US3421164A - Method and apparatus for padding absorbent materials - Google Patents

Method and apparatus for padding absorbent materials Download PDF

Info

Publication number
US3421164A
US3421164A US567955A US3421164DA US3421164A US 3421164 A US3421164 A US 3421164A US 567955 A US567955 A US 567955A US 3421164D A US3421164D A US 3421164DA US 3421164 A US3421164 A US 3421164A
Authority
US
United States
Prior art keywords
chamber
rollers
nip
roller
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US567955A
Inventor
John F Zuczek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3421164A publication Critical patent/US3421164A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B1/00Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating
    • D06B1/10Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating by contact with a member carrying the treating material
    • D06B1/14Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating by contact with a member carrying the treating material with a roller
    • D06B1/145Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating by contact with a member carrying the treating material with a roller the treating material being kept in the trough formed between two or more rollers
    • D06B1/146Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating by contact with a member carrying the treating material with a roller the treating material being kept in the trough formed between two or more rollers where the textile material is first passed in a nip before it comes into contact with the treating material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/10Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B2700/00Treating of textile materials, e.g. bleaching, dyeing, mercerising, impregnating, washing; Fulling of fabrics
    • D06B2700/09Apparatus for passing open width fabrics through bleaching, washing or dyeing liquid

Definitions

  • the container is established by a plurality of rollers cooperating with one another to establish an axially ex'ending cavity and a relatively rigid plate member urged toward the corresponding ends of the rollers.
  • a flexible bearing member of low friction material provides a sealing surface at the corresponding ends of the rollers and a resilient backing member is contiguous with the bearing member and lies between the bearing member and the rigid plate for maintaining the sealing surface in sealing engagement at the ends of the rollers.
  • the present invention relates to a method of padding bleach, dyestuffs or other chemical solutions into absorbent textile materials in continuous length and in open width and to apparatus for carrying out the method,
  • padding will be used hereinafter to refer to dyeing, bleaching, impregnating or like treatment with a treating liquor.
  • materials is intended to embrace various materials employed in the textile industry, for example, cotton, wool, rayon, nylon, and other natural or synthetic materials, and fabrics, sheets, webs or yarns made from glass or plastic materials and includes tubular knit fabric, fiat knit fabric, woven fabric and non-woven fabric.
  • the invention pertains, more specifically, to the padding of materials in tubular knit form; however, the principles of the invention and the techniques disclosed herein are applicable to the padding of materials in other forms.
  • Simple padding of a chemical solution into an absorbent material is usually accomplished by immersing the material in a bath of treating liquor, allowing the material to absorb as much of the liquor as possible, and then removing any excess liquor. In such a process the solution tends to remain on the surface of the material after immersion.
  • the removal of excess liquor is generally carried out by passing the material through the nip of a pair of rollers thereby not only squeezing out the excess liquor but driving a small portion of the solution further into the material. As a result, it becomes extremely difiicult in such a process to control the uniformity of application and the amount of liquor retained in the material and thus assure that the desired amount of solution remains in the material.
  • Another object of the invention is to provide a method and apparatus for padding absorbent materials, and particularly for dyeing tubular knit goods in continuous length and in open width, wherein there is accomplished a uniformity and close control in the amount of padded solution retained in the maierial at the completion of the padding operation.
  • the material which is to be treated is subjected to a first predetermined pressure which has a magnitude great enough to extract unwanted matter, such as air, water, or other chemicals, from the interstices of the material, the first pressure is simultaneously released and the material immersed in a bath of treating liquor which is held under a superatmospheric pressure so that the superatmospheric pressure is allowed to force the treating liquor to penetrate into the interstices, whereby the material is made to carry an amount of treating liquor in excess of the amount desired in the padded material and the material is then subjected to a second predetermined pressure having a magnitude less than the first pressure and having been chosen for the purpose of removing excess treating liquor from the material.
  • a first predetermined pressure which has a magnitude great enough to extract unwanted matter, such as air, water, or other chemicals, from the interstices of the material
  • the first pressure is simultaneously released and the material immersed in a bath of treating liquor which is held under a superatmospheric pressure so that the superatmospheric pressure is allowed to
  • the material which is to be treated is passed through an apparatus including means for subjecting the material to the first predetermined pressure, means for containing a bath of treating liquor and maintaining the bath under superatmospheric pressure in said containing means, and means for subjecting the material to a second predetermined pressure, these means being independent of the first pressure means so that the second pressure may be less than the first predetermined pressure and may be chosen for the express purpose of removing excess treating liquor from the material.
  • the containing means must cooperate with the first and second pressure means such that the material is immediately immersed in the bath simultaneous with leaving the first pressure means and is subsequently passed immediately simultaneously from the bath into the second pressure means.
  • the pressure means are advantageously constructed in the form of nips between cooperating rollers and the containing means is best constructed in the form of a chamber made up partially of the cooperating rollers.
  • the containing means is best constructed in the form of a chamber made up partially of the cooperating rollers.
  • the invention further contemplates a particular sealing construction for accomplishing this purpose.
  • the invention contemplates the provision of means for removing accumulated air from the chamber during operation of the apparatus.
  • FIGURE 1 is a plan view of an apparatus constructed in accordance with the invention.
  • FIGURE 2 is an end elevational view of the apparatus of FIGURE 1;
  • FIGURE 3 is an enlarged fragmentary cross-sectional view taken along line 33 of FIGURE 2;
  • FIGURE 4 is a schematic diagram of the system for maintaining a bath of treating liquor under superatmospheric pressure in the apparatus;
  • FIGURE 5 is an enlarged cross-sectional view taken along line 5-5 of FIGURE 1;
  • FIGURE 6 is a fragmentary cross-sectional view taken along line 66 of FIGURE 5;
  • FIGURE 7 is an enlarged end elevational view of a guide roller assembly employed in the apparatus
  • FIGURE 8 is an enlarged cross-sectional view taken at a location similar to FIGURE 5 but illustrating an alternative form
  • FIGURE 9 is similar to- FIGURE 8 but shows another alternative
  • FIGURE 10 is a fragmentary end elevational view illus trating the construction at the end of the chamber provided in the apparatus;
  • FIGURE 11 is a fragmentary plan view of the detail of construction of FIGURE 10;
  • FIGURE 12 is a partially diagrammatical elevational view of a seal employed in the apparatus; and I FIGURE 13 is a cross-sectional view taken along line 1313 of FIGURE 12.
  • FIGURE 1 the material to be padded is indicated in phantom at 10 in FIGURE 1 and appears in the form of a tubular knit, continuous length, open width absorbent fabric.
  • An apparatus for padding the material 10 is shown generally at 12 and has a frame 14 upon which lower and upper rollers 16 and 18, respectively, are mounted for rotation about generally horizontal axes fixed with respect to the frame.
  • a pair of movable rollers 20 and 22 are each mounted for rotation upon a pair of brackets 24 and 26, respectively.
  • the brackets 24 and 26 are each mounted for pivotal movement with respect to the frame at pivots 27 such that either of the movable rollers 20 or 22 may be moved toward or away from the fixed lower and upper rollers 16 and 18 by pivotal movement of the respective pair of brackets about its pivots.
  • the movable rollers may be urged against the fixed rollers to establish a cavity 30 within the confines of the four rollers.
  • the rollers are each constructed with a steel arbor 28 and a covering 29 of resilient material such as rubber or a synthetic elastomeric material such as Neoprene which provides each of the rollers with a resilient surface.
  • the axes of rotation of the rollers are parallel and are each generally located at an apex of a parallelogram.
  • a chamber 32 may be established by sealing the cavity with dam assemblies 34 which are urged against the corresponding opposite ends of the rollers as will be explained hereinafter.
  • dam assemblies 34 which are urged against the corresponding opposite ends of the rollers as will be explained hereinafter.
  • the walls of the chamber are defined by the four rollers and the two dam assemblies.
  • Each pair of brackets 24 and 26 carrying each movable roller 20 and 22 may be pivoted independent of the other pair of brackets. Pivotal movement of each pair of brackets 24 and 26 is accomplished by selectively variable force exerting means shown in the form of an air cylinder 36 mounted upon the frame 14 and having an actuator rod 38 connected to a bracket.
  • a source of high pressure air (not shown) is connected to each air cylinder 36 through a lever operated valve 40 and a pressure regulator 42.
  • each pair of brackets Prior to actuation of the lever operated valves 40 each pair of brackets is pivoted such that the movable rollers are normally moved away from contact with the fixed rollers and the material to be treated may be threaded through the apparatus.
  • high pressure air is supplied to the air cylinders 36 and the brackets are pivoted to urge the movable rollers against the fixed rollers.
  • the pressure regulators 42 By adjustment of the pressure regulators 42, the amount of force exerted by the air cylinders 36 may be selectively varied, thereby varying the force with which each movable roller is urged against the fixed rollers.
  • a pressure gage 44 is located adjacent each pressure regulator 42 to indicate the magnitude of the pressure of the air supplied to each air cylinder 36 and hence the force with which each movable roller is urged against the fixed rollers.
  • the darn assemblies 34 each include an end plate 50 and a seal 52.
  • the end plates 50 are each fixed to a piston 54, one of the pistons 54 being received within a cylinder 56 at one end of the apparatus 12 and the other of the pistons 54 being received within a cylinder 58 at the other end of the apparatus, each of the cylinders 56 and 58 being fixed to the frame '14.
  • the cylinder 56 contains a second piston 60 which is fixed to a tubular rod 62 extending through the end plates 50 and being anchored to the piston 60, the rod 62 being received for sliding movement through the left end plate.
  • a treating liquor such as, for example, a dye solution is supplied through an inlet pipe 71 to a fitting 72 at one end of the tubular rod 62, the tubular rod being closed at the other end thereof and having a series of apertures 74 therein communicating with the interior of the chamber 32.
  • the treating liquor is maintained within the chamber 32 under a superatmospheric pressure and, as best seen in FIGURE 4, the treating liquor 70 is supplied from a reservoir 76 through a feed pipe 77 into a feed tank 78.
  • the level of the liquor in the feed tank 78 is regulated by a float op erated valve 80.
  • a supply line 82 carries the liquor to a pump 84 located between the feed tank 78 and the inlet pipe 71.
  • a bypass line 86 contains a pressure regulator 88 so that treating liquor is pumped to the chamber 32 and is maintained at a selected pressure determined by the setting of the pressure regulator 88.
  • a constant supply of liquor under pressure is provided in the chamber, the liquor :being automatically replenished as it is carried away by the material being padded.
  • a trough 90 is provided below the chamber 32 to collect any treating liquor which may escape from the chamber and return such liquor to the reservoir 76.
  • driving means are provided in the form of a motor 92 to rotate the rollers 16, 18, 20 and 22 and propel the material through the apparatus 12 in the direction shown. Since each roller is urged against a neighboring roller, only one roller need be driven by the motor 92, the others being driven by contact with their neighbors. However, it has been found more practical to operatively connect driving means to more than one roller so as to reduce the amount of stress placed upon a single directly driven roller which must, in turn, drive a series of rollers. Hence, pulleys 94 connected to the fixed rollers are interconnected for rotation together by a drive belt 96 while a main drive pulley 98 is operatively connected with the motor 92 through a belt 100 and pulley 102.
  • the material 10 is threaded through the apparatus 12 so that it first enters a nip 110 between the lower fixed roller 16 and a movable roller 20, then emerges from the nip 1-10 to be exposed to the pressurized bath of treating liquor 70 in the chamber 32, then leaves the bath through a nip 112 between the movable roller and the upper fixed roller 18, passes around the fixed roller 18 and then reenters the bath through a nip 114 between the upper fixed roller 18 and movable roller 22 for a second exposure to the bath of treating liquor, finally leaving the chamber 32 and the bath therein through a nip 116 between the movable roller 22 and the lower fixed roller 16.
  • the material Upon entering nip 110, the material is compressed and unwanted matter such as air, water or the like which may be present in the interstices of the material is extracted before the material is exposed to the treating liquor.
  • the material then emerges from the nip 110 and simultaneously passes immediately into the bath of treating liquor which is maintained under superatmospheric pressure in the chamber 32. Once the material is released from nip 110, it will tend to expand and absorb the treating liquor and the increased pressure of the hath not only accelerates the absorption of treating liquor by the material but forcibly drives the liquor into the material to assure thorough penetration of the material by the treating liquor.
  • the material Upon further travel, the material leaves the chamber 32 through nip 112 and is maintained against the surface of the roller 18 until the material enters nip 114.
  • the material then re-enters the chamber 32 through nip 114, the material emerging from nip 114 to be exposed to a second immersion in the bath of treating liquor. Upon further travel, the material passes through nip 116 where excess liquor which has been driven into the material by the combination of the initial extraction and the pressure in the bath is removed from the material and is returned to the bath.
  • rollers 20 and 22 are movable toward and away from fixed rollers 16 and '18 by virtue of the pivotal mounting of the brackets 24 and 26 which enables the axes of these rollers to be moved transversely as indicated by arrows in FIGURE 5, thus allowing access to the chamber 32 when the apparatus is not in operation and facilitating threading of the material through the rollers.
  • the movement of each of these rollers as well as the force with which each of the movable rollers 20 and 22 is thrust against the fixed or stationary rollers 16 and 18 is independently adjustable as explained above.
  • the force with which the movable rollers 20 and 22 are pressed against the stationary rollers 16 and 18, and hence the pressure at the nips 110' and 116, may be selectively varied and accurately and independently determined.
  • the pressure regulator 42 at the right of FIGURE 2 the movable roller 20 may be pressed against the fixed roller 16 with a pressure great enough to establish a first predetermined pressure within nip for extracting unwanted matter from the interstices of the material.
  • the other pressure regulator 42 at the left of FIGURE 2 may be adjusted independently to urge the roller 22 against the stationary roller 16 with a second predetermined force independent of the first force for establishing a predetermined pressure within nip 116 for removing excess treating liquor from the material.
  • the first predetermined pressure within nip 110 is always greater than the second predetermined pressure at nip 116 and each is selected for optimum operation.
  • the pressure in nip 110 is chosen to assure that a sufficient amount of unwanted matter is extracted from the material and the pressure within nip 1'16 is then set according to the amount of liquor which is desired in the finished material.
  • edge 117 which connects the two layers 118 of the collapsed tubular material as it passes through the apparatus as seen in FIGURE 6.
  • a pressure within nib 116 which is too high would produce edges 117 which are lighter in color than the juxtaposed layers 118.
  • a pressure in nip 116 which is too low would produce especially wet edges and concomitant dark lines. Thus, a pressure somewhere between the above conditions must be chosen.
  • tubular knit cotton was successfully dyed in an apparatus constructed in accordance with the invention employing a pressure of 180 pounds per linear inch of roller length at nip 110 with a pressure of 110 pounds per linear inch of roller length at nip 116, all with a superatmospheric pressure of 5 p.s.i. within the chamber. Under these conditions the padded material exhibited a ninety percent pick-up of treating liquor.
  • the material 10 is seen to depart from the surfaces of rollers 16 and 20 after material 10 leaves nip 110 and as the material travels through the bath of treating liquor 70 in the chamber 32.
  • the apparatus 12 is provided with auxiliary guide means shown in the form of guide rolls 120*, 122, 124 and 126 so arranged as to lead the material along a path which is tangent to each pair of cooperating rollers at the nip established by that pair of rollers.
  • the opposite faces 119 are both simultaneously exposed to the bath of treating liquor upon leaving nips 110 and 114 and are both simultaneously led into nips 112 and 116 to assure that both faces 119 receive equivalent treatment.
  • equivalent treatment is important in that it assures that both faces will receive and pick up equivalent amounts of treating liquor.
  • the necessity for such equivalent amounts is especially critical in dyeing operations where differences in the amounts of dye picked up and retained in the difference faces may be detected visually as differences in color or shade.
  • Such one-sidedness is undesirable, particularly in tubular knit fabrics, and is avoided in the instant apparatus and method.
  • tubular rod 62 which serves as the main feed for distributing treating liquor within the chamber 32, is provided with supplementary legs 132 which are also tubular and which communicate with the interior of tubular rod 62 so as to carry treating liquor from the main feed to be distributed through apertures 134 within the supplementary legs 132 along the full width of the material passing through the chamber.
  • Supplementary legs 132 are also supported by supports 136 through which the supplementary legs pass.
  • the tubular rod 62 and legs 132 extend into the chamber 32 and along essentially the entire width of material 10 between opposite edges 117 to provide means for distributing treating liquor along essentially the entire width of the material and along both opposite faces 119 of the material. While it is desirable to maintain the volume of chamber 32 small, such a small volume could allow exhaustion of the treating liquor in localized areas during continuous operation of the apparatus. This is particularly true where the treating liquor is a dye solution and it is important to maintain the required concentration of dye throughout the solution.
  • tubular rod 62 and legs 132 assures that the treating liquor will be replenished along the entire width of both exposed faces of the material.
  • the guide rolls and supplementary legs are not required, and, as best seen in FIGURE 8, the material may follow a path along the surfaces of the cooperating rollers from the time the material enters the apparatus at nip 110 until the material leaves the apparatus at nip 116.
  • a path is particularly advantgeous where the material is subject to elongation during immersion in the bath and where no supplementary precautions are taken to compensate for such elongation. Elongation is precluded in the embodiment of FIGURE 8 by virtue of the tendency of the material to cling to the surfaces of the rollers with the consequent prevention of elongation.
  • FIGURES 5 and 8 show the material pasing through the chamber twice, it is also feasible to pass material through the apparatus only once as illustrated in FIGURE 9.
  • the material passes into the chamber 32 through the nip 110 and then passes out of the chamber through the nip 116 after only one immersion in the bath of treating liquor 70.
  • Such an embodiment is feasible where the shorter immersion is adequate for the particular material and treating liquor employed.
  • the basic steps of extracting unwanted matter, immersing in a bath of treating liquor held at superatrnospheric pressure and removing excess treating liquor are still accomplished at nip 110, within chamber 32, and at nip 116, respectively.
  • passages 136 extending through the end plates 50 adjacent the vertically uppermost regions of the chamber 32.
  • the passages 136 communicate with the interior of the chamber 32 at these uppermost regions which lie adjacent nips 112 and 114.
  • the passages 136 are connected to external tubes 138 which remove and carry away the unwanted air to assure that the chamber 32 is filled with treating liquor.
  • tubes 138 are led back to the feed tank 78.
  • the pressure available within the chamber will drive air, as well as foam and some liquor, through tubes 138, but the liquor will be recovered in the system by the return of tubes 138 to tank 78.
  • apparatus 12 be provided with sealing means at the ends of the rollers 16, 18, 20 and 22 which means will adequately seal the cavity 30 established between the co-operating rollers to complete the chamber 32.
  • FIGURES l0 and 11 it will be seen that all of the corresponding ends of the rollers have flat face portions 140 which lie in a common plane P generally perpendicular to the horizontally oriented central axes of the rollers.
  • a dam assembly 34 is urged against each of the opposite ends of all of the rollers to seal the ends of the cavity 30 and establish the chamber 32.
  • Each dam assembly 34 includes an end plate 50 and a seal 52.
  • the end plate 50 is a relatively rigid member, preferably fabricated of steel or some similar rigid, high strength material, and has a planar face 142 which lies contiguous with the seal 52.
  • the seal 52 which is best shown in FIGURES l2 and 13, includes a relatively thin, flexible web 144 which is generally planar and which lies against the corresponding planar face 142 of an end plate 50.
  • the web 144 is provided with a central aperture 146 through which the tubular rod 62 may pass and apertures 148 adjacent the uppermost portions thereof for communicating with the air removal passages 136 in the end plates.
  • a resilient backing member is shown in the form of a shoulder 150 projecting from the web 144 toward the common plane and the common ends of the rollers, the shoulder 150 extending along the periphery of the web and providing a flat surface 152 which has an arcuate portion 154 for each end face portion 140 of each roller and interconnecting portions 156 connecting the arcuate portions 154 at the extremities thereof.
  • a layer 158 of material having a relatively low coefficient of friction covers the flat surface 152 of the shoulder 150 and extends along the entire flat surface. The layer 158 is flexible so as to establish a bearing member providing a sealing surface 160 extending along the corresponding end face portions 140 of the rollers.
  • the shoulder 150' is fabricated of a resilient elastomeric material so that the flexible bearing member provided by the layer 158 is continually urged against the corresponding end face portions of the rollers with a sufficient force to seal the interface between the sealing surface and the roller ends against forces which would otherwise allow the escape of the treating liquor held under superatmospheric pressure within the chamber.
  • the preferable material for layer 158 is a synthetic resin chosen from among those plastic materials having flexibility and low friction characteristics such as, for example, nylon or a fluoroplastic such as Teflon, the preferred material being a fluoroplastic in view of the exceptionally low coefficient of friction exhibited by such materials and their very low permeability to moisture and vapor with practically no moisture absorption.
  • the maximum radius of the arc followed by the shoulder 150 and the layer 158 of synthetic resin thereon is somewhat less than the overall radius of the end face portions 140 of the rollers, as illustrated by the phantom outline of the outer peripheries of the ends of the rollers 16, 18, 20 and 22.
  • the seal construction employed in combination with apparatus 12 becomes self-cooling and self-lubricating for effective operation over relatively long periods of time.
  • the exposed parts of end face portions 140 include a part of the end of the steel arbor 28 as Well as the end of the resilient covering 29 so that some cooling of the arbor 28 is attained While immersion of the entire thickness of the covering 29 assures adequate cooling of the covering.
  • Apparatus for padding an absorbent material with a treating liquor comprising:
  • means for subjecting the material to a first predetermined pressure for extracting unwanted matter from the interstices of the material means for containing a bath of said treating liquor; means for maintaining the bath of treating liquor under superatmospheric pressure in the containing means;
  • said containing means cooperating with the first pressure means and the second pressure means such that the material is immediately immersed in the bath simultaneous with leaving the first pressure means whereby the material is made to carry an amount of treating liquor in excess of the amount desired in the padded material and is subsequently passed immediately simultaneously from the bath into the second pressure means;
  • Apparatus for padding an absorbent material with a treating liquor comprising:
  • first and second rollers cooperating to form a first Wall of said chamber and a first nip defining an entrance into said chamber;
  • a third roller cooperating with said first roller to form a second wall of said chamber and a second nip defining an exit from said chamber;
  • said first roller, second roller and third roller cooperating with said chamber such that the material is immediately immersed in the bath simultaneous with leaving the first nip whereby the material is made to carry an amount of treating liquor in excess of the amount desired in the padded material and is sub sequently passed immediately simultaneously from the bath into the second nip;
  • air removal means communicating with the interior of the chamber for removing air therefrom and allowing the treating liquor to completely fill the chamber.
  • the apparatus of claim 2 including auxiliary guide means Within the chamber and so located as to establish a path for the material passing through the chamber, said path being tangent to the first and second rollers at said first nip and tangent to said first and third rollers at said second nip whereby the opposite faces of the material are simultaneously exposed to and subsequently simultaneously led from the bath of treating liquor.
  • the apparatus of claim 3 including liquor distributing means extending into said chamber and along essentially the entire width of the material, said liquor distributing means including portions extending adjacent both opposite faces of the material such that the bath is replenished with treating liquor along the entire width of both exposed opposite faces of the material.
  • Apparatus for padding an absorbent material with a treating liquor comprising:
  • first and second rollers cooperating to form a first wall of said chamber and a first nip defining an entrance into said chamber;
  • a third roller cooperating with said first roller to form a second wall of said chamber and a second nip defining an exit from said chamber; means urging said second roller against said first roller at said first nip with a selectively variable force for subjecting the material to a first predetermined pressure for extracting unwanted matter from the interstices of the material, said selectively variable force maintaining said first predetermined pressure at a selected magnitude;
  • a fourth roller cooperating with said second roller to form a third Wall of said chmber and a third nip defining a second exit from the chamber and cooperating with said third roller to form a fourth wall of said chamber and fourth nip defining a second entrance into the chamber;
  • said first roller, second roller, third roller and fourth roller being mounted for rotation about generally parallel horizontal axes and cooperating with said chamber such that the material is immediately immersed in the bath simultaneous with leaving the first nip whereby the material is made to carry an amount of treating liquor in excess of the amount desired in the padded material and is subsequently passed immediately simultaneously from the bath into the second nip;
  • air removal means communicating with the interior of the chamber adjacent the vertically uppermost portion of the chamber for removing air therefrom and allowing the treating liquor to completely fill the chamber.
  • the apparatus of claim including guide rolls mounted for rotation within the chamber and so located as to establish a path for the material passing through the chamber, said path being tangent to the first and second rollers at said first nip, tangent to said first and third rollers at said second nip, tangent to said second and fourth rollers at said third nip and tangent to said third and fourth rollers at said fourth nip whereby the opposite faces of the material are simultaneously exposed to and subsequently simultaneously led from the bath of treating liquor.
  • the apparatus of claim 6 including liquor distributing means extending into said chamber and along essentially the entire width of the material, said liquor distributing means including portions extending adjacent both opposite faces of the material such that the bath is replenished with treating liquor along the entire width of both exposed opposite faces of the material.
  • Apparatus for padding an absorbent material with a treating liquor comprising:
  • first and second rollers cooperating to form a first wall of said chamber and a first nip defining an entrance into said chamber;
  • a third roller cooperating with said first roller to form a second wall of said chamber and a second nip defining an exit from said chamber;
  • a fourth roller cooperating with said second roller. to form a third wall of said chamber and a third nip defining a second exit from the chamber and cooperating with said third roller to form a fourth wall of said chamber and a fourth nip defining a second entrance into the chamber;
  • said first roller, second roller, third roller and fourth roller extending along parallel axes between opposite ends and the corresponding ends of all of the rollers lying in a common plane such that an axially extending cavity is established between the rollers and between the common planes at the opposite ends of the rollers;
  • each said sealing means comprising a relatively rigid plate member urged toward the corresponding ends of the rollers;
  • a resilient backing member contiguous with the bearing member and lying between the bearing member and the rigid plate for maintaining the sealing surface in sealing engagement at the ends of the rollers.
  • the apparatus of claim 8 including at least one passage extending through said rigid plate and communicating with the interior of said chamber for removing air therefrom and allowing the treating liquor to completely fill the chamber.
  • each said sealing means comprising:
  • a resilient backing member contiguous with the bearing member and lying between the bearing member and the rigid plate for maintaining the sealing surface in sealing engagement at the ends of the rollers.
  • a method of padding an absorbent material with a treating liquor comprising:

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatment Of Fiber Materials (AREA)

Description

J. F. ZUCZEK Jan. 14, 1969 METHOD AND APPARATUS FOR PADDING ABSORBENT MATERIALS Sheet Filed July 26, 1966 INVENTOR. JOHN F. ZUCZEK Mu A RNEY Sheet J. F. ZUCZEK METHOD AND APPARATUS FOR PADD ING ABSORBENT MATERIALS JOHN F. zuczER' BY .1, Z mm Jan. 14, 1969 Filed July 26. 1966 Jan. 14, 1969 J. F. ZUCZEK 3,421,164
METHOD AND APPARATUS FOR PADDING ABSORBENT MATERIALS Filed July 26, 1966 Sheet 3 INVENTOR.
JOHN F. ZUCZEK BY I ATT J. F. ZUCZEK Jan. 14, 1969 METHOD AND APPARATUS FOR PADDING ABSORBENT MATERIALS Filed July 26, 1966 INVENTOR. JOHN F. zucZ'EK ATTO Jan. 14, 1969 J. F. ZUCZEK 3,421,164
METHOD AND APPARATUS FOR PADDING ABSORBENT MATERIALS Filed July 26, 1966 Sheet 5 of 6 r on a Q i l I 2 1 o M m (D E E i INVENTOR. JOHN F. zuczgx Jan. 14, 1969 J. F. ZUCZEK METHOD AND APPARATUS FOR PADDING ABSORBENT MATERIALS Filed July 26, 1966 Sheet 6 of 6 o w 8 L L 3 r-' 1 0 f 3 H INVENTOR. JOHN F. ZU-.CZEK
MMW
ATT NEY United States Patent 16 Claims ABSTRACT OF THE DISCLOSURE Me hod and apparatus for padding an absorbent material with a treating liquor in which the material is subjected to a first predetermined pressure for extracting unwanted matter from the interstices of the material, simultaneously the first pressure is released and the material is immersed in a bath of the treating liquor held at a superatmospheric pressure in a container and the superatmospheric pressure is allowed to force the treating liquor to penetrate fuly into the intersiices of the material such that the material is made to carry treating liquor throughout the interstices thereof in an amount in excess of the amount desired in the padded material, and the material is subsequently subjected to a second predetermined pres sure less than the first predetermined for removing excess trea ing liquor from the material. In addition, air ordinarily introduced into the container by the immersion of the material in the bath is continuously removed from the container to allow the treating liquor to consistently completely fill the container. The container is established by a plurality of rollers cooperating with one another to establish an axially ex'ending cavity and a relatively rigid plate member urged toward the corresponding ends of the rollers. A flexible bearing member of low friction material provides a sealing surface at the corresponding ends of the rollers and a resilient backing member is contiguous with the bearing member and lies between the bearing member and the rigid plate for maintaining the sealing surface in sealing engagement at the ends of the rollers.
This application is a continuation-inpart of an earlier application Ser. No. 148,549, filed Oct. 30, 1961 by John F. Zuczek, now abandoned and bearing the title Method and Apparatus for Padding Absorbent Materials.
The present invention relates to a method of padding bleach, dyestuffs or other chemical solutions into absorbent textile materials in continuous length and in open width and to apparatus for carrying out the method,
The term padding will be used hereinafter to refer to dyeing, bleaching, impregnating or like treatment with a treating liquor. The term materials is intended to embrace various materials employed in the textile industry, for example, cotton, wool, rayon, nylon, and other natural or synthetic materials, and fabrics, sheets, webs or yarns made from glass or plastic materials and includes tubular knit fabric, fiat knit fabric, woven fabric and non-woven fabric. The invention pertains, more specifically, to the padding of materials in tubular knit form; however, the principles of the invention and the techniques disclosed herein are applicable to the padding of materials in other forms.
Simple padding of a chemical solution into an absorbent material is usually accomplished by immersing the material in a bath of treating liquor, allowing the material to absorb as much of the liquor as possible, and then removing any excess liquor. In such a process the solution tends to remain on the surface of the material after immersion. However, in these processes the removal of excess liquor is generally carried out by passing the material through the nip of a pair of rollers thereby not only squeezing out the excess liquor but driving a small portion of the solution further into the material. As a result, it becomes extremely difiicult in such a process to control the uniformity of application and the amount of liquor retained in the material and thus assure that the desired amount of solution remains in the material. In most instances it is desirable to obtain a high degree of penetration of the material by the treating liquor as well as maintain a close control over the amount of liquor retained in the material at the completion of the padding operation. This is particularly true in instances where the treating liquor is a dye solution which must react with the fibers of the material to impart color to the material and where more complete penetration will result in a more uniform color while control of the amount of the solution remaining in the material will further serve to reduce excessive consumption of treating liquor. Increased penetration of material by a dye solution is particularly important in the dyeing of tubular knit goods in open width since it is important to maintain uniformity of color in both layers of the flattened tubular material as well as along the folds at the outer edges of the elongated material. Reliance upon the pressure exerted by the nip of a pair of rollers to achieve such penetration has not produced completely satisfactory results. Efforts to increase penetration by increasing the pressure at the nip of the rollers have not provided significantly better results.
It is therefore an object of the invention to provide a method and apparatus for accomplishing increased penetration of an absorbent material by a treating liquor and increased control over the amount of treating liquor retained in such material.
Another object of the invention is to provide a method and apparatus for padding absorbent materials, and particularly for dyeing tubular knit goods in continuous length and in open width, wherein there is accomplished a uniformity and close control in the amount of padded solution retained in the maierial at the completion of the padding operation.
The above objects as well as further objects and advantages are realized in the process and apparatus of the invention wherein the material which is to be treated is subjected to a first predetermined pressure which has a magnitude great enough to extract unwanted matter, such as air, water, or other chemicals, from the interstices of the material, the first pressure is simultaneously released and the material immersed in a bath of treating liquor which is held under a superatmospheric pressure so that the superatmospheric pressure is allowed to force the treating liquor to penetrate into the interstices, whereby the material is made to carry an amount of treating liquor in excess of the amount desired in the padded material and the material is then subjected to a second predetermined pressure having a magnitude less than the first pressure and having been chosen for the purpose of removing excess treating liquor from the material. To accomplish these operations the material which is to be treated is passed through an apparatus including means for subjecting the material to the first predetermined pressure, means for containing a bath of treating liquor and maintaining the bath under superatmospheric pressure in said containing means, and means for subjecting the material to a second predetermined pressure, these means being independent of the first pressure means so that the second pressure may be less than the first predetermined pressure and may be chosen for the express purpose of removing excess treating liquor from the material. The containing means must cooperate with the first and second pressure means such that the material is immediately immersed in the bath simultaneous with leaving the first pressure means and is subsequently passed immediately simultaneously from the bath into the second pressure means. The pressure means are advantageously constructed in the form of nips between cooperating rollers and the containing means is best constructed in the form of a chamber made up partially of the cooperating rollers. In constructing such a chamber it is essential that the proper seal be maintained at the corresponding ends of the rollers to maintain the integrity of the chamber. The invention further contemplates a particular sealing construction for accomplishing this purpose. In addition, the invention contemplates the provision of means for removing accumulated air from the chamber during operation of the apparatus.
The invention will be more fully understood and still further objects and advantages will become apparent in the following detailed description of embodiments of the invention illustrated in the accompanying drawing where- 1n:
FIGURE 1 is a plan view of an apparatus constructed in accordance with the invention;
FIGURE 2 is an end elevational view of the apparatus of FIGURE 1;
FIGURE 3 is an enlarged fragmentary cross-sectional view taken along line 33 of FIGURE 2;
FIGURE 4 is a schematic diagram of the system for maintaining a bath of treating liquor under superatmospheric pressure in the apparatus;
FIGURE 5 is an enlarged cross-sectional view taken along line 5-5 of FIGURE 1;
FIGURE 6 is a fragmentary cross-sectional view taken along line 66 of FIGURE 5;
FIGURE 7 is an enlarged end elevational view of a guide roller assembly employed in the apparatus;
FIGURE 8 is an enlarged cross-sectional view taken at a location similar to FIGURE 5 but illustrating an alternative form;
FIGURE 9 is similar to- FIGURE 8 but shows another alternative;
FIGURE 10 is a fragmentary end elevational view illus trating the construction at the end of the chamber provided in the apparatus;
FIGURE 11 is a fragmentary plan view of the detail of construction of FIGURE 10;
FIGURE 12 is a partially diagrammatical elevational view of a seal employed in the apparatus; and I FIGURE 13 is a cross-sectional view taken along line 1313 of FIGURE 12.
Referring to the drawing, and especially to FIGURES 1 and 2, the material to be padded is indicated in phantom at 10 in FIGURE 1 and appears in the form of a tubular knit, continuous length, open width absorbent fabric. An apparatus for padding the material 10 is shown generally at 12 and has a frame 14 upon which lower and upper rollers 16 and 18, respectively, are mounted for rotation about generally horizontal axes fixed with respect to the frame. A pair of movable rollers 20 and 22 are each mounted for rotation upon a pair of brackets 24 and 26, respectively. The brackets 24 and 26 are each mounted for pivotal movement with respect to the frame at pivots 27 such that either of the movable rollers 20 or 22 may be moved toward or away from the fixed lower and upper rollers 16 and 18 by pivotal movement of the respective pair of brackets about its pivots. Thus, the movable rollers may be urged against the fixed rollers to establish a cavity 30 within the confines of the four rollers. The rollers are each constructed with a steel arbor 28 and a covering 29 of resilient material such as rubber or a synthetic elastomeric material such as Neoprene which provides each of the rollers with a resilient surface. The axes of rotation of the rollers are parallel and are each generally located at an apex of a parallelogram. When the movable rollers are urged against the fixed rollers, by virtue of the pivotal mounting of the brackets, and
cavity 30 is formed within the confines of the four rollers, a chamber 32 may be established by sealing the cavity with dam assemblies 34 which are urged against the corresponding opposite ends of the rollers as will be explained hereinafter. Thus, the walls of the chamber are defined by the four rollers and the two dam assemblies. Each pair of brackets 24 and 26 carrying each movable roller 20 and 22 may be pivoted independent of the other pair of brackets. Pivotal movement of each pair of brackets 24 and 26 is accomplished by selectively variable force exerting means shown in the form of an air cylinder 36 mounted upon the frame 14 and having an actuator rod 38 connected to a bracket. A source of high pressure air (not shown) is connected to each air cylinder 36 through a lever operated valve 40 and a pressure regulator 42. Prior to actuation of the lever operated valves 40 each pair of brackets is pivoted such that the movable rollers are normally moved away from contact with the fixed rollers and the material to be treated may be threaded through the apparatus. Upon actuation of the lever operated valves 40 high pressure air is supplied to the air cylinders 36 and the brackets are pivoted to urge the movable rollers against the fixed rollers. By adjustment of the pressure regulators 42, the amount of force exerted by the air cylinders 36 may be selectively varied, thereby varying the force with which each movable roller is urged against the fixed rollers. A pressure gage 44 is located adjacent each pressure regulator 42 to indicate the magnitude of the pressure of the air supplied to each air cylinder 36 and hence the force with which each movable roller is urged against the fixed rollers.
Turning now to FIGURE 3, as well as to FIGURES l and 2, the darn assemblies 34 each include an end plate 50 and a seal 52. The end plates 50 are each fixed to a piston 54, one of the pistons 54 being received within a cylinder 56 at one end of the apparatus 12 and the other of the pistons 54 being received within a cylinder 58 at the other end of the apparatus, each of the cylinders 56 and 58 being fixed to the frame '14. The cylinder 56 contains a second piston 60 which is fixed to a tubular rod 62 extending through the end plates 50 and being anchored to the piston 60, the rod 62 being received for sliding movement through the left end plate. High pressure air is sup lied at the inlet 64 to the cylinder 56 forcing the pistons 54 and 60 away from one another such that the left end plate is urged toward the left end of each of the rollers 16, 18, 20 and 22 and the rod 62 draws the right end plate toward the right end of each of the rollers with equal pressure being exerted against the left and right common ends of the rollers at the seals. In this manner the cavity 30 is efiectively sealed to establish the chamber 32.
During operation of the apparatus, a treating liquor such as, for example, a dye solution is supplied through an inlet pipe 71 to a fitting 72 at one end of the tubular rod 62, the tubular rod being closed at the other end thereof and having a series of apertures 74 therein communicating with the interior of the chamber 32. The treating liquor is maintained within the chamber 32 under a superatmospheric pressure and, as best seen in FIGURE 4, the treating liquor 70 is supplied from a reservoir 76 through a feed pipe 77 into a feed tank 78. The level of the liquor in the feed tank 78 is regulated by a float op erated valve 80. A supply line 82 carries the liquor to a pump 84 located between the feed tank 78 and the inlet pipe 71. A bypass line 86 contains a pressure regulator 88 so that treating liquor is pumped to the chamber 32 and is maintained at a selected pressure determined by the setting of the pressure regulator 88. Thus, a constant supply of liquor under pressure is provided in the chamber, the liquor :being automatically replenished as it is carried away by the material being padded. A trough 90 is provided below the chamber 32 to collect any treating liquor which may escape from the chamber and return such liquor to the reservoir 76.
It has been found that maintaining the pressure of the treating liquor in the chamber at as little as 5 psi. above atmospheric pressure has been found to produce desirable results with a number of materials. Greater pressures may be employed to attain desired results over a wider range of materials and operating conditions.
As best illustrated in FIGURES 1 and 2, driving means are provided in the form of a motor 92 to rotate the rollers 16, 18, 20 and 22 and propel the material through the apparatus 12 in the direction shown. Since each roller is urged against a neighboring roller, only one roller need be driven by the motor 92, the others being driven by contact with their neighbors. However, it has been found more practical to operatively connect driving means to more than one roller so as to reduce the amount of stress placed upon a single directly driven roller which must, in turn, drive a series of rollers. Hence, pulleys 94 connected to the fixed rollers are interconnected for rotation together by a drive belt 96 while a main drive pulley 98 is operatively connected with the motor 92 through a belt 100 and pulley 102.
Turning now to FIGURE 5, the material 10 is threaded through the apparatus 12 so that it first enters a nip 110 between the lower fixed roller 16 and a movable roller 20, then emerges from the nip 1-10 to be exposed to the pressurized bath of treating liquor 70 in the chamber 32, then leaves the bath through a nip 112 between the movable roller and the upper fixed roller 18, passes around the fixed roller 18 and then reenters the bath through a nip 114 between the upper fixed roller 18 and movable roller 22 for a second exposure to the bath of treating liquor, finally leaving the chamber 32 and the bath therein through a nip 116 between the movable roller 22 and the lower fixed roller 16. Upon entering nip 110, the material is compressed and unwanted matter such as air, water or the like which may be present in the interstices of the material is extracted before the material is exposed to the treating liquor. The material then emerges from the nip 110 and simultaneously passes immediately into the bath of treating liquor which is maintained under superatmospheric pressure in the chamber 32. Once the material is released from nip 110, it will tend to expand and absorb the treating liquor and the increased pressure of the hath not only accelerates the absorption of treating liquor by the material but forcibly drives the liquor into the material to assure thorough penetration of the material by the treating liquor. Upon further travel, the material leaves the chamber 32 through nip 112 and is maintained against the surface of the roller 18 until the material enters nip 114. The material then re-enters the chamber 32 through nip 114, the material emerging from nip 114 to be exposed to a second immersion in the bath of treating liquor. Upon further travel, the material passes through nip 116 where excess liquor which has been driven into the material by the combination of the initial extraction and the pressure in the bath is removed from the material and is returned to the bath.
As explained above rollers 20 and 22 are movable toward and away from fixed rollers 16 and '18 by virtue of the pivotal mounting of the brackets 24 and 26 which enables the axes of these rollers to be moved transversely as indicated by arrows in FIGURE 5, thus allowing access to the chamber 32 when the apparatus is not in operation and facilitating threading of the material through the rollers. The movement of each of these rollers as well as the force with which each of the movable rollers 20 and 22 is thrust against the fixed or stationary rollers 16 and 18 is independently adjustable as explained above. By regulating the pressure of the air supplied to each of the air cylinders 36, the force with which the movable rollers 20 and 22 are pressed against the stationary rollers 16 and 18, and hence the pressure at the nips 110' and 116, may be selectively varied and accurately and independently determined. By adjusting the pressure regulator 42 at the right of FIGURE 2 the movable roller 20 may be pressed against the fixed roller 16 with a pressure great enough to establish a first predetermined pressure within nip for extracting unwanted matter from the interstices of the material. The other pressure regulator 42 at the left of FIGURE 2 may be adjusted independently to urge the roller 22 against the stationary roller 16 with a second predetermined force independent of the first force for establishing a predetermined pressure within nip 116 for removing excess treating liquor from the material. The first predetermined pressure within nip 110 is always greater than the second predetermined pressure at nip 116 and each is selected for optimum operation. Ordinarily, the pressure in nip 110 is chosen to assure that a sufficient amount of unwanted matter is extracted from the material and the pressure within nip 1'16 is then set according to the amount of liquor which is desired in the finished material. In the dyeing of tubular knit fabrics one critical area is the edge 117 which connects the two layers 118 of the collapsed tubular material as it passes through the apparatus as seen in FIGURE 6. A pressure within nib 116 which is too high would produce edges 117 which are lighter in color than the juxtaposed layers 118. A pressure in nip 116 which is too low would produce especially wet edges and concomitant dark lines. Thus, a pressure somewhere between the above conditions must be chosen. In one example, tubular knit cotton was successfully dyed in an apparatus constructed in accordance with the invention employing a pressure of 180 pounds per linear inch of roller length at nip 110 with a pressure of 110 pounds per linear inch of roller length at nip 116, all with a superatmospheric pressure of 5 p.s.i. within the chamber. Under these conditions the padded material exhibited a ninety percent pick-up of treating liquor.
In the embodiment illustrated in FIGURE 5 the material 10 is seen to depart from the surfaces of rollers 16 and 20 after material 10 leaves nip 110 and as the material travels through the bath of treating liquor 70 in the chamber 32. By arranging the path of the material so that the material will thus leave the surfaces of the rollers, both of the opposite faces 119 of the material will be exposed to the treating liquor so that penetration of the material by the liquor will occur from both faces toward the center of the material. In order to accommodate such a path, the apparatus 12 is provided with auxiliary guide means shown in the form of guide rolls 120*, 122, 124 and 126 so arranged as to lead the material along a path which is tangent to each pair of cooperating rollers at the nip established by that pair of rollers. In this manner, the opposite faces 119 are both simultaneously exposed to the bath of treating liquor upon leaving nips 110 and 114 and are both simultaneously led into nips 112 and 116 to assure that both faces 119 receive equivalent treatment. Such equivalent treatment is important in that it assures that both faces will receive and pick up equivalent amounts of treating liquor. The necessity for such equivalent amounts is especially critical in dyeing operations where differences in the amounts of dye picked up and retained in the difference faces may be detected visually as differences in color or shade. Such one-sidedness is undesirable, particularly in tubular knit fabrics, and is avoided in the instant apparatus and method. As best seen in FIGURES 3, 5 and 7, the guide rolls 120, 124 and 126 are mounted for rotation within the chamber 32 by means of supports 130 which are fixed to the tubular rod 62 at each end of the guide rolls and which support each guide roll for free rotation. In order to assure that each opposite face 119 of the material receives an adequate supply of treating liquor at the required super atmospheric pressure, tubular rod 62, which serves as the main feed for distributing treating liquor within the chamber 32, is provided with supplementary legs 132 which are also tubular and which communicate with the interior of tubular rod 62 so as to carry treating liquor from the main feed to be distributed through apertures 134 within the supplementary legs 132 along the full width of the material passing through the chamber. Supplementary legs 132 are also supported by supports 136 through which the supplementary legs pass. The tubular rod 62 and legs 132 extend into the chamber 32 and along essentially the entire width of material 10 between opposite edges 117 to provide means for distributing treating liquor along essentially the entire width of the material and along both opposite faces 119 of the material. While it is desirable to maintain the volume of chamber 32 small, such a small volume could allow exhaustion of the treating liquor in localized areas during continuous operation of the apparatus. This is particularly true where the treating liquor is a dye solution and it is important to maintain the required concentration of dye throughout the solution. Thus, the length of tubular rod 62 and legs 132 and the placement of the legs inside the envelopes formed by the material and rollers and 22, as well as the placement of rod 62 outside those envelopes, assures that the treating liquor will be replenished along the entire width of both exposed faces of the material.
In those processes where it is not necessary to expose both opposite faces of the material to the treating liquor within the chamber, the guide rolls and supplementary legs are not required, and, as best seen in FIGURE 8, the material may follow a path along the surfaces of the cooperating rollers from the time the material enters the apparatus at nip 110 until the material leaves the apparatus at nip 116. Such a path is particularly advantgeous where the material is subject to elongation during immersion in the bath and where no supplementary precautions are taken to compensate for such elongation. Elongation is precluded in the embodiment of FIGURE 8 by virtue of the tendency of the material to cling to the surfaces of the rollers with the consequent prevention of elongation.
Although the embodiments of FIGURES 5 and 8 show the material pasing through the chamber twice, it is also feasible to pass material through the apparatus only once as illustrated in FIGURE 9. In the embodiment of FIGURE 9, the material passes into the chamber 32 through the nip 110 and then passes out of the chamber through the nip 116 after only one immersion in the bath of treating liquor 70. Such an embodiment is feasible where the shorter immersion is adequate for the particular material and treating liquor employed. The basic steps of extracting unwanted matter, immersing in a bath of treating liquor held at superatrnospheric pressure and removing excess treating liquor are still accomplished at nip 110, within chamber 32, and at nip 116, respectively.
It has been found that during the operation of apparatus 12, there is a tendency for air to accumulate within the chamber 32. This air is apparently continually brought into the chamber by the material as it enters the chamber since it is not feasible, from a practical standpoint, to squeeze all of the air from the interstices of the material as the material passes through a nip into the chamber. Any volume of air which accumulates within the chamber will tend to reduce the amount of dye liquor available for the immersion of the material and will interfere with penetration of the material by the treating liquor and thus adversely affect the effective operation of the apparatus. Such accumulated air could form a pocket adjacent nip 114 and defeat the immediate immersion of the material as the material leaves that nip. In addition, air can form foam within the chamber, and foam will not effectively penetrate the material. The air will tend to rise to the uppermost portions of the chamber; hence, means are provided in the form of passages 136 extending through the end plates 50 adjacent the vertically uppermost regions of the chamber 32. As best seen in FIGURES 10 and 11, the passages 136 communicate with the interior of the chamber 32 at these uppermost regions which lie adjacent nips 112 and 114. The passages 136 are connected to external tubes 138 which remove and carry away the unwanted air to assure that the chamber 32 is filled with treating liquor. As seen in FIGURE 4, tubes 138 are led back to the feed tank 78. Thus, the pressure available within the chamber will drive air, as well as foam and some liquor, through tubes 138, but the liquor will be recovered in the system by the return of tubes 138 to tank 78.
It is important that apparatus 12 be provided with sealing means at the ends of the rollers 16, 18, 20 and 22 which means will adequately seal the cavity 30 established between the co-operating rollers to complete the chamber 32. Turning now to FIGURES l0 and 11, it will be seen that all of the corresponding ends of the rollers have flat face portions 140 which lie in a common plane P generally perpendicular to the horizontally oriented central axes of the rollers. As described above, a dam assembly 34 is urged against each of the opposite ends of all of the rollers to seal the ends of the cavity 30 and establish the chamber 32. Each dam assembly 34 includes an end plate 50 and a seal 52. The end plate 50 is a relatively rigid member, preferably fabricated of steel or some similar rigid, high strength material, and has a planar face 142 which lies contiguous with the seal 52. The seal 52, which is best shown in FIGURES l2 and 13, includes a relatively thin, flexible web 144 which is generally planar and which lies against the corresponding planar face 142 of an end plate 50. The web 144 is provided with a central aperture 146 through which the tubular rod 62 may pass and apertures 148 adjacent the uppermost portions thereof for communicating with the air removal passages 136 in the end plates. A resilient backing member is shown in the form of a shoulder 150 projecting from the web 144 toward the common plane and the common ends of the rollers, the shoulder 150 extending along the periphery of the web and providing a flat surface 152 which has an arcuate portion 154 for each end face portion 140 of each roller and interconnecting portions 156 connecting the arcuate portions 154 at the extremities thereof. A layer 158 of material having a relatively low coefficient of friction covers the flat surface 152 of the shoulder 150 and extends along the entire flat surface. The layer 158 is flexible so as to establish a bearing member providing a sealing surface 160 extending along the corresponding end face portions 140 of the rollers. The shoulder 150' is fabricated of a resilient elastomeric material so that the flexible bearing member provided by the layer 158 is continually urged against the corresponding end face portions of the rollers with a sufficient force to seal the interface between the sealing surface and the roller ends against forces which would otherwise allow the escape of the treating liquor held under superatmospheric pressure within the chamber. The preferable material for layer 158 is a synthetic resin chosen from among those plastic materials having flexibility and low friction characteristics such as, for example, nylon or a fluoroplastic such as Teflon, the preferred material being a fluoroplastic in view of the exceptionally low coefficient of friction exhibited by such materials and their very low permeability to moisture and vapor with practically no moisture absorption.
Referring now to FIGURE 12, it is noted that the maximum radius of the arc followed by the shoulder 150 and the layer 158 of synthetic resin thereon is somewhat less than the overall radius of the end face portions 140 of the rollers, as illustrated by the phantom outline of the outer peripheries of the ends of the rollers 16, 18, 20 and 22. Since the end face portions 140 of the rollers are displaced from the web 144 by the thickness of the backing member provided by the shoulder 150 and since the outer peripheries of these end face portions extend inwardly beyond the inner peripheries 162 of the arcuate bearing member portions 154 provided by the layer 158 of synthetic resin material between interconnecting portions 156, at least a part of the end face portion of each roller between the extremities of the seal will be exposed to the treating liq'uor. Such exposure enables the treating liquor Within the chamber to serve as a heat exchange medium which will carry away heat generated by the friction between the roller end face portions and the sealing surface from those parts of the end face portions which are so exposed. In addition, the wetting of the exposed part of the end face portions of each roller will serve tolubricate the seal at the extremities thereof. Thus, the seal construction employed in combination with apparatus 12 becomes self-cooling and self-lubricating for effective operation over relatively long periods of time. It is noted that the exposed parts of end face portions 140 include a part of the end of the steel arbor 28 as Well as the end of the resilient covering 29 so that some cooling of the arbor 28 is attained While immersion of the entire thickness of the covering 29 assures adequate cooling of the covering.
It is to be understood that the above detailed description of embodiments of the invention are provided by way of example only. Details of design and construction may be modified without departing from the true spirit and scope of the invention as set forth in the appended claims.
What is claimed is:
1. Apparatus for padding an absorbent material with a treating liquor, said apparatus comprising:
means for subjecting the material to a first predetermined pressure for extracting unwanted matter from the interstices of the material; means for containing a bath of said treating liquor; means for maintaining the bath of treating liquor under superatmospheric pressure in the containing means;
means independent of said first pressure means for subjecting the material to a second predetermined pressure less than the first predetermined pressure for removing excess treating liquor from the material;
said containing means cooperating with the first pressure means and the second pressure means such that the material is immediately immersed in the bath simultaneous with leaving the first pressure means whereby the material is made to carry an amount of treating liquor in excess of the amount desired in the padded material and is subsequently passed immediately simultaneously from the bath into the second pressure means; and
means communicating with the interior of said containing means for removing air therefrom and allowing the bath of treating liquor to completely fill the containing means despite the tendency for the material to carry air through said first pressure means into the containing means.
2. Apparatus for padding an absorbent material with a treating liquor, the material having opposite faces and being in continuous length and open width, said apparatus comprising:
a chamber for containing a bath of said treating liquor;
means for maintaining the bath of treating liquor under superatmospheric pressure in the chamber;
first and second rollers cooperating to form a first Wall of said chamber and a first nip defining an entrance into said chamber;
a third roller cooperating with said first roller to form a second wall of said chamber and a second nip defining an exit from said chamber;
means urging said second roller against said first roller at said first nip with a selectively variable force for subjecting the material to a first predetermined pressure for extracting unwanted matter from the interstices of the material, said selectively variable force maintaining said first predetermined pressure at a selected magnitude;
means urging said third roller against said first roller at said second nip with a force selectively variable independent of the force established between the first and second rollers for subjecting the material to a second predetermined pressure less than the first predetermined pressure for removing excess treating liquir from the material, said selectively variable force which urges said third roller against said first roller maintaining said second predetermined pressure at a selected magnitude less than the magnitude of the first predetermined pressure;
said first roller, second roller and third roller cooperating with said chamber such that the material is immediately immersed in the bath simultaneous with leaving the first nip whereby the material is made to carry an amount of treating liquor in excess of the amount desired in the padded material and is sub sequently passed immediately simultaneously from the bath into the second nip;
means for propelling the material into the first nip wherein the material is compressed, thence simultaneously out of said first nip and into said bath wherein the material is immersed immediately upon leaving the first nip and is allowed to expand such that treating liquor is forced into the interstices by the superatmospheric pressure, and subsequently from said bath into said second nip; and
air removal means communicating with the interior of the chamber for removing air therefrom and allowing the treating liquor to completely fill the chamber.
3. The apparatus of claim 2 including auxiliary guide means Within the chamber and so located as to establish a path for the material passing through the chamber, said path being tangent to the first and second rollers at said first nip and tangent to said first and third rollers at said second nip whereby the opposite faces of the material are simultaneously exposed to and subsequently simultaneously led from the bath of treating liquor.
4. The apparatus of claim 3 including liquor distributing means extending into said chamber and along essentially the entire width of the material, said liquor distributing means including portions extending adjacent both opposite faces of the material such that the bath is replenished with treating liquor along the entire width of both exposed opposite faces of the material.
5. Apparatus for padding an absorbent material with a treating liquor, the material having opposite faces and being in continuous length and open Width, said apparatus comprising:
a chamber for containing a bath of said treating liquor;
means for maintaining the bath of treating liquor under superatmospheric pressure in the chamber;
first and second rollers cooperating to form a first wall of said chamber and a first nip defining an entrance into said chamber;
a third roller cooperating with said first roller to form a second wall of said chamber and a second nip defining an exit from said chamber; means urging said second roller against said first roller at said first nip with a selectively variable force for subjecting the material to a first predetermined pressure for extracting unwanted matter from the interstices of the material, said selectively variable force maintaining said first predetermined pressure at a selected magnitude;
means urging said third roller against first roller at said second nip with a force selectively variable independent of the force established between the first and second rollers for subjecting the material to a second predetermined pressure less than the first predetermined pressure for removing excess treating liquor from the material, said selectively variable force which urges said third roller against said first roller maintaining said second predetermined pressure at a selected magnitude less than the magnitude of the first predetermined pressure;
a fourth roller cooperating with said second roller to form a third Wall of said chmber and a third nip defining a second exit from the chamber and cooperating with said third roller to form a fourth wall of said chamber and fourth nip defining a second entrance into the chamber;
said first roller, second roller, third roller and fourth roller being mounted for rotation about generally parallel horizontal axes and cooperating with said chamber such that the material is immediately immersed in the bath simultaneous with leaving the first nip whereby the material is made to carry an amount of treating liquor in excess of the amount desired in the padded material and is subsequently passed immediately simultaneously from the bath into the second nip;
means for propelling the material from said first nip through the chamber and out of the chamber through the exit provided by the third nip thence back into the chamber through the entrance provided at the fourth nip to pass through the chamber once again from the fourth nip toward the second nip to leave the chamber through the exit provided by the second nip; and
air removal means communicating with the interior of the chamber adjacent the vertically uppermost portion of the chamber for removing air therefrom and allowing the treating liquor to completely fill the chamber.
6. The apparatus of claim including guide rolls mounted for rotation within the chamber and so located as to establish a path for the material passing through the chamber, said path being tangent to the first and second rollers at said first nip, tangent to said first and third rollers at said second nip, tangent to said second and fourth rollers at said third nip and tangent to said third and fourth rollers at said fourth nip whereby the opposite faces of the material are simultaneously exposed to and subsequently simultaneously led from the bath of treating liquor.
7. The apparatus of claim 6 including liquor distributing means extending into said chamber and along essentially the entire width of the material, said liquor distributing means including portions extending adjacent both opposite faces of the material such that the bath is replenished with treating liquor along the entire width of both exposed opposite faces of the material.
8. Apparatus for padding an absorbent material with a treating liquor, the material having opposite faces and being in continuous length and open width, said apparatus comprising:
a chamber for containing a bath of said treating liquor;
means for maintaining the bath of treating liquor under superatmospheric pressure in the chamber;
first and second rollers cooperating to form a first wall of said chamber and a first nip defining an entrance into said chamber;
a third roller cooperating with said first roller to form a second wall of said chamber and a second nip defining an exit from said chamber;
means urging said second roller against said first roller at said first nip with a selectively variable force for subjecting the material to a first predetermined pressure for extracting unwanted matter from the interstices of the material, said selectively variable force maintaining said first predetermined pressure at a selected magnitude;
means urging said third roller against said first roller at said second nip with a force selectively variable independent of the force established between the first and second rollers for subjecting the material to a second predetermined pressure less than the first predetermined pressure for removing excess treating liquor from the material, said selectively variable force which urges said third roller against said first roller maintaining said second predetermined pressure at a selected magnitude less'than the magnitude of the first predetermined pressure;
a fourth roller cooperating with said second roller. to form a third wall of said chamber and a third nip defining a second exit from the chamber and cooperating with said third roller to form a fourth wall of said chamber and a fourth nip defining a second entrance into the chamber;
said first roller, second roller, third roller and fourth roller extending along parallel axes between opposite ends and the corresponding ends of all of the rollers lying in a common plane such that an axially extending cavity is established between the rollers and between the common planes at the opposite ends of the rollers;
means for sealing the cavity at the common planes to establish said chamber, each said sealing means comprising a relatively rigid plate member urged toward the corresponding ends of the rollers;
a flexible bearing member of low-friction material providing a sealing surface at the corresponding ends of the rollers; and
a resilient backing member contiguous with the bearing member and lying between the bearing member and the rigid plate for maintaining the sealing surface in sealing engagement at the ends of the rollers.
9. The apparatus of claim 8 wherein the common planes are perpendicular to said axes and the ends of the rollers are radially extending faces lying in said planes, and at least portions of the corresponding inner peripheries of the bearing member and the resilient backing member are displaced radially from the outer peripheries of the corresponding ends of the rollers such that at least portions of said end faces of the rollers are exposed to the bath of treating liquor within the chamber.
10. The apparatus of claim 8 including at least one passage extending through said rigid plate and communicating with the interior of said chamber for removing air therefrom and allowing the treating liquor to completely fill the chamber.
11. In an apparatus for padding an absorbent material with a treating liquor, the apparatus including a plurality of rollers extending along parallel axes between opposite ends, the corresponding ends of all of the rollers lying in a common plane, and the rollers cooperating with one another to establish an axially extending cavity therebetween and between the common planes, each said sealing means comprising:
a relatively rigid plate member urged toward the corresponding ends of the rollers;
a flexible bearing member of low friction material providing a sealing surface at the corresponding ends of the rollers; and
a resilient backing member contiguous with the bearing member and lying between the bearing member and the rigid plate for maintaining the sealing surface in sealing engagement at the ends of the rollers.
12. The invention of claim 11 wherein the common planes are perpendicular to said axes and the ends of the rollers are radially extending faces lying in said common planes, and wherein the corresponding inner peripheries of at least portions of the bearing member and the resilient backing member are displaced radially from the outer peripheries of the corresponding ends of the rollers such that at least portions of said end faces of the rollers are exposed to the bath of treating liquor within the chamber.
13. A method of padding an absorbent material with a treating liquor, said method comprising:
subjecting the material to a first predetermined pressure for extracting unwanted matter from the interstices of the material;
simultaneously releasing the first pressure and immersing the material in a bath of said treating liquor held at superatmospheric pressure in a containing means and allowing the superatmospheric pressure to force the treating liquor to penetrate fully into the interstices of the material such that the material is made to carry treating liquor throughout the interstices thereof in an amount in excess of the amount desired in the padded material;
subsequently subjecting the material to a second predetermined pressure less than the first predetermined pressure for removing excess treating liquor from the material; and
removing air from the containing means to allow the bath of treating liquor to completely fill the containing means despite the tendency for the material to carry air into the containing means.
14. The method of claim 13 wherein the material is a tubular knit fabric having opposite faces and being in continuous length and open width and the treating liquor is a dye solution.
15. The method of claim 14 wherein the first pressure is released simultaneously from the opposite faces of the material and said faces are simultaneously immersed in References Cited UNITED STATES PATENTS Karrer 68-22 X Drobile et al 68-22 X Walter 68-5 X Brown 68-22 Luboshez 68-22 X Cohn et al 68-43 X Qviller 68-22 X Hikosaka 68-22 X WILLIAM I. PRICE, Primary Examiner.
US. Cl. X.R.
US567955A 1966-07-26 1966-07-26 Method and apparatus for padding absorbent materials Expired - Lifetime US3421164A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US56795566A 1966-07-26 1966-07-26

Publications (1)

Publication Number Publication Date
US3421164A true US3421164A (en) 1969-01-14

Family

ID=24269322

Family Applications (1)

Application Number Title Priority Date Filing Date
US567955A Expired - Lifetime US3421164A (en) 1966-07-26 1966-07-26 Method and apparatus for padding absorbent materials

Country Status (1)

Country Link
US (1) US3421164A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255539A (en) * 1991-09-23 1993-10-26 Johannes Zimmer Apparatus for treating a web
WO1999007933A1 (en) * 1997-08-08 1999-02-18 Roberto Franchetti Continuous high temperature, high pressure calendering/decatising/fixing method for fabrics and relative device
US20050081307A1 (en) * 2003-10-16 2005-04-21 Sperotto Rimar S.R.L. Apparatus and method for the wet heat treatment of continuous textile substrates

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1946627A (en) * 1931-10-08 1934-02-13 Hans Karrer Machine for the wet treatment of fabrics
US2071922A (en) * 1934-07-19 1937-02-23 Collins & Aikman Corp Manufacture of pile fabrics
US2387200A (en) * 1943-12-30 1945-10-16 Uxbridge Worsted Co Inc Method of dyeing woolen and other nitrogenous textile materials
US2781655A (en) * 1954-10-07 1957-02-19 Clemson Agricultural College O Machines for continuous dyeing of webs under pressure
US3057282A (en) * 1959-04-06 1962-10-09 Eastman Kodak Co Fluid treating device for sheet or strip materials
US3207616A (en) * 1961-01-23 1965-09-21 Samcoe Holding Corp Method and apparatus for treating tubular knitted fabric
US3269303A (en) * 1958-05-31 1966-08-30 Qviller Olaf Apparatus for treating fiber masses
US3315370A (en) * 1964-05-06 1967-04-25 Hikosaka Hiroshi Continuous dehydrating apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1946627A (en) * 1931-10-08 1934-02-13 Hans Karrer Machine for the wet treatment of fabrics
US2071922A (en) * 1934-07-19 1937-02-23 Collins & Aikman Corp Manufacture of pile fabrics
US2387200A (en) * 1943-12-30 1945-10-16 Uxbridge Worsted Co Inc Method of dyeing woolen and other nitrogenous textile materials
US2781655A (en) * 1954-10-07 1957-02-19 Clemson Agricultural College O Machines for continuous dyeing of webs under pressure
US3269303A (en) * 1958-05-31 1966-08-30 Qviller Olaf Apparatus for treating fiber masses
US3057282A (en) * 1959-04-06 1962-10-09 Eastman Kodak Co Fluid treating device for sheet or strip materials
US3207616A (en) * 1961-01-23 1965-09-21 Samcoe Holding Corp Method and apparatus for treating tubular knitted fabric
US3315370A (en) * 1964-05-06 1967-04-25 Hikosaka Hiroshi Continuous dehydrating apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255539A (en) * 1991-09-23 1993-10-26 Johannes Zimmer Apparatus for treating a web
WO1999007933A1 (en) * 1997-08-08 1999-02-18 Roberto Franchetti Continuous high temperature, high pressure calendering/decatising/fixing method for fabrics and relative device
US20050081307A1 (en) * 2003-10-16 2005-04-21 Sperotto Rimar S.R.L. Apparatus and method for the wet heat treatment of continuous textile substrates

Similar Documents

Publication Publication Date Title
US4231129A (en) Apparatus and method for impregnating a dry fiber batt
US2878778A (en) Apparatus for squeezing webs utilizing alternate hard and soft rolls on different axes
US3510251A (en) Method and apparatus for treating textile material with liquid
US3207616A (en) Method and apparatus for treating tubular knitted fabric
US2045755A (en) Method of treating fabrics
US4116159A (en) Substrate passes through pool confining wall coating apparatus
US3730678A (en) Process for treating textile materials
US2387200A (en) Method of dyeing woolen and other nitrogenous textile materials
US2960963A (en) Fabric treating machine
US3573875A (en) Seal for the end faces of parallel rollers
US3421164A (en) Method and apparatus for padding absorbent materials
US2537290A (en) Fast speed fluid treatment of running lengths of fabric
US4858448A (en) Apparatus for the continuous decating of a fabric
US2977662A (en) Apparatus for treatment of textiles with liquids
US3797281A (en) Apparatus for treating webs
US3647526A (en) Method for treating textile materials
US3766756A (en) Vacuum impregnating apparatus for treating webs
US4269047A (en) Apparatus for passing a working medium through a continuously moving permeable fabric web
US4182140A (en) Cloth cleaning method with steaming and liquid flow and an apparatus therefor
JPH01124669A (en) Method and apparatus for continuous treatment of continuous cloth
US2964825A (en) Textile treating apparatus
KR102418012B1 (en) High-efficiency double impregnation device for continuous expansion CPB dyeing/bleaching feathers
US3704151A (en) Method for treating tubular fabrics
US3889495A (en) Roller-lock
US3905765A (en) Steam treatment of fabrics