US3408058A - Anti-clogging furnace regenerator - Google Patents

Anti-clogging furnace regenerator Download PDF

Info

Publication number
US3408058A
US3408058A US494539A US49453965A US3408058A US 3408058 A US3408058 A US 3408058A US 494539 A US494539 A US 494539A US 49453965 A US49453965 A US 49453965A US 3408058 A US3408058 A US 3408058A
Authority
US
United States
Prior art keywords
chambers
clogging
flow
gases
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US494539A
Inventor
David K Griffiths
John H Richards
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United States Steel Corp
Original Assignee
United States Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Steel Corp filed Critical United States Steel Corp
Priority to US494539A priority Critical patent/US3408058A/en
Application granted granted Critical
Publication of US3408058A publication Critical patent/US3408058A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D25/00Devices or methods for removing incrustations, e.g. slag, metal deposits, dust; Devices or methods for preventing the adherence of slag
    • F27D25/008Devices or methods for removing incrustations, e.g. slag, metal deposits, dust; Devices or methods for preventing the adherence of slag using fluids or gases, e.g. blowers, suction units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/26Arrangements of heat-exchange apparatus
    • F27B3/263Regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles

Definitions

  • This invention relates to a construction for regenerators in industrial two-way fired furnaces, glass tank furnaces, and other furnaces which use regenerators to supply preheated air for combustion, and is characterized by permitting the elimination of conventional checker-flue construction, with its maize of small passages which impart inherent flue dust clogging and other maintenance diffi culties.
  • the invention permits regenerators of relatively more open construction, which results in fabrication and maintenance advantages, as well as relatively unobstructed draft, while retaining high thermal efiiciency.
  • FIGURE 8 is an isometric view of a regenerative cham ber construction of the invention, with parts broken away to show interior construction. The arrows depict gas flow direction during a waste gas exhaust cycle;
  • FIGURE 2 is a diagrammatic cross-sectional view, in elevation of FIGURE 1;
  • FIGURES 3, 4 and 5 are views similar to those of FIGURE 2, and present modifications of the structure thereof;
  • FIGURE 6 identical in construction with FIGURE 5, typifies the air cycle, which is in the reverse direction of flow, as compared to the exhaust cycle of FIGURES 1 to and
  • FIGURE 7 is a fragmentary section of fin type chamber liner.
  • exhaust gases from the furnace travel through downtake 1 to conventional slag pocket 2, and thence through a parallel array of several series of chambers through which the gases flow in a vortical-flow pattern, as depicted by the arrows.
  • These chambers are collectively designated 3, with individual chambers being designated 3a, b, and c.
  • the gases exit through stack flue 4.
  • the vortical-flow chambers have vertical longitudinal side walls generally designated 5 and transverse vertical side walls generally designated 6.
  • the latter have gas flow ports therein, generally designated 7, with ports adjacent to lettered chambers bearing similar sufiixes.
  • Transverse side walls 611 and 6b of FIGURES 1, 2, and 4 provide a dummy pass for the purpose of permitting a bottom connection to stack flue 4, to accomodate commonly existing furnace arrangements.
  • FIGURES 5 and 6 depict another arrangement for accomplishing this purpose, while FIGURE 3 shows an elevated stack flue arrangement for new furnace construction.
  • Transverse gas flow deflector walls 10, as shown in FIGURES l, 2, and 3 are preferred. These are constructed of brick athwart the chambers. Arched bricks, as shown in FIGURE 1, are preferably employed for strength.
  • FIG- URES, 4, 5, and 6 Other arrangements of gas deflection, possibly offering some advantages of simplicity of construction, but with some sacrifice of effective heat-transfer surface area, as compared to the FIGURE 1 design, are presented in FIG- URES, 4, 5, and 6.
  • baflles 11 assist in achievement of desired cyclonic flow.
  • Gas deflector walls 10 and bafiles 11 are arranged, in conjunction with ports 7, to provide an orifice-type flow for gas entering a chamber, Also, deflector walls 10 are curved at their inner faces to aid rotary gas flow.
  • the openings between the chambers are desirably of graduated size, to account for changes in flue gas density with decrease of temperature as the gases progress through the unit.
  • ports 7a and 7b cooperate with deflectors 10 or bafilles 11 to produce a peripheral jet stream for inducing vortical flow within the chambers in the exhaust cycle
  • ports 7b and 7a shown in FIG- URES 2 and 6, cooperate with the elements 10 or 11 to produce similar vortical flow excitement on the air cycle, to obtain eflicient heat pick up.
  • the spacing between longitudinal walls 5 is preferably between about 16 and 24 inches, to permit passage of a man between them during rebuilding and to attain a high efliciency of radiant heat transfer during the exhaust cycle.
  • S represents slag and flue dust, which readily drops off of the vertical walls and roof, and settles to the bottom.
  • the chambers may be lined with finned material, of the type depicted schematically in FIGURE 7, composed of a 'base 12 and fins 12a.
  • the fins are preferably installed to coincide with the direction of gas travel. They are for the purpose of improving heat exchange etliciency.
  • a furnace regenerator comprising a succession of chambers of sufliciently open interior construction to permit passage of a man, ports permitting two way flow therethrough, said ports, in areas of high flue dust concentration, being located a substantial distance above the chamber floor, means cooperating with said ports to produce a peripheral jet type flow in either direction, where--- I References Cited by a cyclonic flow, with horizontal axis, is induced within UNITED STATES PATENTS the chamber.

Description

1968 n. K. GRIFFITHS ETAL 3,408,058
ANTI-CLOGGING FURNACE REGENERATOR 3 Sheets-Sheet 1 Filed Oct. 11, 1965 INVENTORS.
DA W0 A. GRIFFITHS and JOHN H. RICHARDS 9.1%?
L m w A Harney 1968 0. K. GRIFFITHS ETAL 3,403,058
ANTI-CLOGGING FURNACE REGENERATOR 5 Sheets-Sheet 2 Filed Oct. 11. 1965 m VE/V TORS. DA v10 x. GRIFFITHS and 8 JOHN H. RICHARDS wflw v Attorney 1968 D. K. GRIFFITHS ETAL 3,408,058
ANTI-CLOGGING FURNACE REGENERATOR Filed 001;. 11, 1965 5 Sheets-Sheet 3 INVENTORS. DAV/D K. GRIFFITHS and JOHN H. RICHARDS A f rorney United States Patent 3,408,058 ANTI-CLOGGING FURNACE REGENERATOR David K. Grilfiths and John H. Richards, Penn Hills Township, Allegheny County, Pa., assignors to United States Steel Corporation, a corporation of Delaware Filed Oct. 11, 1965, Ser. No. 494,539 2 Claims. (Cl. 263-19) ABSTRACT OF THE DISCLOSURE A regenerator for two-way fired industrial furnaces, which replaces conventional regenerators having closelyspaced checker work construction with units having relatively open chambers adapted to provide cyclonic flow in alternating directions.
This invention relates to a construction for regenerators in industrial two-way fired furnaces, glass tank furnaces, and other furnaces which use regenerators to supply preheated air for combustion, and is characterized by permitting the elimination of conventional checker-flue construction, with its maize of small passages which impart inherent flue dust clogging and other maintenance diffi culties.
The invention permits regenerators of relatively more open construction, which results in fabrication and maintenance advantages, as well as relatively unobstructed draft, while retaining high thermal efiiciency. These advantages stem primarily from the provision of heat exchange chambers characterized by a capability of imparting a strongly rotary or cyclone-type motion to the gases passing therethrough, in both the input and exhaust cycles, the axis of the vortex'being horizontal.
The principles of the invention, and modes for their effectuation, will become further apparent, in conjunction with reference to the drawings, wherein:
FIGURE 8 is an isometric view of a regenerative cham ber construction of the invention, with parts broken away to show interior construction. The arrows depict gas flow direction during a waste gas exhaust cycle;
FIGURE 2 is a diagrammatic cross-sectional view, in elevation of FIGURE 1;
FIGURES 3, 4 and 5, are views similar to those of FIGURE 2, and present modifications of the structure thereof;
FIGURE 6, identical in construction with FIGURE 5, typifies the air cycle, which is in the reverse direction of flow, as compared to the exhaust cycle of FIGURES 1 to and FIGURE 7 is a fragmentary section of fin type chamber liner.
Referring primarily to FIGURES 1 and 2, but with functionally similar elements being similarly designated throughout the drawings, it will 'be noted that exhaust gases from the furnace, not shown, travel through downtake 1 to conventional slag pocket 2, and thence through a parallel array of several series of chambers through which the gases flow in a vortical-flow pattern, as depicted by the arrows. These chambers are collectively designated 3, with individual chambers being designated 3a, b, and c. On the pass of FIGURE 1, the gases exit through stack flue 4.
The vortical-flow chambers have vertical longitudinal side walls generally designated 5 and transverse vertical side walls generally designated 6. The latter have gas flow ports therein, generally designated 7, with ports adjacent to lettered chambers bearing similar sufiixes. The ports,
particularly in regions where flue dust may accumulate, are located well above the bottoms of Walls 6.
Transverse side walls 611 and 6b of FIGURES 1, 2, and 4 provide a dummy pass for the purpose of permitting a bottom connection to stack flue 4, to accomodate commonly existing furnace arrangements. FIGURES 5 and 6 depict another arrangement for accomplishing this purpose, while FIGURE 3 shows an elevated stack flue arrangement for new furnace construction.
Floor 8 and roof 9 complete the outlines of the chambers.
Transverse gas flow deflector walls 10, as shown in FIGURES l, 2, and 3 are preferred. These are constructed of brick athwart the chambers. Arched bricks, as shown in FIGURE 1, are preferably employed for strength.
Other arrangements of gas deflection, possibly offering some advantages of simplicity of construction, but with some sacrifice of effective heat-transfer surface area, as compared to the FIGURE 1 design, are presented in FIG- URES, 4, 5, and 6. In this design baflles 11 assist in achievement of desired cyclonic flow.
Gas deflector walls 10 and bafiles 11 are arranged, in conjunction with ports 7, to provide an orifice-type flow for gas entering a chamber, Also, deflector walls 10 are curved at their inner faces to aid rotary gas flow. The openings between the chambers are desirably of graduated size, to account for changes in flue gas density with decrease of temperature as the gases progress through the unit.
Just as ports 7a and 7b, for example, cooperate with deflectors 10 or bafilles 11 to produce a peripheral jet stream for inducing vortical flow within the chambers in the exhaust cycle, so do ports 7b and 7a, shown in FIG- URES 2 and 6, cooperate with the elements 10 or 11 to produce similar vortical flow excitement on the air cycle, to obtain eflicient heat pick up.
The gases enter the individual chambers tangentially to the vortex. Ash and solid contaminants in the exhaust gases are thrown out by the centrifugal action of the circular flow pattern. Also, the centrifugal action of the vortex tends to concentrate the hotter, lighter gases near the axis and the colder, heavier gases toward the periphery. Thus, during the exhaust cycle, the colder gases will tend to move preferentially through the system toward the stack flue, and the hotter gases will tend to recirculate in the chamber until they become cooler.
The spacing between longitudinal walls 5 is preferably between about 16 and 24 inches, to permit passage of a man between them during rebuilding and to attain a high efliciency of radiant heat transfer during the exhaust cycle.
S represents slag and flue dust, which readily drops off of the vertical walls and roof, and settles to the bottom.
The chambers may be lined with finned material, of the type depicted schematically in FIGURE 7, composed of a 'base 12 and fins 12a. The fins are preferably installed to coincide with the direction of gas travel. They are for the purpose of improving heat exchange etliciency.
While several examples of the invention have been outlined in some detail, these are to be regarded as illustrative, to permit ready practice of the invention, and not as restrictive thereof.
We claim:
1. A furnace regenerator comprising a succession of chambers of sufliciently open interior construction to permit passage of a man, ports permitting two way flow therethrough, said ports, in areas of high flue dust concentration, being located a substantial distance above the chamber floor, means cooperating with said ports to produce a peripheral jet type flow in either direction, where--- I References Cited by a cyclonic flow, with horizontal axis, is induced within UNITED STATES PATENTS the chamber.
2. In two-Way fired industrial furnace operation the 1,131,262 3/1915 Orth 263-19 steps of: 5 1,703,793 2/1929 Stein" 263-51 '(a) passing waste gas, during the exhaust cycle, 1,846,706 2/1832 Cartmell 55442 through a succession of chambers having open ini w L I I 1 terior construction and means for imparting cyclonic TFOREIGNPATENTS flowto saidgas, and I l' i 7, =1 (b) subsequently passing input cycle gas through the 10 604826 7/1948 Great Britain, aforementioned chambers in reverse direction, said JAMES W WESTHAVER Primary di 'm chambers having means for imparting cyclonic flow to said gas, E. G. FAVORS, Assistant Examiner.
US494539A 1965-10-11 1965-10-11 Anti-clogging furnace regenerator Expired - Lifetime US3408058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US494539A US3408058A (en) 1965-10-11 1965-10-11 Anti-clogging furnace regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US494539A US3408058A (en) 1965-10-11 1965-10-11 Anti-clogging furnace regenerator

Publications (1)

Publication Number Publication Date
US3408058A true US3408058A (en) 1968-10-29

Family

ID=23964887

Family Applications (1)

Application Number Title Priority Date Filing Date
US494539A Expired - Lifetime US3408058A (en) 1965-10-11 1965-10-11 Anti-clogging furnace regenerator

Country Status (1)

Country Link
US (1) US3408058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088180A (en) * 1975-07-08 1978-05-09 Ppg Industries, Inc. Regenerator flow control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1131262A (en) * 1914-07-31 1915-03-09 Frank Orth Regenerator for furnaces.
US1703793A (en) * 1923-08-31 1929-02-26 App De Manutention & Fours Ste Heat regenerator with large surface
US1846706A (en) * 1931-01-26 1932-02-23 C R C Air Cleaner Company Air cleaner
GB604826A (en) * 1945-12-05 1948-07-12 Gen Electric Co Ltd Improvements in or relating to air filters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1131262A (en) * 1914-07-31 1915-03-09 Frank Orth Regenerator for furnaces.
US1703793A (en) * 1923-08-31 1929-02-26 App De Manutention & Fours Ste Heat regenerator with large surface
US1846706A (en) * 1931-01-26 1932-02-23 C R C Air Cleaner Company Air cleaner
GB604826A (en) * 1945-12-05 1948-07-12 Gen Electric Co Ltd Improvements in or relating to air filters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088180A (en) * 1975-07-08 1978-05-09 Ppg Industries, Inc. Regenerator flow control

Similar Documents

Publication Publication Date Title
CN1035360C (en) Method and apparatus for operating a circulating fluidized bed system
US3408058A (en) Anti-clogging furnace regenerator
US1599613A (en) Recuperative apparatus
US490726A (en) Of same place
US2126095A (en) Soaking pit and like heating furnace
US2377943A (en) Means for cooling material
US111691A (en) Improvement in hot-blast stoves for heating air, steam
US1912381A (en) Combined heat exchanger and dry cleaner
US1907140A (en) Open hearth furnace
US2185559A (en) Checkerwork construction for regenerators
US1771306A (en) Flue structure for regenerative stoves
US2771285A (en) Regenerator
GB730347A (en) Apparatus for the treatment of finely divided fluidizable solid material
JP3038338B2 (en) Vertical firing furnace
US1278173A (en) Four-pass hot-blast stove.
US1619747A (en) Recuperator
US3378249A (en) Furnace underhearth cooling apparatus
US2257821A (en) Fluid heating unit
US1141108A (en) Hot-blast stove.
US3454267A (en) High performance blast furnace stoves
US1305176A (en) smythe
US103651A (en) Improvement in hot-blast ovens
SU551495A1 (en) Baking heat exchanger for preheating raw mix
US557924A (en) Regenerative furnace
USRE30469E (en) Preheater for lime kiln