US3418980A - Fuel injector-ignitor system for internal combustion engines - Google Patents

Fuel injector-ignitor system for internal combustion engines Download PDF

Info

Publication number
US3418980A
US3418980A US64939767A US3418980A US 3418980 A US3418980 A US 3418980A US 64939767 A US64939767 A US 64939767A US 3418980 A US3418980 A US 3418980A
Authority
US
United States
Prior art keywords
fuel
piezoelectric
fluid
passageway
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Glendon M Benson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Physics International Co
Original Assignee
Physics International Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US48440465 priority Critical patent/US3391680A/en
Application filed by Physics International Co filed Critical Physics International Co
Priority to US64939767 priority patent/US3418980A/en
Application granted granted Critical
Publication of US3418980A publication Critical patent/US3418980A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/04Pumps peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/027Injectors structurally combined with fuel-injection pumps characterised by the pump drive electric

Description

Dec. 31, 1968 M. BENSON FUEL INJECTOR-IGNITOR SYSTEM FOR INTERNAL COMBUSTION ENGINES Original Filed Sept. 1, 1965 Sheet of 3 f ,22 ,\8 i1 VOLTAGE. VOLTAGE j SPARK n; FUEL DBTRlBuTQR Dwmaxroa FUEL BMPPLY SOURCE \4 \NJEC'T'OR 2o \ml \0 I 20 f l as 3 v A 24 f ii-- 42 46 26 I 5o INVENTOR.

48 I I 52 GAL-NOON 44. BENSON L v, 2 gf e e A TTORNE Y5 Dec. 31, 1968 G. M. BENSON FUEL INJECTOR-IGNITOR SYSTEM FOR INTERNAL COMBUSTION ENGINES Sheet 3 of 3 Original Filed Sept. 1, 1965 INVENTOR.

64E/v0o/v/14. 854/ 0 Y J. v 2,

A 77'0/?/VE Y5 United States Patent 3,418,980 FUEL INJECTOR-IGNITOR SYSTEM FOR INTERNAL COMBUSTION ENGINES Glendon M. Benson, Danville, Calif., assignor to Physics International Company, San Leandro, Calif., a corporation of California Original application Sept. 1 1965, Ser. No. 484,404.

Divided and this application May 11, 1967, Ser.

11 Claims. (Cl. 12332) ABSTRACT OF THE DISCLOSURE A pump made of piezoelectric material is provided suitable for use as a fuel injector and which has structural provisions to additionally function as a spark plug, if required.

This is a division of application Ser. No. 484,404, filed Sept. 1, 1965, by Glendon M. Benson, for Fuel Injector-Ignitor System for Internal Combustion Engines.

This invention relates to fuel injection and ignition systems for internal combustion engines, and more particularly to improvements therein.

It is well known that when an internal combustion engine is provided with a fuel injection system rather than the standard carburetor, its performance and economy are improved considerably, while potential smog-producing emissions are reduced drastically. One of the factors which has prevented the large scale use of fuel injectors on engines is the cost, not only of the basic apparatus but also of the subsequent maintenance. The fuel injectors are usually complicated and require precision machining and tuning.

An object of this invention is the provision of a fuel injection system which is simple to construct and requires minimum maintenance.

Another object of this invention is the provision of a relatively inexpensive fuel injection system.

Still another object of this invention is the provision of a fuel injection system which can also include fuel ignition.

Yet another object of this invention is the provision of a rugged and substantially maintenance-free fuel injector.

Still another object of this invention is the provision of a fuel injection system that has an infinitely variable fuel displacement per stroke, infinitely variable timing, rate of injection, and injection pressure which are varied independently and are precisely controlled by simple electrical power supplies.

Yet another object of this invention is the provision of a fuel injection system that has a significantly greater range of injector displacement per stroke that can be precisely and rapidly controlled over the complete range of engine operation than can a mechanically driven system.

Still another object of this invention is the provision of a fuel injection system that has a multiple injection capability in that a variable number of fuel injections per engine cycle can be precisely and continuously controlled to achieve multi-fuel capability for a wide variety of engines.

Yet another object of this invention is that it provides the same desirable injector-pump characteristics as that produced in the conventional helically-grooved plunger ported cylinder fuel injection pump.

These and other objects of the invention may be achieved by using a piezoelectric ceramic material as a solid state active pumping element which can convert electrical energy directly into fluid pressure energy controllably, precisely, and efliciently. Effectively the injector comprises a piezoelectric pump which is extremely simple to control over extremely wide ranges and which includes structure such that it may be also used to provide a spark necessary to ignite the injected fuel. The invention provides for a fluid reservoir into which fluid is brought through a unilateral check valve and from which fluid is ejected through an exit valve which is preset to the conditions at which it is desired to eject fluid. The piezoelectric material is operated to pressurize the fluid in the fluid reservoir, to control the volume of fluid displaced, and to replace any fluid which is ejected through the exit valve.

The novel features that are considered characteristic of this invention are set forth with particularity in the appended claims. The invention itself both as to its organization and method of operation, as well as additional objects and advantages thereof, will best be understood from the following description when read in connection with the accompanying drawings, in which:

FIGURE 1 is a schematic view showing an embodiment of this invention in position over the cylinder of an internal combustion engine;

FIGURE 2 is a cross-sectional view of a fuel injector which is an embodiment of this invention;

FIGURE 3 is a cross-sectional view of another arrangement for a fuel injector, which is an embodiment of this invention;

FIGURE 4 shows a cross-section of an ejector valve, which is used in FIGURE 3; and

FIGURE 5 is a cross-sectional view of a fuel injector modified to operate as a distributor pump in accordance with this invention.

Referring now to FIGURE 1, as represented schematically, the combustion chamber 10 of an internal combustion engine has a reciprocally operated piston 12. At the top of the combustion chamber is placed an embodiment of this invention comprising an injector 14 which injects fuel into the combustion chamber 10, The injector 14 is coupled by means of tubing 16 to a fuel supply source, not shown. The injector, in accordance with this invention, is a piezoelectric device which is preferably made of piezoelectric ceramic material, and which requires an electric voltage pulse for its operation. Accordingly, an electrical lead 17 will extend from the injector 14 to a fuel voltage distributor 18 which is substantially identical to a spark voltage distributor in the usual internal combustion engine.

While the injector in accordance with this invention may be employed primarily as an injector for engines such as diesel engines, it may also be employed as an injector for engines using spark plugs. The device itself has a modification on the tip whereby it may also be used as a spark plug. This comprises providing spaced opposite edges for ejector valve and housing walls. This will be described in more detail subsequently. In those instances where use as a spark plug as well as a fuel injector is desired, an additional lead 20 is provided which connects the spark voltage distributor 22 of the engine to the fuel injector.

Referring now to FIGURE 2, there may be seen a crosssectional view of an embodiment of this invention. This comprises a cylindrical housing 24 having one end 26 narrowing down to a neck portion which is threaded to engage the usual injector or spark plug opening in the top of a combustion chamber. At the other end of the cylindrical housing an end cap 27 is inserted, after the components within the housing have been assembled.

The interior of the housing essentially comprises a large cylindrical opening extending the length of the larger portion of the housing and then narrowing down to a small cylindrical opening within the narrowed down portion of the housing. Within the large cylindrical portion of the housing there is found a stack of piezoelectric discs 30 which are piled one on top of the other, and are axially aligned. The stack is arranged so that alternate abutting faces of the disc constitute plated high voltage electrodes and then plated ground electrodes. The centers of the discs may be hollow to accommodate an electrical lead. The lead 17 which is connected to the fuel voltage distributor may be connected to the alternate high voltage electrodes through the center opening. A lead 19 connects to the remaining ground electrodes and grounds them to the housing walls. The housing is connected to ground through the conducting walls of the engine with which it is used.

The piezoelectric discs are polarized so that in the presence of a voltage applied between their upper and lower surfaces, they elongate axially. The fuel line 16 threadably engages the end cap 27. The fuel line abuts a porous metal filter 34 which is inserted between the end of the stack of piezoelectric discs and the end cap. A rubber sleeve 32 may be inserted over the stack of discs. The outer diameter of the sleeve 32 and the inner diameter of the housing 24 is such that there is an annular space 36 to which the fuel can flow through the porous metal filter 34. The porous metal filter is attached to the end cap and the sleeve which holds the discs to the porous metal filter.

There is attached to the lower end of the piezoelectric cylinder stack a movable plunger 38 that moves axially whenever the piezoelectric stack elongates and responds to an applied electrical voltage signal. The plunger has a passageway 40 therethrough that connects the annular space 36 to an inlet check valve 42. The plunger 38 is supported from the sides of the housing 34 by an elastic ring 44 which is preferably made of polyurethane and not only serves to provide an elastic support for the plunger 38, but also seals it from the fuel reservoir 46 which is estabilshed within the narrowed down portion of the housing. A cylindrical insulator 48 is inserted in the narrowed down portion of the housing and serves to support a poppet valve structure 50. This includes the poppet valve housing 52, the valve stem 54 which is spring biased to be closed. The end of the valve stem is given a flare so that when it is depressed or when the valve opens, it serves as the atomizing orifice. The outer tips 52A of the poppet valve housing are sharpened and suitably finished so that they oppose the tips 26A of the housing and can provide a spark therebetween when a suitable voltage is applied thereacross. The lead 20 extends through the pumping space 36 and down to the poppet valve housing 52 to provide the required voltage to produce a spark between the grounded tips 26A and the tips 52A. Furthermore, the flare of the valve 54 is made such that it serves to distribute the fuel which is able to pass therethrough. In the operation of the apparatus fuel, which may be pressurized by the usual fuel pump of the engine, passes through the dense microporous filter 34 (which may be fabricated from sintered metal or ceramic, for example) into the annular chamber formed between the piezoelectric stack 30 and the outer housing 24. A voltage applied to the piezoelectric stack produces an axial elongation which pushes downward the plunger 38. This action causes additional fuel to be drawn into the annular chamber. Removing the applied voltage causes axial contraction of the piezoelectric stack and forces fluid through the inlet check valve 42 into the fuel reservoir 46. When the fuel reservoir is filled, the inlet valve 42 seats thus blocking the entrance of more fuel. Applying voltage to the piezoelectric stack again now forces the plunger 38 downwardly thereby displacing and pressurizing the fuel in the pump reservoir 46. This fuel pressure is sufficient to open the injector poppet valve and fuel flow through the injector nozzle occurs, producing an atomized spray. Removing the applied voltage from the piezoelectric stack pulls the plunger upward causing a sufficient pressure drop in the fuel to seat the poppet valve and unseat the inlet valve, whereby more fuel may enter.

This plunger stroking action is analogous to a large bore, small stroke conventional plunger fuel injection pump having a precisely controlled variable stroke and a fast pressure release action. The fuel injected by the piezoelectric injector is precisely metered, pressurized, and injected at a controlled flow rate and timing with all functions being variable over extremely large ranges. The application of several voltage pulses per engine cycle produces several separate fuel injections which can be used to better control fuel mixing, ignition combustion, and rate of combustion in spark ignition, compression ignition, and Stratified charge engines. In addition, the piezoelectric fuel injector can produce a finer, more thoroughly atomized spray by applying a voltage pulse that has an initial rise time equal to the resonant frequency of the piezoelectric stack. This frequency produces ultrasonic vibrations in the fuel injected stream which aids in cleaning the nozzle orifice and in atomizing the fuel. The quantity of fuel injected is regulated by the peak voltage of the pulse and not by the small amplitude ultrasonic vibrations.

A separate voltage pulse is transmitted through the high voltage lead 20 which connects to the high voltage electrode of the spark gap established between the edge 26A of the housing and the edge 52A of the valve. This voltage is suflicient to generate a spark discharge across the spark gap igniting the fuel mixture located in the neighborhood of the spark gap. The electrical insulator 48 in the injector neck prevents voltage arc-over during sparking and in addition, acts as a thermal insulator for the fuel injector and pump chamber.

The seal surrounding the pump plunger is an injection molded polyurethane seal having a slightly inwardly tapered seat which is loaded in shear upon the downward movement of the pump plunger. The slightly tapered seat enhances the degree of sealing by providing a small amount of compressive loading. The combination of complete bonding of the seat to the plunger and housing surface and the lack of seal extrusion caused by the polyurethane characteristics and the geometry of the seal together with the small degree of shear strain experienced in the seal design provide a positive leakproof seal, having an exceptionally long maintenance-free service life.

FIGURE 3 is a cross-sectional view of another embodiment of a fuel injector pump in accordance with this invention. A cylindrical housinghas placed therein a cylinder 62 made of piezoelectric material. This cylinder extends almost the entire length of the housing. Its outer surface is enclosed in a sleeve 64, which serves as a precompression sleeve and as an electrical insulator, such as fiberglass. Between the outer surface of this sleeve and the inner surface of the opening of the cavity an outer annular space 66 is provided. The center of the housing is filled with a core 68 which reduces the fluid volume in the annular space. There is an inner annular space 70 between the periphery of the core and the inner surface of the piezoelectric cylinder. This space serves as the pump cavity.

A top cap 72 closes the top end of the housing. It has a central portion 73 with a threaded input opening 74, to which the fuel line 16 is coupled. The opening 74 couples the fuel line to a passage formed in the central core 68 wherein a filter 76 is placed. The fuel is urged through this filter into two passageways respectively 78, 80. The passageway 78 is formed between the top cap 74 and the central core 68 for a portion of the distance to the annular space 66. Thereafter it passes through a passage 78A in the top cap which communicates with this annular space.

In the base of the core 68, there is provided the check valve structure 82. This includes a housing 84 holding therein the check valve 86 and having formed therein a passageway 88 which connects with the passageway 80. Another passageway 90, represented by dotted lines, communicates from the check valve to the passageway 92. This passageway is formed between the check valve housing 84 and a bottom cap member 94. The bottom cap member 94 has two parts. One part 94A closes the outer annular cavity 66 and abuts the core 68. The other part 94B abuts the bottom of the core 68 and has provision for fuel passageways therein, as will be described herein. The bottom cap portion 94B also has walls 96 which extend into the core and define a cavity within which the check valve housing 82 is fitted.

The passage 92 in the cap portion 948 communicates with a passage 98 which extends through the core to the annular pump cavity 70. The passage 92 at its other end communicates with a passage 100 in the member 94, which as will be shown in FIGURE 4, communicates with the reservoir portion of the ejector valve 102. The ejector valve is attached to the member 94 and has a plurality of openings 104 in the nose of the bullet-shaped cover thereof.

A passageway 106 communicates between the annular cavity 66 on the outer periphery of the piezoelectric cylinder and a passageway 108. The passageway 108 extends, as will later be seen from FIGURE 4, to the center of the ejector valve. These passageways vent the valve 102 to fuel feed pressure. The piezoelectric cylinder constituting the active element of the pump shown in FIGURE 3 is polarized so that a potential applied between its inner and outer cylindrical surfaces cause it to expand or contract radially, depending upon the polarity of that potential. The outer surface, constituting the high voltage electrode, is connected to a lead 110 which is connected in the manner of the lead 17 shown in FIGURE 2, to the pump voltage distributor. The inner surface of the piezoelectric cylinder, which is usually coated with a metal film, is connected to ground by a lead 74. The piezoelectric cylinder may also be a circumferentially poled ceramic having segmented electrodes.

Reference is now made to FIGURE 4 which is a crosssectional view of the ejector valve 102. This includes a tubular housing 112 having the lower end thereof terminating in a point. There are radial openings 104 spaced near the end of the housing 106. The interior of the housing is hollow. It includes a valve holding member 114 which fits within the housing and provides an annular passage space 116 between its outer periphery and the inner periphery of the housing. The member 114, holds at the lower end thereof a valve mechanism 118. This valve mechanism includes a base 120 with a downwardly extending stern 124. A bullet-shaped member 126 is slidably supported and is biased downwardly by a spring 128 which is mounted over the extension 124. The bulletshaped member 126 under the urging of the spring bias normally closes off the openings 104 at the bottom ends of the housing 102.

The passageway 108, shown in the member 94 in FIG- URE 3, communicates with a passageway 130 in the member 114, and extends downwardly through the base 120 and stem 124 into the region between the tubular springs and the bullet-shaped member 126. The passageway 100, shown in FIGURE 3, communicates with a passageway 132, which extends to the annular elongated passageway 116. It will be seen in FIGURE 4 that the passageway 116 extends to an enlarged passageway 134 which is adjacent the end of the bullet-shaped housing 126. Passageways 92, 100, 132, 116 and 134 constitute the fuel reservoir of this structure having an input check valve 86 and an output ejector valve 118.

The operation of the ejector pump structure shown in FIGURE 3 is as follows. Fuel under feed pump pressure passes from the fuel line through the filter 76 through the respective passageways into the annular cavity 66 and down inside the center of the bullet-shaped member 126 thereby commonly pressurizing these to fuel feed pressure. The fuel will also pass through the passageway 80 and pass the check valve 86 down to the cavity 134 adjacent the end of the bullet-shaped member 126. As the piezoelectric cylinder expands, it draws in fuel past the check valve. When the pump chamber is full the equalization of pressure in the pump chamber and fuel feed line causes seating of the inlet check valve 86. As the piezoelectric cylinder contracts, it builds up the pressure of the fuel in the pump chamber 70 which is then transmitted to the cavity 134 and acts against the end of the bullet-shaped member until it forces it upward against the pressure of the spring 128. At that time, the fuel is ejected from the plurality of openings 104 into the cylinder of the internal combustion engine. The fuel is distributed radially within the combustion chamber of the engine thus assuring complete distribution within that chamber, rather than localized distribution.

With the ejection of the fuel from the cavities 134, the back pressure of the bullet-shaped member is reduced whereby it is enabled, as a result of the spring, to promptly seal off the openings 104. In order to prevent bouncing of the valve seat as the valve closes, chamber 104A acts as a hydrodynamic shock absorber that rapidly arrests the valve motion without producing valve bounce. Also, since the back pressure of the fuel in the cavity 134 and in the passageways leading back to the check valve is reduced, the expansion of the piezoelectric cylinder is enabled to draw more fluid past the check valve to enable the injection pump to operate in the manner described again.

FIGURE 5 shows a cross-sectional diagram of an arrangement of a piezoelectric pump, in accordance with this invention, which is employed as a common pump and distributor for distributing fuel to a multi-cylinder engine. It will be seen from FIGURE 5 that the structure is substantially identical with the pump structure shown in FIGURE 4 as far as the .piezoelectric pumping portion of the system is concerned. Accordingly, since this portion of the system operates in the same manner as has been described for FIGURE 3, the various structures will be given the same reference numerals. The difference in the structure shown in FIGURE 5 over FIGURE 3 is in the valve structure which in FIGURE 5 is the distributing portion of the pump which constitutes the lower end thereof. Effectively, this distributing portion comprises a rotatable shaft 140, which is rotably driven from the internal combustion engine. The shaft is rotatably supported in an end member 142 which is attached by suitable bolts to the central core. A space 144 whereby such attachment by means of a bolt may be made may be seen on the right side of the drawing. The member 142 is spaced from the central core by a washer-like spacer 146.

The shaft 140 rotates a disc 148 therewith within the central opening of the washer 146. This disc has an opening 150 therein whose purpose will be subsequently described. The space between the washer 146 and rotating disc 148, and the bottom of the check valve structure 82 comprises a spacer member 152 which forms with the bottom of the check valve structure, the passageway 92 which communicates with the passageway 98 to the pump chamber 70. The passageways 92 and 98 also communicate with a passageway 156 which is aligned with the passageway 150 in the rotating disc 148.

The member 142 has a passageway 160 therein which is enabled to communicate with the passageway 156, when the disc 148 is rotated so that the passageway 150 extends therebetween. It will be appreciated that this can occur only for one position of the rotating disc 148. The passageway 160 is coupled by a high pressure line 162 to one of the cylinders of the engine. There are a plurality of passageways 156 and 150, shown in dotted lines, which respectively extend through the members 152 and 142, and which are aligned with one another and communicate with one another through the passageway 150, at specific angular positions of the rotating disc 148. One of these sets of passageways is provided for each cylinder into which fuel is to be injected. It will be appreciated that all of the passageways 156 communicate with the passageway 92. However, the passageway 150,

as the shaft 140 is rotated, serves to permit fuel to pass from the fluid reservoir into the fuel line only for the position at which the passageway 150 will permit communication, The shaft and rotating disc are mechanically driven by the engine through either the distributor quill shaft or cam shaft, for example. Suitable port overlap may be provided by the opening 150 suflicient to accommodate any advance or retard in fuel injection timing relative to crank angle position. The piezoelectric cylinder both pumps and controls the quantity, rate and pressure of the fuel injected. The rotating disc connects this pumping action to the appropriate cylinder through conventional high pressure, injection piping of suitable lengths and cross-section.

There has been described accordingly herein a novel, useful and unique arrangement for fuel injection using piezoelectric pumps.

What is claimed is:

1. A piezoelectric fluid pump comprising walls defining a fluid reservoir, check valve means at one end of said reservoir for enabling one way fluid flow into said reservoir, exit valve means at the other end of said reservoir for enabling fluid exit therefrom, and piezoelectric pump means for pressuring the fluid in said reservoir and for replacing the fluid in said reservoir ejected through said exit valve means, said piezoelectric pump means comprising:

an elongated piezoelectric body, means for applying potential to said body for causing reciprocal axial motion, walls defining an elongated cavity which is longer than said piezoelectric body and within which said piezolectric body is placed, said cavity being dimensioned to provide an annular space between said piezoelectric body and said walls, a cap closing one end of said housing, means for attaching one end of said elongated piezoelectric body to said cap, passage means in said cap extending to said annular space for permitting the introduction of fluid into said annular space, a plunger connected to the other end of said elongated piezoelectric cylinder and being reciprocally movable therewith, said plunger being dimensioned to extend to said cavity walls and to be slidably engageable therewith, and a passageway through said plunger from said annular space, said check valve means being in said passageway.

2. A piezoelectric fluid pump comprising walls defining a fluid reservoir, check valve means at one end of said reservoir for enabling one way fluid flow into said reservoir, exit valve means at the other end of said reservoir for enabling fluid exit therefrom, and piezoelectric pump means for pressuring the fluid in said reservoir and for replacing the fluid in said reservoir ejected through said exit valve means, said piezoelectric pump means comprising:

a hollow cylinder of piezoelectric material, means for applying a potential to said cylinder to cause it to reciprocate radially disposed eoaxially within said hollow cylinder, said core being dimensioned to provide an annular space between it and said piezoelectric cylinder wherein said piezoelectric cylinder may extend, said check valve being disposed within said core, means for closing off the ends of said annular space, and a passageway through said core extending from said annular space to said reservoir.

3. A piezoelectric fluid pump comprising walls defining a fluid reservoir, check valve means at one end of said reservoir for enabling one way fluid flow into said reservoir, exit valve means at the other end of said reservoir for enabling fluid exit therefrom, and piezoelectric pump means for pressuring the fluid in said reservoir and for replacing the fluid in said reservoir ejected through said exit valve means, said exit valve means comprising:

a disc, means for rotatably driving said disc, said disc having a single passageway extending axially therethrough, said reservoir having a plurality of separate exit ports positioned to be successively aligned with said single passageway as said disc is rotatably driven, and means for supporting said disc means adjacent said reservoir exit ports.

4. A piezoelectric fluid injecting pump comprising walls defining a fluid reservoir, check valve means at one end of said reservoir for enabling one way fluid flow into said reservoir, exit valve means at the other end of said reservoir for enabling fluid exit therefrom when the pressure of fluid in said reservoir exceeds a predetermined level, and piezoelectric pump means for increasing the pressure of the fluid in said reservoir and for replacing the fluid ejected through said exit valve means said piezoelectric pump means comprising a stack of piezoelectric discs, means for applying potential to said stack of piezoelectric discs to cause axial motion thereof, a cap carried at one end of said stack of discs, said cap having a passageway therethrough for communicating with said fluid reservoir, and means positioning said check valve means in said passageway.

5. A piezoelectric fuel injector comprising an elongated piezoelectric body, means for applying potential to said body to cause it to elongate and to contract in response thereto, a housing having walls defining a central opening therein within which said piezoelectric body is placed, said central opening being sized to be longer than said elongated piezoelectric body and to provide a space around said piezoelectric body, means attaching one end of said piezoelectric body to the walls at one end of said central opening, plunger means attached to the other end of said piezoelectric body, said plunger means being dimensioned to extend to the walls defining said central opening to thereby divide said central opening into two cavities, said piezoelectric body being in one of said two cavities, a passage extending through said plunger communicating between said two cavities, check valve means positioned to block said passage for permitting unilateral fluid flow therethrough from said first to said second cavity, exit valve means positioned at the terminal end of said second cavity for permitting the ejection of fluid therefrom when said fluid exceeds a predetermined pressure, and means for introducing fluid into said first cavity whereby it is pumped into said second cavity and then ejected out through said exit valve means.

6. A piezoelectric fuel injector as recited in claim 5 wherein said exit valve means comprises a poppet valve having a valve stem which is flanged to provide a wide fuel distribution.

7. A piezoelectric fluid injector comprising walls defining a cylindrical cavity open at both ends, plunger means positioned near one end of said cylindrical cavity movably engaging the walls thereof for dividing said cavity into a large and small cavity, said plunger means having a passageway therethrough for affording communication between said large and small cavities, cap means closing the other end of said cylindrical cavity, cylindrical piezoelectric means having one end attached to said cap means and the other end attached to said plunger means, means for applying a potential to said piezoelectric means for causing reciprocal axial motion thereof, said piezoelectric means being dimensioned to leave an annular space between its periphery and the walls defining said cylindrical cavity, a passageway extending through said cap to said annular space, check valve means in said small cavity for permitting fluid to flow unidirectionally through said passageway in said plunger means into said small cavity, poppet valve means, means insulatingly supporting said poppet valve means at the open end of said small cavity for permitting fluid discharge from said small cavity only through said poppet valve means, and means for applying fluid to be pumped to said passageway in said cap.

8. A piezoelectric fluid injector comprising a hollow cylinder of piezoelectric material, means for applying potential to said piezoelectric material to cause it to reciprocate radially, a cylindrical core disposed coaxially within said hollow cylinder, said core being dimensioned to provide an inner annular space between it and said piezoelectric cylinder within which said piezoelectric cylinder may extend, means closing otf the top and bottom of said inner annular space, walls defiing a fluid reservoir positioned adjacent one end of said core, an inlet check valve mounted in said one end of said core adjacent said fluid reservoir, a first passageway communicating between said check valve and said reservoir, a fluid inlet passageway extending through said core to the check valve, a second passageway extending between said inner annular space and said fluid reservoir, and exit valve means supported in said walls defining a fluid reservoir for ejecting fluid when it exceeds a predetermined pressure.

9. A piezoelectric fluid injector as recited in claim 8 wherein a cylindrical housing encloses said hollow cylinder of piezoelectric material, the inside of said housing being dimensioned to provide for an outer annular space into which said piezoelectric material may move, and a second passageway communicating between said fluid inlet passageway and said outer annular passageway.

10. A piezoelectric fluid injector as recited in claim 8 wherein said exit valve means comprises a hollow bulletshaped housing having a plurality of radially disposed openings adjacent the nose thereof, a bullet-shaped closing member, means slidably supporting said closing member between a first position wherein it closes oif said radially disposed openings and a second position wherein it does not close off said radially disposed openings, spring means for biasing said closing member to its first position, said fluid reservoir extending to the nose of said bullet-shaped closing member whereby fluid under pressure can urge it to its second position, and a third passageway communicating between said outer annular open ing and the inner portion of said closing member to apply fluid at atmospheric pressure thereto.

11. The combination with an internal combustion engine having a cylinder with an opening in the head thereof of a piezoelectric fuel injector mounted in said opening said piezoelectric fuel injector including walls defining a fuel reservoir, check valve means at one end of said reservoir for enabling one way fuel flow into said reservoir, exit valve means in said reservoir for ejecting fuel into said cylinder when the pressure of said fuel exceeds a predetermined value, a hollow cylinder of piezoelectric material, potential means operated responsive to said engine for applying voltage pulses to said piezoelectric cylinder to cause it to reciprocate radially synchronously with the operation of the engine, a cylindrical core disposed coaxially within said hollow cylinder, said core being dimensioned to provide an annular space between it and said piezoelectric cylinder wherein said piezoelectric cylinder may extend, said check valve being disposed within said core, means for closing off the ends of said annular space, and a passageway through said core extending from said annular space to said reservoir.

References Cited UNITED STATES PATENTS 3,150,592 9/1964 Stec 1031 3,194,162 7/1965 Williams l031 3,215,078 11/1965 Stec 103-1 LAURENCE M. GOODRIDGE, Primary Examiner.

US. Cl. X.R. 103 1; 123-139

US64939767 1965-09-01 1967-05-11 Fuel injector-ignitor system for internal combustion engines Expired - Lifetime US3418980A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US48440465 US3391680A (en) 1965-09-01 1965-09-01 Fuel injector-ignitor system for internal combustion engines
US64939767 US3418980A (en) 1965-09-01 1967-05-11 Fuel injector-ignitor system for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US64939767 US3418980A (en) 1965-09-01 1967-05-11 Fuel injector-ignitor system for internal combustion engines

Publications (1)

Publication Number Publication Date
US3418980A true US3418980A (en) 1968-12-31

Family

ID=27047988

Family Applications (1)

Application Number Title Priority Date Filing Date
US64939767 Expired - Lifetime US3418980A (en) 1965-09-01 1967-05-11 Fuel injector-ignitor system for internal combustion engines

Country Status (1)

Country Link
US (1) US3418980A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3575146A (en) * 1969-02-06 1971-04-20 Physics Int Co Fuel injection system for an internal combustion engine
US3598506A (en) * 1969-04-23 1971-08-10 Physics Int Co Electrostrictive actuator
US3941282A (en) * 1973-05-12 1976-03-02 C.A.V. Limited Hydraulic system
US3994132A (en) * 1975-09-04 1976-11-30 Jackson Robert E Apparatus for converting heat energy to mechanical energy
US3995813A (en) * 1974-09-13 1976-12-07 Bart Hans U Piezoelectric fuel injector valve
US4066046A (en) * 1974-07-29 1978-01-03 Mcalister Roy E Method and apparatus for fuel injection-spark ignition system for an internal combustion engine
US4095580A (en) * 1976-10-22 1978-06-20 The United States Of America As Represented By The United States Department Of Energy Pulse-actuated fuel-injection spark plug
US4180022A (en) * 1977-10-31 1979-12-25 Chrysler Corporation Fuel injection system and control valve for multi-cylinder engines
US4387677A (en) * 1980-06-24 1983-06-14 Holt Lloyd S.A. Fuel, more especially auxiliary starting fuel, injectors for internal combustion engines and to auxiliary carburetors associable with such injectors
US4579283A (en) * 1983-06-16 1986-04-01 Nippon Soken, Inc. Pressure responsive fuel injector actuated by pump
EP0204070A1 (en) * 1985-05-13 1986-12-10 VDO Adolf Schindling AG Electrically actuated fuel injection valve for internal-combustion engines
US4649886A (en) * 1982-11-10 1987-03-17 Nippon Soken, Inc. Fuel injection system for an internal combustion engine
US4735185A (en) * 1985-06-14 1988-04-05 Nippondenso Co., Ltd. Apparatus for feeding high-pressure fuel into engine cylinder for injection control
US4821726A (en) * 1986-11-07 1989-04-18 Nippondenso Co., Ltd. Electronic fuel injection device
US6004115A (en) * 1994-12-02 1999-12-21 Empresa Brasileira De Compressores S/A - Embraco Hermetic compressor for refrigeration systems
US6414418B1 (en) * 1999-03-04 2002-07-02 Robert Bosch Gmbh Piezoelectric actuator
US20030164405A1 (en) * 2001-04-14 2003-09-04 Dieter Kienzler Piezoelectric actuator module
EP1380733A2 (en) * 2002-07-11 2004-01-14 Hydraulik-Ring Gmbh Device for exhaust gas treatment of vehicle, especially for diesel engine vehicle
US20050046310A1 (en) * 2000-05-31 2005-03-03 Denso Corporation Piezoelectric device for injector
US6874475B2 (en) * 2000-06-26 2005-04-05 Denso Corporation Structure of fuel injector using piezoelectric actuator
US20050247803A1 (en) * 2004-05-04 2005-11-10 Uwe Liskow Fuel injector
US20060038030A1 (en) * 2004-08-20 2006-02-23 Klaus Plecher Actuator for a fuel injector of an internal combustion engine
US20070131884A1 (en) * 2003-09-12 2007-06-14 Georg Bachmaier Metering device
US20070267943A1 (en) * 2003-10-14 2007-11-22 Bernd Dollgast Piezo Actuator and Associated Production Method
US20080202477A1 (en) * 2005-09-27 2008-08-28 Friedrich Boecking Fuel Injection Valve
US20090008483A1 (en) * 2005-10-27 2009-01-08 Gregor Renner Fuel injector for an internal combustion engine
US20090140072A1 (en) * 2007-11-30 2009-06-04 Caterpillar Inc. Piezoelectric actuator with multi-function spring and device using same
US20100307455A1 (en) * 2007-06-27 2010-12-09 Renault S.A.S. Fluid injection device
US20120186657A1 (en) * 2011-01-24 2012-07-26 Fluke Corporation Piezoelectric proportional control valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150592A (en) * 1962-08-17 1964-09-29 Charles L Stec Piezoelectric pump
US3194162A (en) * 1962-11-15 1965-07-13 Clevite Corp Piezoelectric fuel injector
US3215078A (en) * 1964-08-31 1965-11-02 Charles L Stec Controlled volume piezoelectric pumps

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150592A (en) * 1962-08-17 1964-09-29 Charles L Stec Piezoelectric pump
US3194162A (en) * 1962-11-15 1965-07-13 Clevite Corp Piezoelectric fuel injector
US3215078A (en) * 1964-08-31 1965-11-02 Charles L Stec Controlled volume piezoelectric pumps

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3575146A (en) * 1969-02-06 1971-04-20 Physics Int Co Fuel injection system for an internal combustion engine
US3598506A (en) * 1969-04-23 1971-08-10 Physics Int Co Electrostrictive actuator
US3941282A (en) * 1973-05-12 1976-03-02 C.A.V. Limited Hydraulic system
US4066046A (en) * 1974-07-29 1978-01-03 Mcalister Roy E Method and apparatus for fuel injection-spark ignition system for an internal combustion engine
US3995813A (en) * 1974-09-13 1976-12-07 Bart Hans U Piezoelectric fuel injector valve
US3994132A (en) * 1975-09-04 1976-11-30 Jackson Robert E Apparatus for converting heat energy to mechanical energy
US4095580A (en) * 1976-10-22 1978-06-20 The United States Of America As Represented By The United States Department Of Energy Pulse-actuated fuel-injection spark plug
US4180022A (en) * 1977-10-31 1979-12-25 Chrysler Corporation Fuel injection system and control valve for multi-cylinder engines
US4387677A (en) * 1980-06-24 1983-06-14 Holt Lloyd S.A. Fuel, more especially auxiliary starting fuel, injectors for internal combustion engines and to auxiliary carburetors associable with such injectors
US4649886A (en) * 1982-11-10 1987-03-17 Nippon Soken, Inc. Fuel injection system for an internal combustion engine
US4579283A (en) * 1983-06-16 1986-04-01 Nippon Soken, Inc. Pressure responsive fuel injector actuated by pump
EP0204070A1 (en) * 1985-05-13 1986-12-10 VDO Adolf Schindling AG Electrically actuated fuel injection valve for internal-combustion engines
US4735185A (en) * 1985-06-14 1988-04-05 Nippondenso Co., Ltd. Apparatus for feeding high-pressure fuel into engine cylinder for injection control
US4821726A (en) * 1986-11-07 1989-04-18 Nippondenso Co., Ltd. Electronic fuel injection device
US6004115A (en) * 1994-12-02 1999-12-21 Empresa Brasileira De Compressores S/A - Embraco Hermetic compressor for refrigeration systems
US6414418B1 (en) * 1999-03-04 2002-07-02 Robert Bosch Gmbh Piezoelectric actuator
US7067960B2 (en) * 2000-05-31 2006-06-27 Denso Corporation Piezoelectric device for injector
US20050046310A1 (en) * 2000-05-31 2005-03-03 Denso Corporation Piezoelectric device for injector
US6874475B2 (en) * 2000-06-26 2005-04-05 Denso Corporation Structure of fuel injector using piezoelectric actuator
US20030164405A1 (en) * 2001-04-14 2003-09-04 Dieter Kienzler Piezoelectric actuator module
US6962297B2 (en) * 2001-04-14 2005-11-08 Robert Bosch Gmbh Piezoelectric actuator module
EP1380733A2 (en) * 2002-07-11 2004-01-14 Hydraulik-Ring Gmbh Device for exhaust gas treatment of vehicle, especially for diesel engine vehicle
EP1380733A3 (en) * 2002-07-11 2004-03-31 Hydraulik-Ring Gmbh Device for exhaust gas treatment of vehicle, especially for diesel engine vehicle
US8038119B2 (en) * 2003-09-12 2011-10-18 Siemens Aktiengesellschaft Metering device
US20070131884A1 (en) * 2003-09-12 2007-06-14 Georg Bachmaier Metering device
US7564169B2 (en) * 2003-10-14 2009-07-21 Siemens Aktiengesellschaft Piezo actuator and associated production method
US20070267943A1 (en) * 2003-10-14 2007-11-22 Bernd Dollgast Piezo Actuator and Associated Production Method
US7267111B2 (en) * 2004-05-04 2007-09-11 Robert Bosch Gmbh Fuel injector
US20050247803A1 (en) * 2004-05-04 2005-11-10 Uwe Liskow Fuel injector
US20060038030A1 (en) * 2004-08-20 2006-02-23 Klaus Plecher Actuator for a fuel injector of an internal combustion engine
US7175105B2 (en) * 2004-08-20 2007-02-13 Siemens Aktiengesellschaft Actuator for a fuel injector of an internal combustion engine
US20080202477A1 (en) * 2005-09-27 2008-08-28 Friedrich Boecking Fuel Injection Valve
US20090008483A1 (en) * 2005-10-27 2009-01-08 Gregor Renner Fuel injector for an internal combustion engine
US8230840B2 (en) * 2007-06-27 2012-07-31 Renault S.A.S. Fluid injection device
US20100307455A1 (en) * 2007-06-27 2010-12-09 Renault S.A.S. Fluid injection device
US8100346B2 (en) * 2007-11-30 2012-01-24 Caterpillar Inc. Piezoelectric actuator with multi-function spring and device using same
US20090140072A1 (en) * 2007-11-30 2009-06-04 Caterpillar Inc. Piezoelectric actuator with multi-function spring and device using same
US20120186657A1 (en) * 2011-01-24 2012-07-26 Fluke Corporation Piezoelectric proportional control valve
US8608127B2 (en) * 2011-01-24 2013-12-17 Fluke Corporation Piezoelectric proportional control valve

Similar Documents

Publication Publication Date Title
US5230613A (en) Common rail fuel injection system
US3742918A (en) Electronically controlled fuel-supply system for compression-ignition engine
US6234404B1 (en) Fuel injector
EP1692393B1 (en) Injector used to inject fuel into internal combustion chambers in internal combustion engines, particularly, a piezo-actuator controlled common-rail-injector
ES2296827T3 (en) Unified and modified injector for ultrasonically stimulated operation.
US4628881A (en) Pressure-controlled fuel injection for internal combustion engines
CA1145630A (en) Multi-supply fuel flow control valve assembly
US4217862A (en) High constant pressure, electronically controlled diesel fuel injection system
US4826080A (en) Fuel injection device for internal combustion engines
US4129256A (en) Electromagnetic unit fuel injector
US3464627A (en) Electromagnetic fuel-injection valve
US5566660A (en) Fuel injection rate shaping apparatus for a unit fuel injector
US3782639A (en) Fuel injection apparatus
JP4942749B2 (en) Fuel injection device for internal combustion engines
US4389999A (en) Ultrasonic check valve and diesel fuel injector
US4095580A (en) Pulse-actuated fuel-injection spark plug
JP2645264B2 (en) Fuel injection device for internal combustion engine
JP2626677B2 (en) Fuel injector for internal combustion engines operating according to the principle of storing energy in solids
US5482213A (en) Fuel injection valve operated by expansion and contraction of piezoelectric element
US4728074A (en) Piezoelectric flow control valve
US4618095A (en) Electromagnetic unit fuel injector with port assist spilldown
US4396151A (en) Fuel injection system for internal combustion engines
EP0954695B1 (en) Dual nozzle for injecting fuel and an additional fluid
CA1321327C (en) Electronic unit injector
US7309027B2 (en) Fuel injector for internal combustion engines