US3428566A - Process of corrosion inhibition with 1-hexyn-3-ol - Google Patents
Process of corrosion inhibition with 1-hexyn-3-ol Download PDFInfo
- Publication number
- US3428566A US3428566A US563616A US3428566DA US3428566A US 3428566 A US3428566 A US 3428566A US 563616 A US563616 A US 563616A US 3428566D A US3428566D A US 3428566DA US 3428566 A US3428566 A US 3428566A
- Authority
- US
- United States
- Prior art keywords
- hexyn
- acid
- inhibitor
- corrosion
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- LTFTWJYRQNTCHI-UHFFFAOYSA-N hex-1-yn-3-ol Chemical compound CCCC(O)C#C LTFTWJYRQNTCHI-UHFFFAOYSA-N 0.000 title description 30
- 238000005260 corrosion Methods 0.000 title description 27
- 230000007797 corrosion Effects 0.000 title description 27
- 238000000034 method Methods 0.000 title description 8
- 230000005764 inhibitory process Effects 0.000 title description 5
- 230000008569 process Effects 0.000 title description 3
- 239000003112 inhibitor Substances 0.000 description 33
- 229910052751 metal Inorganic materials 0.000 description 31
- 239000002184 metal Substances 0.000 description 31
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 23
- 239000002253 acid Substances 0.000 description 20
- 239000000243 solution Substances 0.000 description 18
- 238000004140 cleaning Methods 0.000 description 13
- 235000011167 hydrochloric acid Nutrition 0.000 description 12
- 238000007654 immersion Methods 0.000 description 10
- 229910000831 Steel Inorganic materials 0.000 description 9
- 239000011260 aqueous acid Substances 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- 230000002401 inhibitory effect Effects 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 150000001412 amines Chemical class 0.000 description 6
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 5
- -1 sulfuric Chemical class 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 235000011007 phosphoric acid Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 2
- 208000016261 weight loss Diseases 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- NSMXQKNUPPXBRG-SECBINFHSA-N (R)-lisofylline Chemical compound O=C1N(CCCC[C@H](O)C)C(=O)N(C)C2=C1N(C)C=N2 NSMXQKNUPPXBRG-SECBINFHSA-N 0.000 description 1
- OIALIKXMLIAOSN-UHFFFAOYSA-N 2-Propylpyridine Chemical compound CCCC1=CC=CC=N1 OIALIKXMLIAOSN-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- WREBNDYJJMUWAO-LWYYNNOASA-N [(1r,4ar,4br,10ar)-1,4a-dimethyl-7-propan-2-yl-2,3,4,4b,5,6,10,10a-octahydrophenanthren-1-yl]methanamine Chemical class NC[C@]1(C)CCC[C@]2(C)[C@@H](CCC(C(C)C)=C3)C3=CC[C@H]21 WREBNDYJJMUWAO-LWYYNNOASA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000005189 alkyl hydroxy group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 208000020442 loss of weight Diseases 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/04—Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors
- C23G1/06—Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors organic inhibitors
- C23G1/068—Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors organic inhibitors compounds containing a C=C bond
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F11/00—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
- C23F11/04—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly acid liquids
Definitions
- Metal cleaning baths and pickling baths are usually composed of aqueous solutions of inorganic acids such as sulfuric, hydrochloric, and phosphoric acids and are useful in the cleaning of metals and metal alloys, such as aluminum, ferrous metals specifically including steel, Zinc, etc.
- inorganic acids such as sulfuric, hydrochloric, and phosphoric acids
- metals and metal alloys such as aluminum, ferrous metals specifically including steel, Zinc, etc.
- additives or inhibitors in the acid bath are desirable to prevent or inhibit corrosion or erosion of the metal surfaces. If no corrosion inhibitor is present in the acid bath, the results generally will be excessive metal loss, production of undesirable metal surface proporties, and excessive consumption or loss of acid. While it is well-known to use corrosion inhibitors in such acid baths, those inhibitors heretofore used have had certain disadvantages such as, instability at elevated temperatures, toxic and obnoxious properties when used in the acid baths and in certain cases poor metal surface properties resulted from their use.
- Another object of this invention is to provide a novel inorganic acid cleaning composition and a method of cleaning metals while substantially preventing or inhibiting acid attack on metal surfaces being cleaned, without interfering with the desired cleaning action.
- a further object of the invention is to provide improved metal cleaning baths that may be operated at elevated temperatures.
- the inhibitor of this invention is useful, in general, in the inhibition of corrosion of metal sur faces in contact with aqueous acid solutions, for example, in the acidizing of oil wells, electrolytic cleaning baths, electroplating baths, and electrolytic refining of metals as well as in metal cleaning and pickling baths.
- 1-hexyn-3-o1 as a corrosion inhibitor for metals in aqueous inorganic acid solutions is advantageous in that 1-hexyn-3-ol is easily soluble in water and can be employed as a corrosion inhibitor over a wide and useful concentration range.
- 1-hexyn-3-ol does not produce discolored metal surfaces or undesirable properties on the metal surface in contact with the inhibited acid system. Its use as an inhibitor in metal cleaning operations while inhibiting acid attack on the metals will generally results in improved surface properties of the metals.
- 1-hexyn-3-ol When compared at equal concentrations 1-hexyn-3-ol will generally give better inhibition than other inhibitors.
- the inhibitor is not toxic or obnoxious when used in aqueous acid solutions; further it does not produce undesirable foam and it is soluble and compatible with other materials usually added to the aqueous acid systems.
- a further advantage of this inhibitor is that it may be used at elevated temperatures to provide good corrosion inhibition.
- the most effective amount of l-hexyn-3-ol to be used in this invention will vary, depending generally upon the particular acid corrosive system, the particular metal exposed to acid, and the amount of acid present in the aqueous solution.
- the temperature and other characteristics of the acid corrosive system Will also affect the amount of inhibitor to be used.
- a concentration of l-hexyn-3-ol between 0.025% to 0.5% by weight of the acid corrosive solution is an effective and desirable corrosion inhibiting concentration, with a concentration between 0.05% to 0.2% being of particular advantage.
- the inhibitor of this invention may be advantageously combined with other compounds, such as amine inhibitors; as for example, quaternary ammonium compounds as Arquad T and Arquad 2C manufactured by Armour and Company; rosin-ammonia reaction products, including abietylamine derivatives; coal tar derivatives and heterocyclic nitrogen compounds; primary, secondary and tertiary amines and their alkyl hydroxy derivatives; and the ethylene oxide condensation reaction products of the preceding amines.
- amine inhibitors as for example, quaternary ammonium compounds as Arquad T and Arquad 2C manufactured by Armour and Company
- rosin-ammonia reaction products including abietylamine derivatives
- coal tar derivatives and heterocyclic nitrogen compounds including primary, secondary and tertiary amines and their alkyl hydroxy derivatives
- ethylene oxide condensation reaction products of the preceding amines This combination being useful as a corrosion inhibitor to inhibit or substantially prevent the corrosion of metals in contact with aqueous acid solutions.
- This amine, 1-hexyn-3-ol' inhibitor combination may be used in concentrations from approximately 0.025% to 0.5% by weight of the aqueous acid solution.
- the ratio of amine to 1-hexyn-3-ol may vary appreciably, but it has been found that a 1:1 ratio is advantageous.
- a particular amine Alkyl Pyridine HB available from Union Carbide Chemicals Company and comprising a mixture of lower alkyl pyridines as methyl, ethyl, isopropyl and propyl pyridine is useful in the amine, 1-hexyn-3-ol combination inhibitor.
- a mixture of Alkyl Pyridine HB and 1-hexyn3-ol comprising 0.1% of each and a total of 0.2% by weight of the aqueous acid corrosive system is effective as a corrosion inhibitor.
- the following examples are illustrative of the corrosion inhibiting properties of l-hexyn-3-ol.
- the inhibitor concentration is expressed as percent by weight of the aqueous acid solution and the acid concentration is percent by weight of the solution.
- the method used to determine the inhibiting properties of 1-hexyn-3-ol as set forth in the examples consisted in first cleaning hot rolled mild steel specimen strips (SAE 10104-015, carbon content 0.0 5 %0.20% 2" -x 1" x l i with an average surface area of 0.0313 sq. ft. and an average weight of 15.5 grams. Cleaning was accomplished by rinsing the steel coupons with trichloroethylene, then rubbing the coupon with a cloth wet with trichloroethylene.
- the steel coupons then were dipped in concentrated hydrochloric acid for one minute followed by an immediate rinse with distilled water.
- the coupon was dried by rinsing with acetone.
- the coupons were then 'weighed to obtain the original weight prior to immersion in the corrosive system for a specified time.
- phosphoric acid system 15% H PO maintained at 71 C. (160 B) are generally representative of the aqueous acid corrosive systems usually encountered.
- Corrosion inhibiting properties may be described conveniently in terms of the corrosion rate. This rate being the metal loss of weight in pounds per square foot per day.
- Example 1 Immersion corrosion rate Inhibitor 5 hours 24 hours 1-hexyn-3-ol O. 049 0. 011 None 1. 642 0.817
- Example 2 A group of tests similar to Example 1, wherein the concentration of 1-hexyn-3-ol was varied, were performed.
- the hydrochloric acid at 66 C. system was used along with steel coupons.
- Example 3 Immersion corrosion rate Inhibitor concentration, percent 5 hours 24 hours Example 3 The following test was conducted at a higher corrosive system temperature. The procedure used was as in the preceding examples, except the mill scale was not partially removed by an acid dip in the preparation of the steel coupons. A solution of 15% hydrochloric acid at a temperature of 82 C. (180 F.) was used. Inhibitor concentration was 0.2%.
- Example 4 The following test utilized the standard procedure outlined previously with steel coupons andv a 15% hydrochloric acid solution maintained at 180 F. (822 C.). Inhibitor concentration was 0.1%
- Inhibitor 24 hours l-hexyn-S-ol 0.012 None (1) The test sample containing no inhibitor exhibited very rapid corrosive action upon the steel with a total weight loss of 11.643 grams or approximately of the original steel coupon; whereas after the same test period of 24 hours the sanlple containing inhibitor still provided substantial protec on.
- Example 5 The following test was conducted using the procedure of Example 3, wherein the mill scale was not partially removed by an acid dip in the preparation of the steel "coupons. A solution of 15 hydrochloric acid at a temperature of 82 C. (180 F.) was used. Inhibitor concentration was percent by weight as shown.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Description
United States Patent 3 Claims ABSTRACT OF THE DISCLOSURE Effective corrosion inhibition of an aqueous hydrochloric acid solution having a concentration of at least with respect to corrosion of a ferrous metal at a temperature of at least 82 C. with a minimum amount of corrosion inhibitor is effected by having present in the hydrochloric acid solution when it is in contact with the ferrous metal 0.1 to 0.2% by weight of l-hexyn-3-ol which has the structural formula This application is a continuation of application Ser. No. 770,924 now abandoned.
Metal cleaning baths and pickling baths are usually composed of aqueous solutions of inorganic acids such as sulfuric, hydrochloric, and phosphoric acids and are useful in the cleaning of metals and metal alloys, such as aluminum, ferrous metals specifically including steel, Zinc, etc.
In the use of acid baths to remove undesired metal surface coatings, additives or inhibitors in the acid bath are desirable to prevent or inhibit corrosion or erosion of the metal surfaces. If no corrosion inhibitor is present in the acid bath, the results generally will be excessive metal loss, production of undesirable metal surface proporties, and excessive consumption or loss of acid. While it is well-known to use corrosion inhibitors in such acid baths, those inhibitors heretofore used have had certain disadvantages such as, instability at elevated temperatures, toxic and obnoxious properties when used in the acid baths and in certain cases poor metal surface properties resulted from their use. Also, certain prior art inhibitors are difficult to use as they are bulky sticky :solids or viscous liquids; while others have the undesirable proporties of producing excessive foam and they are not soluble or compatible with other compounds used in the corrosive systems. Still other inhibitors result in the metal having poor properties, especially undesirable in electroplating operations, as poor adhesion and discolored surfaces.
It is an object of this invention to provide an improved composition and an improved method for the protection of metal surfaces against erosion or corrosion in aqueous acid solutions.
Another object of this invention is to provide a novel inorganic acid cleaning composition and a method of cleaning metals while substantially preventing or inhibiting acid attack on metal surfaces being cleaned, without interfering with the desired cleaning action.
A further object of the invention is to provide improved metal cleaning baths that may be operated at elevated temperatures.
These and other objects and advantages of this invention will be pointed out or will become apparent from the following description.
In accordance with the present invention the incorporation of a small amount of l-hexyn-S-ol in aqueous in- 3,423,566 Patented Feb. 18, 1969 organic acid solutions has been found to have the desirable property of inhibiting or substantially preventing the corrosive action or attack of the acid upon the metal surface being cleaned. The use of 1-hexyn-3-ol in acid cleaning and pickling baths does not hinder or interfere with the desired action of the acid on the oxide, rust, grease, scale or other undesirable surface material or coating which is to be removed.
The inhibitor of this invention, 1-hexyn-3-ol, is useful, in general, in the inhibition of corrosion of metal sur faces in contact with aqueous acid solutions, for example, in the acidizing of oil wells, electrolytic cleaning baths, electroplating baths, and electrolytic refining of metals as well as in metal cleaning and pickling baths.
The use of 1-hexyn-3-o1 as a corrosion inhibitor for metals in aqueous inorganic acid solutions is advantageous in that 1-hexyn-3-ol is easily soluble in water and can be employed as a corrosion inhibitor over a wide and useful concentration range. When used as an inhibitor 1-hexyn-3-ol does not produce discolored metal surfaces or undesirable properties on the metal surface in contact with the inhibited acid system. Its use as an inhibitor in metal cleaning operations while inhibiting acid attack on the metals will generally results in improved surface properties of the metals. When compared at equal concentrations 1-hexyn-3-ol will generally give better inhibition than other inhibitors. The inhibitor is not toxic or obnoxious when used in aqueous acid solutions; further it does not produce undesirable foam and it is soluble and compatible with other materials usually added to the aqueous acid systems. A further advantage of this inhibitor is that it may be used at elevated temperatures to provide good corrosion inhibition.
The most effective amount of l-hexyn-3-ol to be used in this invention will vary, depending generally upon the particular acid corrosive system, the particular metal exposed to acid, and the amount of acid present in the aqueous solution. The temperature and other characteristics of the acid corrosive system Will also affect the amount of inhibitor to be used.
In general, it has been found that a concentration of l-hexyn-3-ol between 0.025% to 0.5% by weight of the acid corrosive solution is an effective and desirable corrosion inhibiting concentration, with a concentration between 0.05% to 0.2% being of particular advantage.
The inhibitor of this invention, l-hexyn-B-ol, may be advantageously combined with other compounds, such as amine inhibitors; as for example, quaternary ammonium compounds as Arquad T and Arquad 2C manufactured by Armour and Company; rosin-ammonia reaction products, including abietylamine derivatives; coal tar derivatives and heterocyclic nitrogen compounds; primary, secondary and tertiary amines and their alkyl hydroxy derivatives; and the ethylene oxide condensation reaction products of the preceding amines. This combination being useful as a corrosion inhibitor to inhibit or substantially prevent the corrosion of metals in contact with aqueous acid solutions. This amine, 1-hexyn-3-ol' inhibitor combination may be used in concentrations from approximately 0.025% to 0.5% by weight of the aqueous acid solution. The ratio of amine to 1-hexyn-3-ol may vary appreciably, but it has been found that a 1:1 ratio is advantageous. A particular amine Alkyl Pyridine HB available from Union Carbide Chemicals Company and comprising a mixture of lower alkyl pyridines as methyl, ethyl, isopropyl and propyl pyridine is useful in the amine, 1-hexyn-3-ol combination inhibitor. A mixture of Alkyl Pyridine HB and 1-hexyn3-ol comprising 0.1% of each and a total of 0.2% by weight of the aqueous acid corrosive system is effective as a corrosion inhibitor.
The following examples are illustrative of the corrosion inhibiting properties of l-hexyn-3-ol. In the examples the inhibitor concentration is expressed as percent by weight of the aqueous acid solution and the acid concentration is percent by weight of the solution. The method used to determine the inhibiting properties of 1-hexyn-3-ol as set forth in the examples consisted in first cleaning hot rolled mild steel specimen strips (SAE 10104-015, carbon content 0.0 5 %0.20% 2" -x 1" x l i with an average surface area of 0.0313 sq. ft. and an average weight of 15.5 grams. Cleaning was accomplished by rinsing the steel coupons with trichloroethylene, then rubbing the coupon with a cloth wet with trichloroethylene. The steel coupons then were dipped in concentrated hydrochloric acid for one minute followed by an immediate rinse with distilled water. The coupon was dried by rinsing with acetone. The coupons were then 'weighed to obtain the original weight prior to immersion in the corrosive system for a specified time.
Various corrosive systems may be used, for example, (1) hydrochloric acid system 15% HCl maintained at 66 C. (150 F.), (2) sulfuric acid system 15% H S maintained at 86 C. (187 F.), (3) phosphoric acid system 15% H PO maintained at 71 C. (160 B). These systems are generally representative of the aqueous acid corrosive systems usually encountered.
After immersion in the corrosive system for the specified time the coupons were removed, washed with distilled water, rinsed with acetone, air dried and again weighed. In most tests an initial five hour immersion time was used and the coupons after being weighed were again immersed in the corrosive system for a total of twenty-four hours. The cleaning of the immersed coupon was repeated.
Corrosion inhibiting properties may be described conveniently in terms of the corrosion rate. This rate being the metal loss of weight in pounds per square foot per day.
Immersion corrosion rate (lbs./ft. /day) Coupon weight loss, grams 24 hrs/day 454 grams/lb. immersion time, hrs.
surface area, sq. ft.
Example 1 Immersion corrosion rate Inhibitor 5 hours 24 hours 1-hexyn-3-ol O. 049 0. 011 None 1. 642 0.817
Example 2 A group of tests similar to Example 1, wherein the concentration of 1-hexyn-3-ol was varied, were performed. The hydrochloric acid at 66 C. system was used along with steel coupons.
Immersion corrosion rate Inhibitor concentration, percent 5 hours 24 hours Example 3 The following test was conducted at a higher corrosive system temperature. The procedure used was as in the preceding examples, except the mill scale was not partially removed by an acid dip in the preparation of the steel coupons. A solution of 15% hydrochloric acid at a temperature of 82 C. (180 F.) was used. Inhibitor concentration was 0.2%.
Immersion corrosion Inhibitor: rate, 17 hours 1-hexyn-3-ol 0.017 None 1.585
Example 4 The following test utilized the standard procedure outlined previously with steel coupons andv a 15% hydrochloric acid solution maintained at 180 F. (822 C.). Inhibitor concentration was 0.1%
Immersion corrosion rate,
Inhibitor: 24 hours l-hexyn-S-ol 0.012 None (1) The test sample containing no inhibitor exhibited very rapid corrosive action upon the steel with a total weight loss of 11.643 grams or approximately of the original steel coupon; whereas after the same test period of 24 hours the sanlple containing inhibitor still provided substantial protec on.
Example 5 The following test was conducted using the procedure of Example 3, wherein the mill scale was not partially removed by an acid dip in the preparation of the steel "coupons. A solution of 15 hydrochloric acid at a temperature of 82 C. (180 F.) was used. Inhibitor concentration was percent by weight as shown.
Immersion corrosion rate,
As widely different modifications of the invention may be made without departing from the scope and spirit of the invention, it is to be understood that the invention is not to be limited by the foregoing examples and details of description, except as defined by the following claims.
We claim:
1. In aprocess wherein an aqueous hydrochloric acid solution having a concentration of at least 15 is in contact with a ferrous metal at a temperature of at least 82 C., the improvement which effectively inhibits the corrosion of said ferrous metal by said hydrochloric acid solution with a minimum amount of a corrosion inhibitor which comprises having present in said hydrochloric acid solution when it is in contact with said ferrous metal at said temperature 0.1 to 0.2% by weight of 1-hexyn-3-ol.
2. A process as defined in claim 1, wherein said temperature is 82 to C.
3. A process as defined in claim 1, wherein said temperature is about 82 C., and said concentration is 15%.
References Cited UNITED STATES PATENTS 3,049,496 8/ 1962 Monroe et a1. 252-146 3,107,221 10/1963 Harrison et al. 252148 LEON D. ROSDOL, Primary Examiner.
W. SCHULZ, Assistant Examiner.
U.S. C1. X.R. 1343, 41; 252388
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US56361666A | 1966-07-07 | 1966-07-07 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3428566A true US3428566A (en) | 1969-02-18 |
Family
ID=24251240
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US563616A Expired - Lifetime US3428566A (en) | 1966-07-07 | 1966-07-07 | Process of corrosion inhibition with 1-hexyn-3-ol |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3428566A (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3655571A (en) * | 1968-12-31 | 1972-04-11 | Air Prod & Chem | Corrosion inhibitor mixture |
| US4039336A (en) * | 1975-12-03 | 1977-08-02 | Exxon Research And Engineering Company | Diacetylenic alcohol corrosion inhibitors |
| US4387041A (en) * | 1981-09-14 | 1983-06-07 | Gaf Corporation | Corrosion inhibitors |
| US4387042A (en) * | 1981-10-15 | 1983-06-07 | Gaf Corporation | Corrosion inhibitor comprising the ethynylation reaction product of a dialkylamine, a substituted benzaldehyde and acetylene |
| US4670186A (en) * | 1982-12-17 | 1987-06-02 | Petrolite Corporation | Acid inhibitor composition |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3049496A (en) * | 1959-04-30 | 1962-08-14 | Dow Chemical Co | Propargyl compounds as corrosion inhibitors |
| US3107221A (en) * | 1958-04-18 | 1963-10-15 | Dow Chemical Co | Corrosion inhibitor composition |
-
1966
- 1966-07-07 US US563616A patent/US3428566A/en not_active Expired - Lifetime
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3107221A (en) * | 1958-04-18 | 1963-10-15 | Dow Chemical Co | Corrosion inhibitor composition |
| US3049496A (en) * | 1959-04-30 | 1962-08-14 | Dow Chemical Co | Propargyl compounds as corrosion inhibitors |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3655571A (en) * | 1968-12-31 | 1972-04-11 | Air Prod & Chem | Corrosion inhibitor mixture |
| US4039336A (en) * | 1975-12-03 | 1977-08-02 | Exxon Research And Engineering Company | Diacetylenic alcohol corrosion inhibitors |
| US4387041A (en) * | 1981-09-14 | 1983-06-07 | Gaf Corporation | Corrosion inhibitors |
| US4387042A (en) * | 1981-10-15 | 1983-06-07 | Gaf Corporation | Corrosion inhibitor comprising the ethynylation reaction product of a dialkylamine, a substituted benzaldehyde and acetylene |
| US4670186A (en) * | 1982-12-17 | 1987-06-02 | Petrolite Corporation | Acid inhibitor composition |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2956956A (en) | Inhibitors for acid solutions employed in the surface treatment of metals | |
| US4705665A (en) | Method for inhibiting oxidation of ferrous metals with alkyl glycosides and composition for cleaning ferrous metals | |
| US4104303A (en) | Acid inhibitor composition and process in hydrofluoric acid chemical cleaning | |
| US2965577A (en) | Corrosion inhibitor composition and method of using same | |
| US5614028A (en) | Method of cleaning and passivating a metal surface with acidic system and ethoxylated tertiary dodecyl mercaptan | |
| US3428566A (en) | Process of corrosion inhibition with 1-hexyn-3-ol | |
| US4370256A (en) | Corrosion inhibitor for aluminum in aqueous acids | |
| US3049496A (en) | Propargyl compounds as corrosion inhibitors | |
| US5683751A (en) | Process for surface treatment of sheet steel partially coated with zinc or zinc alloy | |
| US3249548A (en) | Corrosion inhibiting composition comprising 4-ethyl-1-octyn-3-ol | |
| US3335090A (en) | Corrosion inhibition with propargyl benzylamine | |
| US2450861A (en) | Composition for descaling ferrous metal | |
| US2203649A (en) | Acid solution | |
| US2511988A (en) | Pickling process | |
| US3819527A (en) | Composition and method for inhibiting acid attack of metals | |
| US3642641A (en) | Corrosion inhibition | |
| US3481882A (en) | Cleaning composition and method of cleaning articles therewith | |
| US3188292A (en) | Pickling inhibiting compositions | |
| US3705106A (en) | Nonoxidizing acidic compositions containing rosin amine and acetylenic corrosion inhibitors | |
| US4076501A (en) | Corrosion inhibition of water systems with phosphonic acids | |
| US2617771A (en) | Corrosion retarder | |
| US3337470A (en) | Corrosion inhibition with propargyl cyclohexylamine | |
| US3282850A (en) | Corrosion inhibition with dipropargyl butylamine | |
| US3600321A (en) | Dimethyl formamide-containing corrosion inhibitor | |
| US3655571A (en) | Corrosion inhibitor mixture |