US3417665A - Rotary actuator assemblies for restricted diameter uses - Google Patents

Rotary actuator assemblies for restricted diameter uses Download PDF

Info

Publication number
US3417665A
US3417665A US490582A US49058265A US3417665A US 3417665 A US3417665 A US 3417665A US 490582 A US490582 A US 490582A US 49058265 A US49058265 A US 49058265A US 3417665 A US3417665 A US 3417665A
Authority
US
United States
Prior art keywords
actuator
actuators
hydraulic
rotary
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US490582A
Inventor
Rumsey Rollin Douglas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Houdaille Industries Inc
Original Assignee
Houdaille Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US293997A external-priority patent/US3417806A/en
Application filed by Houdaille Industries Inc filed Critical Houdaille Industries Inc
Priority to US490582A priority Critical patent/US3417665A/en
Application granted granted Critical
Publication of US3417665A publication Critical patent/US3417665A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0808Improving mounting or assembling, e.g. frame elements, disposition of all the components on the superstructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B19/00Arrangements or adaptations of ports, doors, windows, port-holes, or other openings or covers
    • B63B19/12Hatches; Hatchways
    • B63B19/14Hatch covers
    • B63B19/19Hatch covers foldable
    • B63B19/197Hatch covers foldable actuated by fluid pressure
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • E02F9/0875Arrangement of valve arrangements on superstructures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/12Characterised by the construction of the motor unit of the oscillating-vane or curved-cylinder type

Definitions

  • a powered hinge structure comprises a pair of rotary hydraulic actuators which are coupled for coordinated operation, with means supplying one of the actuators with hydraulic actuating fluid, and means hydraulically coupling the other of the actuators operatively with the one actuator whereby the other of the actuators is actuated by the hydraulic fluid supplied to the one actuator. Seals along the wing shafts of the actuators are drained off to the lowest pressure prevailing in the coupled actuators.
  • Double vane rotary actuators are, by their very construction, limited to approximately 150 maximum travel because of the space taken up by the vanes in the stator and on the shaft.
  • An advantage of the two vane actuators, is that being hydraulically balanced they may be made of any length.
  • a principal object of the present invention is to provide a new and improved rotary actuator assembly especially adapted for situations where the available diameter clearance is restricted, but where there is relatively no restriction as to length of rotary hydraulic actuator that may be utilized. This object is attained by employing small diameter substantially elongated rotary actuators functioning in a substantially tandem or in series relationship, connected to operate in an in-line or parallel sideby-side disposition.
  • Another object of the invention is to provide a new and improved rotary actuator construction for heavy duty uses.
  • a further object of the invention is to provide a new and improved hinge-type actuator construction enabling a door and the like to be swung through a full 180 range.
  • Still another object of the invention is to provide new and improved dual hydraulic actuators with novel control means.
  • a still further object of the invention is to provide in a hydraulic actuator assembly a new and improved speed control system and more particularly a hydraulic valving circuit to control operational speed, eliminate slamming, and prevent excessive pressures from being generated in the actuator assembly.
  • An additional object of the invention is to provide novel means for avoiding fluid leakage from a dual rotary actuator assembly.
  • FIGURE 1 is a fragmental sectional elevational schematic view showing an adaptation of the invention to a hatch or like cover hinge construction
  • FIGURE 2 is a similar view showing the cover open
  • FIGURE 3 is a similar View showing a modification embodying an intermediately hinged cover or other closure
  • FIGURE 4 is a similar view showing still another modification
  • FIGURE 5 is an end elevational view of a dual actuator hinge assembly
  • FIGURE 6 is a fragmental longitudinal sectional elevational detail view taken substantially on the line VI-VI of FIGURE 5;
  • FIGURE 7 is a schematic view showing hydraulic control circuitry employed in the actuators of FIGURES 5 and 6;
  • FIGURE 8 is a schematic view depicting the hydraulic circuitry employed in a single vane actuator embodiment of the invention.
  • FIGURE 9 is a fragmentary sectional detail view disclosing a practical embodiment of the hydraulic circuitry of either of FIGURES 7 or 8 in an actuator-mounted arrangement as in FIGURE 4.
  • a closure member or door or cover 15 for closing an opening 17 in a deck, or wall or bulkhead 18 is mounted to be opened and closed by powered means comprising a dual actuator hinge assembly 19.
  • a gasket 20 provides a watertight seal between the closed door or cover 15 and the deck or wall 18. The arrangement shown is especially suitable for batch covers on cargo vessels.
  • the motor or powered hinge assembly 19 comprises two rotary vane hydraulic actuators 21 secured rigidly together in side-by-side parallel relation as by means of one or more connecting members or plates 22. Wing shafts 23 of the actuators are fixedly attached to respective brackets 24 secured to the adjacent edge structure of the closure member 15 at one side of the hinge unit and to the adjacent opposed side edge structure of the deck or wall 18.
  • each of the actuators 21 operable to function through a full in the same angular direction for opening and in the opposite angular direction for closing of the closure 15, the full range of 180 is attained.
  • a minimum thickness in the closure member is practicable, since by having two slim diameter actuators in the hinge assembly 19, the hinge assembly is accommodated to the narrow or shallow available space in the hinge area.
  • the closure cover 15 lying flush on the deck in the open position, likelihood of damage is greatly minimized and it will offer minimum interference with equipment, and afford more available room or clearance thereover or thereby, as for example head room where it is a cargo hatch cover, and avoid interference with the dock area when used as a door in a vessel side moored alongside the dock.
  • this arrangement enables the use of larger doors or covers than has been considered practicable for prior constructions.
  • FIGURE 3 Ror situations in which extra large openings are desirably closed by foldable, accordion hinged closure members or panels, the arrangement exemplified in FIGURE 3 may be utilized.
  • a plurality of closure members for closing an opening 27 such as a hatchway in a deck or bulkhead or ship side 28 is hingedly connected by a power or motor hinge assembly 29, with gaskets 30 sealing the joint between the closure members in the closed position thereof.
  • Small diameter rotary actuators 31 are secured rigidly in side-by-side parallel relation by connecting means 32 and have respective wing shafts 33 fixedly secured to brackets 34 which are mounted on the respective opposed edge structures of the closure panel members 35.
  • the construction and relationship is such that when the actuators 31 are activated they operate through a full 90 each in the same angular direction whereby to fold the closure members 25 from a substantially flush relationship with the outer or upper face of the deck or wall 28 into a face-to-face folded relationship as shown in dot dash outline, the endmost of the series of closure panel members being hinged as at 35 to the structure 28, and the remaining closure panel or panels having anti-friction roller means 37 engageable with the rim about the opening 27.
  • the actuator housings may be mounted fixedly on the respective edge structures of the closure member and deck or wall member, or on the opposed adjacent edges of foldable closure members.
  • FIGURE 4 demonstrating the mounted actuator housing and connected wing shaft arrangement in a construction similar to that of FIGURE 3, primed reference numerals being applied to show the similarity of structure, but it will be understood that this same hinge 29 arrangement may be employed in a construction as in FIGURES 1 and 2 where the powered hinge is the direct hinge connection between the closure member and the deck or wall with which associated.
  • the actuator housings 31' are fixedly secured to the opposed adjacent edges of the closure members 25' and the connecting means 32' rigidly connects the wing shafts 33' of the actuators.
  • the actuators may be controlled to function in sequence or simultaneously, one actuator may be longer than the other, or of somewhat difference in size, as desired or as deemed advisable for accommodating various design or functional requirements or preferences.
  • FIGURES 5 and 6 there has been depicted in FIGURES 5 and 6 one practical construction of a tandem or dual rotary hydraulic actuator hinge uni-t assembly, identified as 19-29 to indicate the relationship to the illustrative embodiments of FIGURES 1 and 3.
  • the hinge unit includes the elongated relatively small diameter actuator housing or stator units 21-31 rigidly connected in side-by-side parallel relation by the connecting plate members 22-32, while the wing shafts 23-33 are fixedly secured to the mounting brackets 24-34. It will be observed that the actuator housings are secured together at both opposite ends and the wing shafts have opposite end portions which project to the same extent beyond the opposite ends of the housing in each instance.
  • Each of the actuators of the unit 19-29 is of the dual vane type wherein the housing 21-31 comprises a cylindrical casing 33 defining a working chamber subdivided by opposite fixed abutments 39 into subchambers within which opposite vanes 40 of the wing shaft 23-33 operate (FIGS. 6 and 7).
  • End closures 41 are secured as by means of screws 42 to each end of the body casing 38.
  • the screws also serve as shear pin connectors for the connecting plate members 22-32, as shown in FIGURE 6, by having the plate members clamped between flange portions of the end closures and the respective ends of the tubular body 38.
  • the end closure or cap members 41 have an annular outward flange extension 43 which has a tapered tip projecting into a flaring annular mouth 44 of the adjacent end of the bracket 24-34 into which the extremity portion of the wing shaft 23-33 projects and is keyed as by means of splines 45.
  • annular grease chamber 47 About the wing shaft within the flange 43 and the flaring mouth 44 is provided an annular grease chamber 47. This grease chamber is closed from the outside at the joint between the end of the flange 43 and the mouth 44 by a grease seal 48.
  • Another grease seal 49 is mounted at the outer end of the assembly to protect the spline joint between the shaft and the mounting bracket. Unintended endwise displacement of the wing shaft relative to the brackets 24-34 is avoided by set screws 50.
  • wing shaft 23-33 of one of the actuators 19-29 is adapted to have a hydraulic source/ exhaust line conduit 51 (FIG. 7) connected to the outer end of a counterbore 52 extending axially thereinto from one end (FIG. 6).
  • a hydraulic source/exhaust fluid communication line or duct 53 connected with the outer end of an elongated counterbore 54.
  • shaft end counterbores 52 and 54 communicate suitably With the subchambers of the actuator working chamber through cross bores or ports 55 and 57, respectively, transversely through the wing shaft.
  • the inner end portion of the hydraulic fluid bore 52 communicates with the cross port or passage 55 through a valve 58 mounted in the intersection of the bores and desirably of the adjustable orifice type although it could under other circumstances be of the needle type.
  • This arrangement is especially suitable for hydraulic fluid introduced into the actuators to effect opening or swinging movement of the door or other pivotally mounted member relative to the structure on which mounted such as a deck, wall or other structure. Thereby pressure fluid is introduced into the two divisions of the subchambers to which the cross bore 55 is ported.
  • hydraulic fluid in the remaining two subdivisions of the working chamber to which the cross bore 57 is ported are pressure-relieved or exhausted through this cross bore to and through the axial end bore 54, by way of an eccentrically disposed generally axially extending passage bore 59, an adjustable check valve 60 and a port 61.
  • One of the conduits 70 and 71 interconnects corresponding working subchambers of the actuators crosspassaged through the respective Wing shafts, while the other of these conduits connects the remaining crosspassaged sets of working subchambers.
  • each of the actuators has an annular high pressure seal 72 between the inner face of each of the end closure cap members 41 and the wing shaft and providing a primary barrier against leakage of hydraulic fluid from the working chamber area within the actuator outwardly past the wing shaft (FIG. 6).
  • a secondary, pressure relieved antileakage barrier is provided between the opposed cylindrical surfaces of the wing shaft and the closure member 41 in each instance outwardly beyond but adjacent to the high pressure seal 72, and comprising, in each instance, an axially spaced pair of annular seals 73 having an annular fluid collecting groove 74 therebetween.
  • the seals 73 and the groove 74 are provided in the cylindrical surface of the closure member 41.
  • the actuator 21-31 carrying the hydraulic circuitry and valving in its wing shaft 23-33 has a check valved port 75 communicating with each of the collecting grooves 74 and the respective ports 61 and 69 leading into the supply line passage bores 54 and 52, respectively.
  • the respective check valve in the communieating port 75 closes against actuator motivating hydraulic pressure but opens and permits drainage in the low pressure or bleed-off condition.
  • the check valve drain system always selects the lower pressure.
  • a system of connecting conduits including a longitudinally extending conduit 77 having branches 78 at its opposite ends ported through the end closure members 41 to communicate with the drain-off or collecting grooves 74.
  • all of the collecting grooves 74 are at all times connected to the lowest pressure or drain-off line of the hydraulic operating system.
  • each of the actuators is limited to travel, for a total of travel of the unit 19-29 in an opening direction.
  • one or more single vane actuators having 180 capability may desirably be employed.
  • Such an actuator and hydraulic control circuitry minimizing pressure build up while at the same time providing constant actuation velocity in spite of variable load is depicted in FIGURES 8 and 9.
  • the hydraulic circuit comprises duplicating the control valves 58 and 65 in both of the supply lines to the actuator since the actuator will be subject to the additional pressure generated by weight at each end of the oscillating actuating strokes involving the actuated member W exemplified in FIGURE 8.
  • the arrangement is desirably as depicted in FIGURE 9 wherein the actuator 31' has the wing shaft 33' maintained in coaxial rotary relation to the actuator housing tube 38' by the end cap 41 which has the various passages, porting and valving therein.
  • the wing shaft has its opposite end portions provided with the key fluting 45' by which such end portions are attached to the rigidly connecting bar 32.
  • Fluid supply for the actuator 31' is introduced through a radial bore passage 52 and passes by way of an axial passage 55 into one of the subchambers into which the working chamber of the actuator is subdivided by the abutment 39' (FIG. 8) and the wing shaft 40.
  • Pressure fluid passes through a valve 58' at the intersection of the passages or bores 52'-55 when driving in one rotary direction.
  • FIGURE 9 The same general arrangement of passages and valves in the cap end as depicted 111 FIGURE 9 is adaptable for the double vane type of actuator, where the actuator body is held fixedly and the Wing shaft rotated in operation, except that the circuitry depicted in FIGURE 7 will be employed.
  • a powered hinge structure comprising a pair of rotary hydraulic actuators each of which has first and second members relatively rotatable about an axis, and means on the second members for securing said actuators respectively to elements to be moved hingedly by the structure:
  • one of said members of said one rotary actuator being a Wing shaft with a hydraulic circuitry system therein to which said hydraulic supplying means is connected,
  • said first members of the actuators being wing shafts which are secured rigidly together by said coupling means, and said one actuator having means providing a bearing for its wing shaft and comprising an end closure for the actuator and including therein hydraulic circuitry communicating with the fluid supplying means.
  • said first members comprising housings and said second members comprising shafts Which extend out of the housings.
  • An assembly comprising a pair of ro-tary hydraulic actuators each of which includes a body and a wing shaft projecting beyond the body,
  • each of the actuators having about the wing shaft thereof outwardly from the Working chamber spaced high pressure and auxiliary leakage preventing seals
  • drain-01f means connecting the areas between the seals of both actuators to the lowest pressure prevailing in the actuators.
  • a coupled rotary hydraulic actuator assembly adapted for powered hinge use comprising,
  • a pair of rotary hydraulic actuators each of which comprises a body structure and a Wing shaft having the opposite ends thereof projecting beyond the opposite ends of the body structure
  • conduit means connecting all of said seals of both actuators for substantially equalized drainage of all of the seals to said prevailing lowest pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Actuator (AREA)

Description

Dec. 24, 1968 R. D. RUMSEY 3,417,655
ROTARY ACTUATOR ASSEMBLIES FOR RESTRICTED DIAMETER USES Original Filed July 10 1963 4 Sheets-Sheet 1 INVENTOR.
Dec. 24, 1968 R. D. RUMSEY 3,417,665
ROTARY ACTUATOR ASSEMBLIES FOR RESTRICTED DIAMETER USES Original Filed July 10, 1963 4 Sheets-Sheet 2 Dec. 24, 1968 RUMSEY 3,417,665
ROTARY ACTUATOR ASSEMBLIES FOR RESTRICTED DIAMETER USES Original Filed July 10, 1963 4 Sheets-Sheet 5 3 Q} v E '3, \v QT;
W I g R I a E X E 3 A m E ,w k Q I I A;
A: INVENTOR.
V AWERYS Dec. 24, 1968 R. D. RUMSEY ROTARY ACTUATOR ASSEMBLIES FOR RESTRICTED DIAMETER USES 4 Sheets-Sheet 4 Original Filed July 10 1963 INVENTOR. Ema
' 1417 ZRNEYS United States Patent 3,417,665 ROTARY ACTUATOR ASSEMBLIES FOR RESTRICTED DIAMETER USES Rollin Douglas Rumsey, Buffalo, N.Y., assignor to Houdaille Industries, Inc., Buifalo, N.Y., a corporation of Michigan Original application July 10, 1963, Ser. No. 293,997. D1-
vided and this application Sept. 27, 1965, Ser. No. 490,582
6 Claims. (Cl. 91-177) ABSTRACT OF THE DISCLOSURE A powered hinge structure comprises a pair of rotary hydraulic actuators which are coupled for coordinated operation, with means supplying one of the actuators with hydraulic actuating fluid, and means hydraulically coupling the other of the actuators operatively with the one actuator whereby the other of the actuators is actuated by the hydraulic fluid supplied to the one actuator. Seals along the wing shafts of the actuators are drained off to the lowest pressure prevailing in the coupled actuators.
This application is a division of my pending application Ser. No. 293,997, filed July 10, 1963.
Various situations in which rotary hydraulic actuators are a desirable motor or power source impose rathe-r severe restrictions as to maximum diameter but not necessarily on length. Typical of such situations are motivating hinges for doors and hatch covers, as well as various agricultural and construction machinery situations as for opening and closing buckets or clippers, dredges, bulldozers, and the like. The problem of utilizing hydraulic rotary actuators is further complicated where the hinged member must be rotated 180 such as where a hatch cover or a vertical door must be or desirably should be moved from a closing position into an open position lying flush upon a floor or deck or flush against a vertical wall or hull side, or the like.
While single vane hydraulic rotary actuators are capable of at least 180 serviceable rotation, in small diameter relative to length many design problems occur because of the unbalanced hydraulic construction. The bearing loads become excessive, resulting in extreme friction and loss of actuator efficiency. In addition, and of even greater concern, is the fact that the shaft bonds on its longitudinal axis which results in binding in the bearings and causes excessive gaps between the shaft and the housing seals.
Double vane rotary actuators are, by their very construction, limited to approximately 150 maximum travel because of the space taken up by the vanes in the stator and on the shaft. An advantage of the two vane actuators, is that being hydraulically balanced they may be made of any length.
A principal object of the present invention is to provide a new and improved rotary actuator assembly especially adapted for situations where the available diameter clearance is restricted, but where there is relatively no restriction as to length of rotary hydraulic actuator that may be utilized. This object is attained by employing small diameter substantially elongated rotary actuators functioning in a substantially tandem or in series relationship, connected to operate in an in-line or parallel sideby-side disposition.
Another object of the invention is to provide a new and improved rotary actuator construction for heavy duty uses.
A further object of the invention is to provide a new and improved hinge-type actuator construction enabling a door and the like to be swung through a full 180 range.
Still another object of the invention is to provide new and improved dual hydraulic actuators with novel control means.
A still further object of the invention is to provide in a hydraulic actuator assembly a new and improved speed control system and more particularly a hydraulic valving circuit to control operational speed, eliminate slamming, and prevent excessive pressures from being generated in the actuator assembly.
An additional object of the invention is to provide novel means for avoiding fluid leakage from a dual rotary actuator assembly.
It is also an object of the invention to provide novel means for protecting the shaft connections and the area between the shaft and housing outside of the hydraulic fluid seal of a rotary hydraulic actuator against corrosion or entrance of deleterious foreign matter.
Other objects, features and advantages of the present invention will be readily apparent from the following detailed description of certain preferred embodiments thereof, taken in conjunction with the accompanying drawings, in which:
FIGURE 1 is a fragmental sectional elevational schematic view showing an adaptation of the invention to a hatch or like cover hinge construction;
FIGURE 2 is a similar view showing the cover open;
FIGURE 3 is a similar View showing a modification embodying an intermediately hinged cover or other closure;
FIGURE 4 is a similar view showing still another modification;
FIGURE 5 is an end elevational view of a dual actuator hinge assembly;
FIGURE 6 is a fragmental longitudinal sectional elevational detail view taken substantially on the line VI-VI of FIGURE 5;
FIGURE 7 is a schematic view showing hydraulic control circuitry employed in the actuators of FIGURES 5 and 6;
FIGURE 8 is a schematic view depicting the hydraulic circuitry employed in a single vane actuator embodiment of the invention; and
FIGURE 9 is a fragmentary sectional detail view disclosing a practical embodiment of the hydraulic circuitry of either of FIGURES 7 or 8 in an actuator-mounted arrangement as in FIGURE 4.
In the illustrative use of actuators embodying the pres ent invention, as shown in FIGURES l and 2, a closure member or door or cover 15 for closing an opening 17 in a deck, or wall or bulkhead 18 is mounted to be opened and closed by powered means comprising a dual actuator hinge assembly 19. A gasket 20 provides a watertight seal between the closed door or cover 15 and the deck or wall 18. The arrangement shown is especially suitable for batch covers on cargo vessels.
In order to enable the cover or door 15 to be flush with the deck or wall 18 in the closed position and yet to be swung completely open through 180 to lie in an out-of-the-way position flush or flat against the deck or wall or side 18, the motor or powered hinge assembly 19 comprises two rotary vane hydraulic actuators 21 secured rigidly together in side-by-side parallel relation as by means of one or more connecting members or plates 22. Wing shafts 23 of the actuators are fixedly attached to respective brackets 24 secured to the adjacent edge structure of the closure member 15 at one side of the hinge unit and to the adjacent opposed side edge structure of the deck or wall 18. By having each of the actuators 21 operable to function through a full in the same angular direction for opening and in the opposite angular direction for closing of the closure 15, the full range of 180 is attained. As a result of this construction and relationship, a minimum thickness in the closure member is practicable, since by having two slim diameter actuators in the hinge assembly 19, the hinge assembly is accommodated to the narrow or shallow available space in the hinge area. By having the closure cover 15 lying flush on the deck in the open position, likelihood of damage is greatly minimized and it will offer minimum interference with equipment, and afford more available room or clearance thereover or thereby, as for example head room where it is a cargo hatch cover, and avoid interference with the dock area when used as a door in a vessel side moored alongside the dock. Furthermore, this arrangement enables the use of larger doors or covers than has been considered practicable for prior constructions.
Ror situations in which extra large openings are desirably closed by foldable, accordion hinged closure members or panels, the arrangement exemplified in FIGURE 3 may be utilized. In this construction, a plurality of closure members for closing an opening 27 such as a hatchway in a deck or bulkhead or ship side 28 is hingedly connected by a power or motor hinge assembly 29, with gaskets 30 sealing the joint between the closure members in the closed position thereof. Small diameter rotary actuators 31 are secured rigidly in side-by-side parallel relation by connecting means 32 and have respective wing shafts 33 fixedly secured to brackets 34 which are mounted on the respective opposed edge structures of the closure panel members 35. The construction and relationship is such that when the actuators 31 are activated they operate through a full 90 each in the same angular direction whereby to fold the closure members 25 from a substantially flush relationship with the outer or upper face of the deck or wall 28 into a face-to-face folded relationship as shown in dot dash outline, the endmost of the series of closure panel members being hinged as at 35 to the structure 28, and the remaining closure panel or panels having anti-friction roller means 37 engageable with the rim about the opening 27.
Instead of the rotary actuator stators or housings being connected together as a unit and the wing shafts being attached to the relatively movable members of the closure member and deck or wall structures, the actuator housings may be mounted fixedly on the respective edge structures of the closure member and deck or wall member, or on the opposed adjacent edges of foldable closure members. Such an arrangement is shown in FIGURE 4 demonstrating the mounted actuator housing and connected wing shaft arrangement in a construction similar to that of FIGURE 3, primed reference numerals being applied to show the similarity of structure, but it will be understood that this same hinge 29 arrangement may be employed in a construction as in FIGURES 1 and 2 where the powered hinge is the direct hinge connection between the closure member and the deck or wall with which associated. In the illustrated arrangement of FIG- URE 4, the actuator housings 31' are fixedly secured to the opposed adjacent edges of the closure members 25' and the connecting means 32' rigidly connects the wing shafts 33' of the actuators.
In any of the representative arrangements described, the actuators may be controlled to function in sequence or simultaneously, one actuator may be longer than the other, or of somewhat difference in size, as desired or as deemed advisable for accommodating various design or functional requirements or preferences.
By way of more detailed disclosure, there has been depicted in FIGURES 5 and 6 one practical construction of a tandem or dual rotary hydraulic actuator hinge uni-t assembly, identified as 19-29 to indicate the relationship to the illustrative embodiments of FIGURES 1 and 3. The hinge unit includes the elongated relatively small diameter actuator housing or stator units 21-31 rigidly connected in side-by-side parallel relation by the connecting plate members 22-32, while the wing shafts 23-33 are fixedly secured to the mounting brackets 24-34. It will be observed that the actuator housings are secured together at both opposite ends and the wing shafts have opposite end portions which project to the same extent beyond the opposite ends of the housing in each instance.
Each of the actuators of the unit 19-29 is of the dual vane type wherein the housing 21-31 comprises a cylindrical casing 33 defining a working chamber subdivided by opposite fixed abutments 39 into subchambers within which opposite vanes 40 of the wing shaft 23-33 operate (FIGS. 6 and 7). End closures 41 are secured as by means of screws 42 to each end of the body casing 38. The screws also serve as shear pin connectors for the connecting plate members 22-32, as shown in FIGURE 6, by having the plate members clamped between flange portions of the end closures and the respective ends of the tubular body 38.
Since one of the problems on ocean-going ships and the like is corrosion due to sea water, means are provided for effectively protecting the joints of the assembly against entry of the water or other contaminating material. To this end, the end closure or cap members 41 have an annular outward flange extension 43 which has a tapered tip projecting into a flaring annular mouth 44 of the adjacent end of the bracket 24-34 into which the extremity portion of the wing shaft 23-33 projects and is keyed as by means of splines 45. About the wing shaft within the flange 43 and the flaring mouth 44 is provided an annular grease chamber 47. This grease chamber is closed from the outside at the joint between the end of the flange 43 and the mouth 44 by a grease seal 48. Another grease seal 49 is mounted at the outer end of the assembly to protect the spline joint between the shaft and the mounting bracket. Unintended endwise displacement of the wing shaft relative to the brackets 24-34 is avoided by set screws 50.
An important advantage of the general arrangement disclosed utilizing rotary actuators resides in that rotary joints and flexible hoses are avoided in the hydraulic lines which feed the actuators, but solid hydraulic lines may be connected directly into the ends of the stationarily mounted shaft of one of the actuators and crossported through the housings of the companion actuators. To this end, the wing shaft 23-33 of one of the actuators 19-29 is adapted to have a hydraulic source/ exhaust line conduit 51 (FIG. 7) connected to the outer end of a counterbore 52 extending axially thereinto from one end (FIG. 6). At the opposite end of the same wing shaft is a hydraulic source/exhaust fluid communication line or duct 53 connected with the outer end of an elongated counterbore 54. These shaft end counterbores 52 and 54 communicate suitably With the subchambers of the actuator working chamber through cross bores or ports 55 and 57, respectively, transversely through the wing shaft. In this instance, the inner end portion of the hydraulic fluid bore 52 communicates with the cross port or passage 55 through a valve 58 mounted in the intersection of the bores and desirably of the adjustable orifice type although it could under other circumstances be of the needle type. This arrangement is especially suitable for hydraulic fluid introduced into the actuators to effect opening or swinging movement of the door or other pivotally mounted member relative to the structure on which mounted such as a deck, wall or other structure. Thereby pressure fluid is introduced into the two divisions of the subchambers to which the cross bore 55 is ported. At the same time, hydraulic fluid in the remaining two subdivisions of the working chamber to which the cross bore 57 is ported are pressure-relieved or exhausted through this cross bore to and through the axial end bore 54, by way of an eccentrically disposed generally axially extending passage bore 59, an adjustable check valve 60 and a port 61.
To drive the actuators in the opposite direction, that is to close the associated door or swing some other associated hinged member in a return direction, pressure is introduced through the bore 54, which closes the check valve and opens a control valve 62 mounted in a port 63 leading to the bore 59 beyond the check valve 60, thereby pressurizing the working subchambers to which the cross bore 57 leads. At the same time, such pressure bleeding off through a communicating cross bore or passage 64 drives a piston valve 65 from the bottom of blind end bore 66 into closing relation to the valve 58, whereby the hydraulic fluid from the working subchambers to which the cross bore 55 leads is compelled to drain off through an axial bore 67 leading from the cross bore 55, and past an adjustable check valve 68 and by way of a lateral port 69 into the bore 52 which is now on the low pressure or drain-off side of the system. The schematic relationship of the several passages, bores and valves is shown in FIGURE 7.
This arrangement is quite advantageous where heavy weights are to be swung, especially from and to and through a vertical plane from a horizontal plane, such as in hatch covers, and the like, where a large torque variation takes place from zero as in a vertical position to maximum in or adjacent to the horizontal position. Such loads when controlled only by fixed orifice speed control valves have a tendency to slam into the position nearest the maximum torque such as when moving from a vertical posi.ion into a horizontal position. When proceeding from vertical to horizontal, if a fixed upstream pressure is applied, the pressure in the restraining actuator chambers frequently becomes excessive because it is the sum of the supply pressure and the pressure generated by the weight. For example, if 2500 p.s.i. is required to raise the weight in a 3000 p.s.i. system, on the downstroke the actuator chamber pressure would be 5500 p.s.i. When a snubbing valve is added to the system, this pressure could go much higher. An additional very important feature of the invention is therefore apparent in the instant control circuit which is capable of minimizing this pressure build up and at the same time providing constant actuation velocity in spite of variable load.
Although the description of the pertinent hydraulic circuitry and controls to accomplish the intended purposes has been in respect to only one of the hydraulic actuators as in FIGURES 6 and 7, it will be understood that the same results are attained in the hydraulic actuator paired up with the actuator that has the circuitry and valving in the wing shaft thereof. This is effected by crossporting through the housings of the paired actuators by means of respective conduits or ducts 70 and 71 (FIGS. 5 and 6), in this instance communicating through ports in the respective end closures 41 of the actuator but may, if preferred, be ported directly through the body cylinders 38. One of the conduits 70 and 71 interconnects corresponding working subchambers of the actuators crosspassaged through the respective Wing shafts, while the other of these conduits connects the remaining crosspassaged sets of working subchambers. Thereby, both of the actuators are driven by the same hydraulic fluid source and system acting through but one of the actuators.
In order to prevent hydraulic fluid leakage from within the actuators under the considerable hydraulic pressures generated in operation, an improved system of seals and pressure relief means are provided. To this end, each of the actuators has an annular high pressure seal 72 between the inner face of each of the end closure cap members 41 and the wing shaft and providing a primary barrier against leakage of hydraulic fluid from the working chamber area within the actuator outwardly past the wing shaft (FIG. 6). Then, a secondary, pressure relieved antileakage barrier is provided between the opposed cylindrical surfaces of the wing shaft and the closure member 41 in each instance outwardly beyond but adjacent to the high pressure seal 72, and comprising, in each instance, an axially spaced pair of annular seals 73 having an annular fluid collecting groove 74 therebetween. Conveniently the seals 73 and the groove 74 are provided in the cylindrical surface of the closure member 41.
Leakage into the area between the secondary seals 73 is drained into the lower pressure or bleed-off side or end of the hydraulic operating system. For this purpose the actuator 21-31 carrying the hydraulic circuitry and valving in its wing shaft 23-33 has a check valved port 75 communicating with each of the collecting grooves 74 and the respective ports 61 and 69 leading into the supply line passage bores 54 and 52, respectively. Through this arrangement, the respective check valve in the communieating port 75 closes against actuator motivating hydraulic pressure but opens and permits drainage in the low pressure or bleed-off condition. Thus, the check valve drain system always selects the lower pressure.
In order to equalize drain-off from each end of each of the actuator secondary leakage seals, a system of connecting conduits is provided including a longitudinally extending conduit 77 having branches 78 at its opposite ends ported through the end closure members 41 to communicate with the drain-off or collecting grooves 74. Thereby, all of the collecting grooves 74 are at all times connected to the lowest pressure or drain-off line of the hydraulic operating system.
Overtravel of the actuators is avoided and thereby internal damage prevented, by suitable stop means, herein comprising mechanical limit stops 79 rigidly carried by the mounting brackets 24-34 (FIGS. 5 and 6), and opposing limit stop members rigidly carried by the end closure members 41. Through this arrangement, each of the actuators is limited to travel, for a total of travel of the unit 19-29 in an opening direction.
For some purposes one or more single vane actuators having 180 capability may desirably be employed. Such an actuator and hydraulic control circuitry minimizing pressure build up while at the same time providing constant actuation velocity in spite of variable load is depicted in FIGURES 8 and 9. Basically, the hydraulic circuit comprises duplicating the control valves 58 and 65 in both of the supply lines to the actuator since the actuator will be subject to the additional pressure generated by weight at each end of the oscillating actuating strokes involving the actuated member W exemplified in FIGURE 8. Where the wing shaft of the actuator is to be mounted in fixed relation to the associated structure by means such as the brackets 24-34 of FIGURES 1-3, the wing shaft passages and valve mounting as disclosed in connection with FIGURE 6, but with the valve arrangement 58-65 in both ends of the Wing shaft, will afford the penumatic circuitry and valving schematically depicted in FIGURE 8. However, where the actuator body is mounted fixedly in respect to the associated structure as described in connection with FIGURE 4 so that the wing shaft of the stationarily or fixedly mounted actuator is driven to rotate relative thereto, the arrangement is desirably as depicted in FIGURE 9 wherein the actuator 31' has the wing shaft 33' maintained in coaxial rotary relation to the actuator housing tube 38' by the end cap 41 which has the various passages, porting and valving therein. In this instance the wing shaft has its opposite end portions provided with the key fluting 45' by which such end portions are attached to the rigidly connecting bar 32.
Fluid supply for the actuator 31' is introduced through a radial bore passage 52 and passes by way of an axial passage 55 into one of the subchambers into which the working chamber of the actuator is subdivided by the abutment 39' (FIG. 8) and the wing shaft 40. Pressure fluid passes through a valve 58' at the intersection of the passages or bores 52'-55 when driving in one rotary direction. When driving in the opposite rotary direction, wherein pressure is introduced through a supply-exhaust passage 54, oriented similarly as the passage 52 in the opposite end cap of the actuator, pressure fluid bleeds through a passage 64' into the area behind a piston valve 65' which thereby closes the supply passage through the valve 58' and forces exhaust passage of hydraulic fluid through the passage port 55 to by-pass the valve 58' and pass through a port 67' to unseat a check valve 68' and escape through the by-pass duct or passage 69' into the entrance passage 52. Since the valve 68', similarly as the valve 68 in FIGURES 6 and 7 is adjusted for a predetermined throttled flow condition, a fixed differential is maintained across the actuator in operation. This adjusted, fixed differential is in the single vane actuator effected at each of the opposite ends in similar fashion for opposite directions of rotary actuation, as indicated in FIGURE 8, there being a similar supply-exhaust port and passage and valve arrangement, wherein the valves are identified as 58", 65" and 68" at the opposite end of the actuator and corresponding to the same arrangement of passages and valves as identified by the primed reference numerals in FIGURE 9.
The same general arrangement of passages and valves in the cap end as depicted 111 FIGURE 9 is adaptable for the double vane type of actuator, where the actuator body is held fixedly and the Wing shaft rotated in operation, except that the circuitry depicted in FIGURE 7 will be employed.
It will be understood that modifications and variations may be effected without departing from the scope of the novel concepts of the present invention.
I claim as my invention:
1. A powered hinge structure comprising a pair of rotary hydraulic actuators each of which has first and second members relatively rotatable about an axis, and means on the second members for securing said actuators respectively to elements to be moved hingedly by the structure:
means coupling the first members of the actuators fixedly together and with said axes in spaced sideby-side relation;
means for supplying one of the actuators with hydraulic actuating fluid to drive its second rotary member relative to its first rotary member;
and means hydraulically coupling the other of said actuators to receive fluid from said one actuator to effect rotation of the second rotary member of said other actuator relative to its first rotary member.
2. In structure according to claim 1, one of said members of said one rotary actuator being a Wing shaft with a hydraulic circuitry system therein to which said hydraulic supplying means is connected,
3. In structure according to claim 1, said first members of the actuators being wing shafts which are secured rigidly together by said coupling means, and said one actuator having means providing a bearing for its wing shaft and comprising an end closure for the actuator and including therein hydraulic circuitry communicating with the fluid supplying means.
4. In structure according to claim 1, said first members comprising housings and said second members comprising shafts Which extend out of the housings.
5. An assembly comprising a pair of ro-tary hydraulic actuators each of which includes a body and a wing shaft projecting beyond the body,
said body and wing shaft defining a working chamber in each actuator,
means hydraulically coupling the actuators to operate in unison,
each of the actuators having about the wing shaft thereof outwardly from the Working chamber spaced high pressure and auxiliary leakage preventing seals, and
drain-01f means connecting the areas between the seals of both actuators to the lowest pressure prevailing in the actuators.
6. A coupled rotary hydraulic actuator assembly adapted for powered hinge use comprising,
a pair of rotary hydraulic actuators each of which comprises a body structure and a Wing shaft having the opposite ends thereof projecting beyond the opposite ends of the body structure,
means for supplying hydraulic fluid to and exhausting hydraulic fluid from one of said actuators,
means hydraulically coupling the other of said actuators with said one actuator to operate in co-ordinated relation from the hydraulic fluid supplied to said one actuator by said supplying means,
leakage preventing seal means about each of the respective end portions of each of the Wing shafts of said actuators, check valved means for draining the seals about the wing shafts of said one actuator to the prevailing lowest pressure in the hydraulic system of said one actuator, and
conduit means connecting all of said seals of both actuators for substantially equalized drainage of all of the seals to said prevailing lowest pressure.
References Cited UNITED STATES PATENTS 1,876,104 9/1932 Tucker 92-122 2,208,177 7/1940 Barrett 91-66 2,778,632 1/1957 Mercier 49-340 2,855,038 10/1958 Greer -188 2,930,434 3/ 1960 Englesson 49-340 3,102,454 9/ 1963 Pinkston et al 91-177 3,107,722 10/ 1963 Larsson 160-188 3,155,013 11/1964 Rumsey 91-177 3,194,123 7/1965 Feaster 91-177 3,196,934 7/1965 Sneen -1. 160-188 3,288,201 11/1966 Floer 92-67 FOREIGN PATENTS 917,585 1/ 1954 Germany.
CARROLL B. DORITY, JR., Primary Examiner.
US. Cl. X.R.
US490582A 1963-07-10 1965-09-27 Rotary actuator assemblies for restricted diameter uses Expired - Lifetime US3417665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US490582A US3417665A (en) 1963-07-10 1965-09-27 Rotary actuator assemblies for restricted diameter uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US293997A US3417806A (en) 1963-07-10 1963-07-10 Rotary actuator assemblies for restricted diameter uses
US490582A US3417665A (en) 1963-07-10 1965-09-27 Rotary actuator assemblies for restricted diameter uses

Publications (1)

Publication Number Publication Date
US3417665A true US3417665A (en) 1968-12-24

Family

ID=26968286

Family Applications (1)

Application Number Title Priority Date Filing Date
US490582A Expired - Lifetime US3417665A (en) 1963-07-10 1965-09-27 Rotary actuator assemblies for restricted diameter uses

Country Status (1)

Country Link
US (1) US3417665A (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1876104A (en) * 1930-11-29 1932-09-06 Tucker Gilmore Mfg Company Steering mechanism
US2208177A (en) * 1939-07-01 1940-07-16 Elmer G Barrett Rotary motor
DE917585C (en) * 1953-02-10 1954-09-06 Heinrich Tiemann Hydraulic switching device for indexing tables, revolver heads and. like
US2778632A (en) * 1955-02-28 1957-01-22 Mercier Jean Door actuating mechanism
US2855038A (en) * 1955-05-16 1958-10-07 G M E Corp Hatch cover assembly
US2930434A (en) * 1957-08-15 1960-03-29 Englesson John Elov Hatch operating device
US3102454A (en) * 1955-12-05 1963-09-03 Westinghouse Electric Corp Fluid drive
US3107722A (en) * 1960-10-04 1963-10-22 Von Tell Trading Co Ab Hatch covers having hydraulic means for moving the sections
US3155013A (en) * 1961-06-12 1964-11-03 Houdaille Industries Inc Rotary actuator
US3194123A (en) * 1962-05-25 1965-07-13 John H Feaster Fluid pressure motor
US3196934A (en) * 1960-08-03 1965-07-27 Konstruktioner & Experiment A Hydraulic rotary piston motor system
US3288201A (en) * 1962-10-27 1966-11-29 Bergens Mek Verksted Hydraulically controlled hatch hinges

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1876104A (en) * 1930-11-29 1932-09-06 Tucker Gilmore Mfg Company Steering mechanism
US2208177A (en) * 1939-07-01 1940-07-16 Elmer G Barrett Rotary motor
DE917585C (en) * 1953-02-10 1954-09-06 Heinrich Tiemann Hydraulic switching device for indexing tables, revolver heads and. like
US2778632A (en) * 1955-02-28 1957-01-22 Mercier Jean Door actuating mechanism
US2855038A (en) * 1955-05-16 1958-10-07 G M E Corp Hatch cover assembly
US3102454A (en) * 1955-12-05 1963-09-03 Westinghouse Electric Corp Fluid drive
US2930434A (en) * 1957-08-15 1960-03-29 Englesson John Elov Hatch operating device
US3196934A (en) * 1960-08-03 1965-07-27 Konstruktioner & Experiment A Hydraulic rotary piston motor system
US3107722A (en) * 1960-10-04 1963-10-22 Von Tell Trading Co Ab Hatch covers having hydraulic means for moving the sections
US3155013A (en) * 1961-06-12 1964-11-03 Houdaille Industries Inc Rotary actuator
US3194123A (en) * 1962-05-25 1965-07-13 John H Feaster Fluid pressure motor
US3288201A (en) * 1962-10-27 1966-11-29 Bergens Mek Verksted Hydraulically controlled hatch hinges

Similar Documents

Publication Publication Date Title
EP0469641B1 (en) Method of controlling a fluid-powered actuator
US5181380A (en) Hydrostatic operating mode hydraulic actuator preferably for backup operation, and flight control system comprising it
US3881263A (en) Angular position controller for clam-shell bucket
US7191593B1 (en) Electro-hydraulic actuator system
US4630441A (en) Electrohydraulic actuator for aircraft control surfaces
US3393610A (en) Pressure medium operated torque actuator
EP0109219A2 (en) Thrust reversing apparatus for a gas turbine engine
US3766831A (en) Compound axial torsional hydraulic actuator
US3417665A (en) Rotary actuator assemblies for restricted diameter uses
US2179495A (en) Door and hatch closure
US3417806A (en) Rotary actuator assemblies for restricted diameter uses
US2770297A (en) Hydraulically actuated articulated members
US3020008A (en) Control surface actuator damper hinge
US3417669A (en) Rotary actuator control circuit means
US3213923A (en) Power operated hatch cover assembly
US2491261A (en) Power operated hatch cover
CZ103096A3 (en) Hydraulic rack device
US6322341B1 (en) Fluid pressure driven rotary actuator and method of operating the same
US2906324A (en) Hatch cover actuator
US5107754A (en) Articulated mechanism with rotary vane motors
US1756307A (en) Pneumatic motor
US3288202A (en) Piston-lever rotary actuators for hatch covers and the like
US3528345A (en) Long travel rotary actuator/damper
US3179060A (en) Silent variable delivery hydraulic pump
US1165653A (en) Elevator valve mechanism.