitable guide blades or vortex rings.
- FIG. 2 shows a simple embodiment of the invention comprising one loop A and another loop B inside the former.
- the gas enters the outer loop A through a pipe 1 and an emulsifier 2 an dissues from the inner loop B through a separator 4 and a pipe 5.
- the so-called transfer zone which acts both as a bubble separator for the loop A and as an emulsifier for the loop B.
- the separator -4 has been represented in a simple form, with a plane flow, which is possible from the moment on when the separation can be effected in a half-turn, which is the case.
- the structure consists of only three loops, and on the third has been represented a separator 4 permitting gas extraction.
- these different magnetohydrodynamic loops can either be gas expanding, i.e., generating electric power or gas compressing, i.e., consuming electric power.
- the loop assemblies represented in FIGS. 2 and 3 comprise a single gas inlet, and a single gas outlet, and the gas traverses thus in series all loops of each assembly in a single path. But one can also provide, without departing from the spirit of the invention, series-parallel combinations of the gas flow as well as from an electrical point of view.
- FIG. 4 shows a system with two loops in series for the expansion, or compression, of the gas, comprising in parallel two inlets and two outlets, the whole in the same plane, each loop being then actually double and formed, over the path of the conductive liquid, of two complete systems in series.
- This FIG. 4 shows in fact that the outer loop A comprises two gas inlets 1, two emulsifiers 2, two emulsion channels 3, two transfer zones 7 and two liquid channels 6, the whole in series over the liquid flow.
- the inner loop B comprises two transfer zones 7, in common with the loop A, two emulsion channels 3, two separators 4, two gas out-lets 5 and two liquid channels 6, the whole in series over the liquid flow.
- FIG. 5 shows such an assembly of loops comprising on the whole three gas inlets 1, three outlets 5, formed of four complex loops in series over the gas flows.
- Each of these four loops is formed from the point of view of the liquid conductor, but comprises in series over this liquid flow three systems each comprising: an emulsion channel '3, a transfer zone 7 communicating with the following loop, a liquid channel 6 where the pressure is restored, and finally a new transfer zone 7 in communication with the preceding loop where the emulsion is reformed.
- FIG. 5 represents a combination of concentric loops, which could be called a flat connection.
- the emulsion traverses in fact one, or several, fiat spirals, depending on whether there are one or more inlets and outlets.
- loops it is also possible to connect the loops by stacking them one on the other.
- a particularly interesting case of such an arrangement is that of a large number of simple loops comprising a single emulsion zone, such as that in FIG. 1, and stacked in a cylindrical manner.
- This stacking can naturally also be realized with more complex loops comprising several inlets and several outlets.
- the invention provides first of all, an the case of a generating device a heat supply in the loops traversed in the first place by the gas, in order to obtain an expansion close to the isotherm in this region, which is generally desired.
- a simple means of realizing this heat supply consists in injecting a certain adventitious flow of hot conductive liquid at one end of the said region, in withdrawing it, (slightly cooled), at the other end, then reheating it in an outside boiler, and so forth. It is advisable to inject this adventitious flow in a direction opposite to the direction of gas flow, i.e. at the outlet of the assembly of loops which constitute the quasi-isothermic region under consideration: because in this way the partial liquid flow issues at the top, compressed at the same time to the maximum pressure, and can thus circulate by itself in the reheating circuit. Its flow can be regulated by a suitable valve. But if it is found of advantage, the adventitious hot flow can also be circulated in the same direction as the gas.
- the invention provides that these temperatures can be established firstly by not supplying heat from the outside to the respective loops, and if necessary by heat-insulating them, one from each other except, of course, in the transfer zones of the gas bubbles. In such a case the overall evolution of the gas will be adiabatic.
- the invention provides also to inject into the' last loop, at the gas outlet, a new adventitious flow of conductive liquid, but cold this time.
- a small percentage of the liquid flow of the said loop suffices.
- This liquid circulates from loop-to-loop, passing through the transfer zones 7, in opposite direction to the gas flow, where it is slowly reheated in contact with the said gas, with a very small temperature difference by borrowing from the gas all the heat that has not been transformed into work by its expansion, and it is finally brought at the highest temperature of the cycle; then one can either extract it from this region, or allow the pressure to rise further at constant temperature in the isothermic part of the expansion described above, and extract it then.
- this adventitious flow functions as an intermediate transfer fluid for the exchange of heat with the compressed and cold gas, which must be reheated; this hot liquid is thus put in contact with the said gas in a suitable external heat exchanger; it issues cold, then it is recycled again as mentioned above in the last loop of the MHD device.
- FIG. 8 represents a generator provided with this improvement.
- FIG. 8 represents a generator provided with this improvement.
- FIG. 9 is a diagram equivalent to this assembly. Since one is here concerned with simple loops, only a single gas inlet 1, a single emulsifier 2, a single separator 4 and a single gas outlet 5 are here depicted.
- FIG. 8 is represented the connections of this generator with the other elements of the thermodynamic cycle.
- the gas issuing from the generator at 5, whose temperature is much lower than the maximum temperature of the cycle, traverses first a low-temperature heat exchanger 8, then a refrigerant 9 and a compressor .10.
- the compressed gas is then heated in counter-flow in the heat exchanger 8. It passes then into a high-temperature heat exchanger 11, fed with heat from a circuit of conductive liquid, as mentioned above, and is then injected into the generator by the emulsifier 2.
- This liquid passes then into a heat source 13, then into a regulating element 14 and is finally injected through an orifice 15 into the liquid flow of the second loop.
- the regulating element 14 can be, for example, a magnetohydrodynamic valve, consisting of a series of suitable spaced magnetic poles, arranged along a portion of the duct system, whose exciting current can be varied, thus creating a variable charge loss opposing the movement of the fluid.
- This arrangement has in fact the advantage of cutting off electrically the circuit of the recycled conductive liquid.
- the liquid thus brought to the last loop rises from loop to loop in the entire generator by borrowing successively from all the transfer zones 7 to reissue finally through the orifice 12.
- This liquid drains all the heat necessary for reheating the cold gas, without hindering in any way the expansion of the gas.
- This flow collects in addition by itself the liquid condensed in the last loops, those at stepped temperatures and reintroduces it into the first loops, those with substantially isothermic total expansion to compensate for the evaporation which is produced there.
- Apparatus as defined in claim 1 for effecting a trans fer of energy wherein separation of the gas from the liquid in one loop, its transfer into the following loop, and its emulsion in the latter loop are obtained by putting the electrically conductive liquids of the respective loops into direct contact in those transfer regions of the loops where the said low pressure of one loop and the high pressure of the adjacent loop prevail.
- Apparatus as defined in claim 1 for effecting a transfer of energy by expansion wherein the temperature of the first loop or loops is maintained substantially constant by injection therein of a hot conductive liquid.
- Apparatus as defined in claim 1 for effecting a transfer of energy by expansion wherein the temperature of the last loop or loops are established at decreasing values by injecting at the gas outlets a cold conductive liquid and circulating it in opposite direction to the gas in each loop and from loop-to-loop up to that where this adventitious flow is extracted.
- Apparatus as defined in claim 1 for effecting a transfer of energy wherein separation of the gas from the liquid in one loop, its transfer into the following loop and its emulsion in the latter loop are obtained by putting the electrically conductive liquids of the respective liquids into direct contact in those transfer regions of the loops where the said low pressure of one loop and the high pressure of the adjacent loop prevail, and wherein the temperature of the first loop or loops is maintained substantially constant by injection therein of a hot conductive liquid and 7 which circulates from loop-to-loop through said transfer regions.
- Apparatus as defined in claim 1 for effecting a transfer of energy wherein separation of the gas from the liquid in one loop, its transfer into the following loop and its emulsion in the latter 100p are obtained by putting the electrically conductive liquids of the respective liquids into direct contact in those transfer regions of the loops where the said low pressure of one loop and the high pressure of the adjacent loop prevail, and wherein the temperature of 10 the last loop or loops are established at decreasing values
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Hybrid Cells (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR25784A FR1455963A (fr) | 1965-07-23 | 1965-07-23 | Perfectionnement aux procédés de transformation d'énergie par effet magnétohydrodynamique |
Publications (1)
Publication Number | Publication Date |
---|---|
US3432694A true US3432694A (en) | 1969-03-11 |
Family
ID=8585147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US565202A Expired - Lifetime US3432694A (en) | 1965-07-23 | 1966-07-14 | Magnetohydrodynamic generator |
Country Status (6)
Country | Link |
---|---|
US (1) | US3432694A (en, 2012) |
BE (1) | BE684136A (en, 2012) |
CH (1) | CH447344A (en, 2012) |
FR (1) | FR1455963A (en, 2012) |
GB (1) | GB1158862A (en, 2012) |
NL (1) | NL6608614A (en, 2012) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4753576A (en) * | 1986-08-13 | 1988-06-28 | Westinghouse Electric Corp. | Magnetofluidynamic generator for a flow coupler |
EP0282681A1 (en) * | 1987-03-20 | 1988-09-21 | ANSALDO SOCIETA per AZIONI | Two-phase gas-liquid metal magnatohydrodynamic system with expander and compressor integrated in a superconducting magnet, for the production of electric power |
US4802531A (en) * | 1986-06-17 | 1989-02-07 | Electric Power Research Institute | Pump/intermediate heat exchanger assembly for a liquid metal reactor |
US4808080A (en) * | 1986-07-22 | 1989-02-28 | Electric Power Research Institute | Flow coupler assembly for double-pool-type reactor |
US4842054A (en) * | 1986-06-17 | 1989-06-27 | Westinghouse Electric Corp. | Pump/heat exchanger assembly for pool-type reactor |
US20050167987A1 (en) * | 2003-12-18 | 2005-08-04 | C.R.F. Societa Consortile Per Azioni | Electric generator having a magnetohydrodynamic effect |
US20110132467A1 (en) * | 2008-08-02 | 2011-06-09 | B/E Aerospace Systems Gmbh | Method and device for controlling the pressure and/or flow rate of fluid |
US20240022158A1 (en) * | 2020-12-29 | 2024-01-18 | Repg Enerji Sistemleri Sanayi Ve Ticaret Anonim Sirketi | Electricity generator |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114977723A (zh) * | 2022-07-15 | 2022-08-30 | 中国科学院电工研究所 | 一种多路并联的定量均流同步注入的碱金属种子系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3294989A (en) * | 1961-09-25 | 1966-12-27 | Trw Inc | Power conversion system |
US3385983A (en) * | 1964-04-16 | 1968-05-28 | Kernforschungsanlage Juelich | Magnetohydrodynamic energy converter |
-
1965
- 1965-07-23 FR FR25784A patent/FR1455963A/fr not_active Expired
-
1966
- 1966-06-08 CH CH858766A patent/CH447344A/fr unknown
- 1966-06-21 NL NL6608614A patent/NL6608614A/xx unknown
- 1966-07-14 US US565202A patent/US3432694A/en not_active Expired - Lifetime
- 1966-07-14 BE BE684136D patent/BE684136A/xx unknown
- 1966-07-25 GB GB33277/66A patent/GB1158862A/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3294989A (en) * | 1961-09-25 | 1966-12-27 | Trw Inc | Power conversion system |
US3385983A (en) * | 1964-04-16 | 1968-05-28 | Kernforschungsanlage Juelich | Magnetohydrodynamic energy converter |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4802531A (en) * | 1986-06-17 | 1989-02-07 | Electric Power Research Institute | Pump/intermediate heat exchanger assembly for a liquid metal reactor |
US4842054A (en) * | 1986-06-17 | 1989-06-27 | Westinghouse Electric Corp. | Pump/heat exchanger assembly for pool-type reactor |
US4808080A (en) * | 1986-07-22 | 1989-02-28 | Electric Power Research Institute | Flow coupler assembly for double-pool-type reactor |
US4753576A (en) * | 1986-08-13 | 1988-06-28 | Westinghouse Electric Corp. | Magnetofluidynamic generator for a flow coupler |
EP0282681A1 (en) * | 1987-03-20 | 1988-09-21 | ANSALDO SOCIETA per AZIONI | Two-phase gas-liquid metal magnatohydrodynamic system with expander and compressor integrated in a superconducting magnet, for the production of electric power |
US7061129B2 (en) | 2003-12-18 | 2006-06-13 | C.R.F. Societa Consortile Per Azioni | Electric generator having a magnetohydrodynamic effect |
US20050167987A1 (en) * | 2003-12-18 | 2005-08-04 | C.R.F. Societa Consortile Per Azioni | Electric generator having a magnetohydrodynamic effect |
EP1548919A3 (en) * | 2003-12-18 | 2006-11-29 | C.R.F. Società Consortile per Azioni | Electric generator having a magnetohydrodynamic effect |
US20110132467A1 (en) * | 2008-08-02 | 2011-06-09 | B/E Aerospace Systems Gmbh | Method and device for controlling the pressure and/or flow rate of fluid |
US8944096B2 (en) * | 2008-08-02 | 2015-02-03 | B/E Aerospace Systems Gmbh | Method and device for controlling the pressure and/or flow rate of fluid |
US20240022158A1 (en) * | 2020-12-29 | 2024-01-18 | Repg Enerji Sistemleri Sanayi Ve Ticaret Anonim Sirketi | Electricity generator |
EP4272303A4 (en) * | 2020-12-29 | 2024-07-17 | REPG Enerji Sistemleri Sanayi ve Ticaret Anonim Sirketi | ELECTRICITY GENERATOR |
US12368362B2 (en) * | 2020-12-29 | 2025-07-22 | Repg Enerji Sistemleri Sanayi Ve Ticaret Anonim Sirketi | Electricity generator |
Also Published As
Publication number | Publication date |
---|---|
NL6608614A (en, 2012) | 1967-01-24 |
DE1538765B2 (de) | 1975-08-14 |
CH447344A (fr) | 1967-11-30 |
BE684136A (en, 2012) | 1966-12-16 |
FR1455963A (fr) | 1966-05-20 |
DE1538765A1 (de) | 1970-04-16 |
GB1158862A (en) | 1969-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3274752A (en) | Process and apparatus for improving the transfer of heat from a hot gaseous fluid | |
US3432694A (en) | Magnetohydrodynamic generator | |
DE69412488T2 (de) | Wärmeaustauschgerät und -verfahren für wärmeaustausch zwischen austreiber und absorber und deren verwendung in einer wärmepumpe | |
US3818697A (en) | Power plant and method for generating peak power therein | |
US3451342A (en) | Cryogenic engine system and method | |
US3621926A (en) | Nuclear reactor coolant recirculation system | |
US20050056029A1 (en) | Evaporative duplex counterheat exchanger | |
US3972196A (en) | Steam pressure increasing device for drive turbines | |
US3047479A (en) | Steam reactor system | |
EP0021302B1 (de) | Aus einer geothermischen Wärmequelle versorgtes Wärmekraftwerk | |
CN108071431A (zh) | 利用循环升压升温节能方法 | |
US3575807A (en) | Steam cooled reactor operation | |
US3410091A (en) | Nuclear thermal power plant | |
US4293384A (en) | Nuclear reactor plant for generating process heat | |
US3517229A (en) | Magnetohydrodynamic generator apparatus | |
US3304712A (en) | Steam and gas turbine power plant | |
US3934799A (en) | High-capacity steam heating system | |
US2478851A (en) | Gas turbine plant | |
US4847525A (en) | Methods and systems for magnetohydrodynamic power conversion | |
US4089177A (en) | Heat engine for transforming heat energy to work including ejector heat pump | |
US4016929A (en) | Heat-exchanger | |
US3414745A (en) | Power plant for transforming energy by utilization of the magnetohydrodynamic effect | |
US3465180A (en) | Two component electro-fluid-dynamic power generator employing contact ionization | |
US3450904A (en) | Process and apparatus for transforming calorific energy into electrical energy along a thermodynamic cycle comprising at least one magnetohydrodynamic system | |
US4959566A (en) | Lithium-sulfur hexafluoride magnetohydrodynamic power system configurations and system design considerations |