US3402524A - Apparatus for packaging articles - Google Patents

Apparatus for packaging articles Download PDF

Info

Publication number
US3402524A
US3402524A US16916462A US3402524A US 3402524 A US3402524 A US 3402524A US 16916462 A US16916462 A US 16916462A US 3402524 A US3402524 A US 3402524A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
crackers
means
wrapper
articles
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Arthur J Griner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabisco Inc
Original Assignee
Nabisco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B23/00Packaging fragile or shock-sensitive articles other than bottles; Unpacking eggs
    • B65B23/10Packaging biscuits

Description

p 1968- A. J. GRINER 3,402,524

APPARATUS FOR PACKAGING ARTICLES Original Filed Sept. 19., 1952 3 Sheets-Sheet 1 INVENTOR. ARTHUR J. GRINER Sept. 24, 1968 A. .1. GRINER APPARATUS FOR PACKAGING ARTICLES 3 Sheets-Sheet 2 Original Filed Sept. 19, 1952 ARTHUR J. GRINER ATTOF? Sept. 24, 1968 A. J. GRINER APPARATUS FOR PACKAGING ARTICLES 3 Sheets-Sheet 5 Original Filed Sept. 19, 1952 INVENTOR.

ARTHUR J. GRINER ATTOR EYS United States Patent 18 Claims. (Cl. 53-159) This application is a division of my application Ser. No. 310,532, filed Sept. 19, 1952 for Packaging Method and Means, now abandoned in favor of continuation application Ser. No. 559,242, filed June 21, 1966, for Method of Packaging Articles.

The present invention pertains generally to the art of packaging, and more particularly to a means for continuously conveying biscuit from a commercial bakers band oven and effecting automatic packaging of the bis cuit as they are discharged from the oven. The term biscuit is generic to all crackers and cookies, and while hereinafter soda crackers will be used in describing the invention, it will be understood that the invention applies equally well to all biscuit.

The main purpose of the invention is to provide an automatic means for wrapping crackers during their continuous flow as they emerge from a band oven (by which means there shall be performed the work now requiring an extended series of interrupted manual and mechanical operations) leaving little except occasional adjustments to be made by the attendants in charge of the equipment.

In its fullest development, the method of the present invention comprises the steps of conveying, separating, shingling and stacking the crackers edgewise for delivery in a single column preparatory to metering, segregating and wrapping measured groups of crackers in heat sealable packaging material.

While the complete process comprises the operations thus recited, various of the steps are susceptible of separate or independent operation. Hence, while the combination of the several steps is claimed hereinafter, certain of the separate steps, as for example those directed entirely to the wrapping operation, are claimed per se.

Heretofore, continuous automatic packaging of crackers, such as soda crackers discharging in continuous fiow directly from the unloading end of a band oven, has not been practicable. There are several problems involved in such automatic packaging of soda crackers, some of which are as follows: One is the metering or measuring off and segregating of quantities of the crackers, the thickness of which varies not only from day to day but from hour to hour in spite of attempts to hold to uniformity. A further problem is encountered when it is contemplated that the crackers are to be stacked edgewise to enable them to be metered in a quantity which provides the contents for a completely sealed enclosure later to be fabricated around those contents. Soda crackers are designated by the baking industry as sponge goods and in order to proof or raise the dough for that type of cracker it is necessary to cause fermentation, which in turn makes it difficult to maintain exact control of cracker thickness. Consequently, the amount of gas generated in the proofing varies from batch to batch, so that in the subsequent baking process the cracker will expand or fail to expand according to the carbon dioxide content of the dough. In fact, any number of variables such as mixing time of the dough, temperature of the oven, speed of the oven band, slight variations in the amount of any specific ingredient and atmospheric conditions, such as humidity, may influence the thickness of the cracker. Quite often 'blisters develop on the cracker surfaces during the baking process, and this results in a high degree of inconsistency in the thickness of different portions of the individual crackers. The metering and segregating mechanism is therefore assigned the extraordinarily ditficult step in the complete process in that it must separate a suitable quantity of crackers, which vary in thickness, to form a standard length of package and at the same time not produce a package either too tightly or too loosely packed, or substantially above or below a given weight.

The present method contemplates an arrangement of crackers as they emerge on a conveyer from a band oven in flat, scored sheets which are separated first to form transverse strips of unseparated crackers and later separated again into 15 or 16 individual crackers depending upon the width of the cracker and the width of the oven band. The rows of individual crackers, lying flatwise, are carried away and then stacked on edge on belts moving continuously but at relative speeds. By means of various steps to be described later in further detail, the individual side-by-side rows of stacked crackers are first diverted, i.e. fanned out laterally so that the distance between each adjacent row is progressively increased; then the speed of belt travel of certain rows is increased to advance one row ahead of its adjacent rows, in which manner several rows of crackers are eventually brought into a single row. By this method the full width of the cracker sheet, as carried on the oven band, is transposed from its total of 16 crackers across the width of the band to a continuous automatic feed of crackers stacked edgewise and in four columns.

To form the packages, each cracker column is metered and segregated into groups automatically as the column advances. A web of wrapping material, preferably a heat sealable, moisture-vapor and grease proof paper, is then brought together with successive separated groups of crackers, wrapped about the crackers, and the wrapping web sealed lengthwise of each group and at opposite ends thereof. Thus a chain of sealed packages is produced which are then separated by severing the web laterally between each group of crackers to form in dividually wrapped packs, which are aptly called slug packs.

It is contemplated that one, two or more of the wrapped packs may be inserted in a paperboard carton. Thus the ultimate consumer may preserve the shelf life of the crackers by keeping the unused crackers intact in their individually sealed packs until required.

Although very frangible, since the crackers are stacked one-by-one edgewise, they can be removed from the wrapper with comparative ease in small groups without breakage. One end of the Wrapper may be opened and by gently tilting the crackers from their edgewise position to a flat position they may be slid freely from the wrapper. After removal of the desired quantity, the atmosphere may be exhausted by collapsing the empty portion of the end-opened wrapper and refolding it to retain the freshness of the unused crackers until such time as they are desired. Thus, the net result of the foregoing features is a package characterized by its relatively great capacity for keeping thin, crisp crackers fresh and intact until all are finally consumed.

A more detailed description of the mechanism and the several steps comprising the improved method of wrapping biscuit, and of the construction of the improved package, may be had by referring to the drawings accompanying and forming a part of this specification.

In the accompanying drawings, the invention has been shown merely by way of example and in preferred form, but obviously many modifications and variations may be made therein, and in its mode of application, which will still be comprised within its spirit. It is understood, therefore, that the invention is not limited to any specific form or embodiment, except insofar as such limitations are specified in the appended claims.

Referring to the drawings:

FIG. 1 is a view in perspective, showing a package of biscuit wrapped in accordance with the principles of the present invention;

FIG. 2 is a fragmentary cross-sectional view of a column of biscuit, showing details of the surrounding wrapper during the side-seam forming stage;

FIG. 3 is a sectional view of the slug pack, showing the folded side-seam structure partially formed;

FIG. 3A is a cross-sectional view, taken on the line 3A-3A of FIG. 1, showing the wrapper before the endsealing operation has been completed;

FIG. 4 is a cross-sectional view of the completed slug pack shown in FIG. 1;

FIG. 5 is a perspective view, showing an outer carton of semirigid paper-board filled with slug packs made in accordance with the present invention, one pack of which is broken open to display the contents;

FIG. 6 is a diagrammatic plan view of the general organization of conveying and packaging equipment for carrying out the present invention;

FIG. 7 is a view in elevation of a part of the equipment shown in FIG. 6, the view being taken on line 77, looking in the direction of the arrows;

FIG. 8 is a front view in elevation of the equipment shown in FIG. 6;

FIG. 9 is a side elevation of a portion of a single moving column of crackers stacked edgewise preparatory to the segregation and wrapping operations;

FIG. 10 is a side elevation of a metered quantity of crackers, segregated and advanced ahead of the column as shown in FIG. 9;

FIG. 11 is a top plan view of the cracker column shown in FIG. 9;

FIG. 12 is a top view of the metered quantity of cracker shown in FIG. 10;

FIG. 13 is a view in side elevation of that portion of the equipment in which -a wrapper is first applied to the moving column of crackers and a longitudinal side-seam is formed;

FIG. 13A is a section taken on the line 13A13A of FIG. 13, with parts omitted, looking in the direction of the arrows;

FIG. 13B is a section taken on the line 13B--13B of FIG. 13, looking in the direction of the arrows;

FIG. 14 is a top plan view of the structure shown in FIG. 13;

FIG. 15 is a view in side elevation of the end sealing and web severing mechanism;

FIG. 16 is a top plan view of the mechanisms shown in FIG. 15;

FIG. 17 is a view in side elevation of a finished package made according to the present invention; and

FIG. 18 is a top plan view of the finished package shown in FIG. 17.

In describing the present invention, the features of conveying, wrapping, and the completed package will be treated in that order.

Conveying operations Referring to the drawings, it will be seen that in FIG. 6, which is a diagrammatic top plan view of the general organization of equipment for continuous, automatic delivery of crackers from a band oven to a wrapping machine, there is shown a band oven 1 which, according to standard practice in the baking industry, consists of a long baking chamber of successive tunnel sections rising from a suitable base support. An endless baking band 2 (FIG. 7) is trained over a driving drum 3 at the entrance end 4 of the chamber and a driven drum 5 at the exit end 6 of the oven chamber. An upper run 7 of the band 2 extends through the heated section of the chamber, whereas a lower run 8 returns beneath the heated section. Both upper and lower runs 7 and 8 are suitably supported and guided for continuous, straight-line movement through the chamber. Baking heat may be applied, if the oven is gas fired, by a series of gas burners suitably arranged within the tunnel.

An endless dough sheet 10, of a width suflicient to cover the band 2 save for small margins at the side edges, is fed continuously into the entrance end of the oven 1. The dough sheet, having had its top surface die stamped or scored transversely and longitudinally prior to baking in order to define thereon individual crackers of rectangular shape will, upon completion of baking, be discharged from the exit end of the oven in the form of a baked sheet 11. The baked sheet 11 is then transported by a conveyor belt through a strip breaker 12, which comprises a revolving brush 13 exerting pressure upon the baked sheet 11 as it is transported on a moving belt over a portion of the conveyor that varies sharply from the normal plane of travel. In conventional practice, this is effected by a deflector plate (not shown) positioned beneath the revolving brush 13 at which point the transverse rows of biscuit forming the baked sheet 11 are caused by tension from the change in their normal path of travel to bend and snap off along their thansverse frangible scoring lines to form transverse strips 14 consisting usually of 15 or 16 crackers connected to each other at their side edges.

The strips 14 are transported onto a cooling conveyer 15, consisting of an endless fabric apron or belt trained over rollers which revolve at a suitably moderate speed to allow the cracker strips 14 to throw off excess heat.

Crackers coming directly from the oven are usually too soft for immediate stacking or packaging operations and, by transporting them over a cooling conveyer 15 such as shown in FIGS. 6, 7, and 8, they may be conditioned for subsequent breaking and stacking operations preparatory to wrapping. Any suitable or conventional drive means may be provided to operate the conveyer 15.

The cooling conveyer arrangement shown in FIGS. 6, 7, and 8 is only one of a variety of conveyer arrangements which may be made depending upon available space. Should sufficient space be available, the band oven, the entire length of the cooling conveyor, and the wrapping section, may be installed along one straight line, or as in the illustrated example FIGS. 6, 7 and 8 herein, the cooling conveyer may be provided with a turn table 16 of conventional design to enable the conveyor line to be doubled back alongside the initial section thereof, thereby securing maximum length in a minimum of space. On the other hand, the cooling apparatus may take the form of an inclined conveyer which can be projected through two or more floors, doubling back beneath the band oven which may be located on one floor with the cooling conveyer directly below, and the wrapping section either on a level with the cooling conveyer or else disposed on a still lower level.

When the cooling has been accomplished, the cracker strips are presented to a breaker 17 which functions in a manner similar to the previously described strip breaker 12 except that the first breaker 12 separated the baked sheet 11 along transverse score lines whereas now the breaking operation upon the strip 14 is effected along longitudinal score lines to separate the strips into individual crackers 18.

Immediately following the breaker 17, the individual crackers 18 pass onto an endless band forming part of a shingling and stacking unit 20, which may be of any conventional design. In the present embodiment, the crackers are conveyed flatwise onto a transversely mounted roller 21 which forms part of the stacking unit 20. A plurality of moving belts 22, one for each of the 16 longitudinal rows of crackers, are disposed at a relatively lower level than the aforesaid roller and travel at a relatively slower surface speed than the roller 21. As a consequence, the crackers in their movement over the roller are caused to tip slightly as they fall onto the belts 22, thus acquiring a shingled effect. As the crackers continue their travel through the stacker, they gradually assume a vertical position, standing edgewise in sixteen closelyspaced longitudinal columns, discharging continuously and at an even rate of surface speed from the stacker 20.

In order to condition the columns of crackers for subsequent alignment in a single column, it is necessary first to spread them apart so that they will be distributed over a wider area. For this purpose, a diverging conveyer 23 is coupled with the discharge end of the stacker and is comprised of a plurality of individual conveyer belts 24 arranged in side by side relation. At the entrant end of the diverging conveyer there is a group of eight closely spaced conveyer belts 25 and another group of eight belts 26 (FIG. 6), which groups of belts gradually diverge and lead to two further groups of conveyer belts 27 and 28 comprising, respectively, sub-groups 30, 31 and 32, 33 of four belts each.

To sum up the scheme of column distribution, it will be recalled that the oven band discharges a sheet of baked dough made up of strips of 16 undetached crackers transversely disposed across the bank which, upon being separated and stacked according to the foregoing method, provides four sub-groups, each comprised of four columns of crackers stacked edgewise and moving forwardly and divergently at equal rates of speed. At this stage, suitable clearance is obtainable so that side guides may be arranged between adjacent columns.

The discharge end of the conveyer groups 27 and 28 connect and feed crackers directly to units identified as uplift conveyers 34 and 35, each comprising two sections 36 and 37, and 38 and 39, respectively, and each of which sections in turn comprises four conveyers. The main purpose of the uplift conveyer is to segregate, one at a time, moving columns of crackers into given lengths, say ten feet, each of which is lifted vertically a short distance above the plane of its adjacent columns of crackers. Considering one section only, say section 39, as soon as one ten foot length is elevated, that entire length of stacked crackers is advanced linearly at four times the speed atwhich its adjacent three columns are moving in order to place it ahead of its immediately adjacent column. As soon as such advance is completed, then the said immediately adjacent column is elevated and carried forward, and so on successively and repeatedly with crackers from the four columns comprising the section. The timing is such that groups of crackers which had been moving along side by side in four columns are successively moved ahead so that the leading end of one group is in substantially transverse alignment with the following end of the group which was advanced immediately before it.

In order to bring into single columns the groups of crackers in each of sections 36, 37, 38 and 39 which have been advanced by the uplift conveyors 34 and 35, there are provided four converging devices 41, 42 and 43, 44, respectively, into each of which one group of four columns comprising a section is fed. Still speaking with respect to section 39 only, by way of example, the converging device 44 consists of two endless belts 40, each belt being trained about a separate pair of vertically mounted pulleys arranged so that the belts are angularly disposed toward one another. Each pair of pulleys is comprised of a driving and a driven pulley arranged so that the surfaces of the belts facing one another travel continuously toward the narrowest point of convergence. An endless horizontal belt sufficiently wide to extend across the entrance of the converging device 44 is disposed thereunder to convey the. four columns of ten foot lengths of crackers as they are fed to the converging device. During this operation, a ten foot length of crackers arriving off-center at the entrance to the converging device 44 will be carried forward until its front end strikes one of the angularly disposed belts. The ten foot length of crackers will then be diverted from its former straight path of travel and caused to follow the angular direction of the endless belt toward the exit. When the ten foot length reaches the apex formed by the two converging belts, a passageway is provided just wide enough for a single column of crackers to pass therethrough. In this manner, each ten foot length of crackers will be joined immediately by its following section to form, in contrast with the previously laterally disposed lengths, a single unbroken column of crackers, stacked edgewise and fed continuously at an even rate of speed. Each converging device 41, 42, 43, 44 converges four separate columns of crackers into a single column preparatory to the wrapping operation now to be described.

Metering and segregating The steps involved previous to the metering and segregating operations have been concerned mainly with the problem of combining a plurality of lines of crackers into a single column stacked on edge for feeding into a wrapping machine. FIGS. 9 and 10 show such a single column of crackers 45 stacked edgewise and supported on a conveyer belt 46 advancing in the direction of the arrows. Inasmuch as the various segregating and wrapping operations are all co-ordinated in speed and timed relation, a unit of space-time relationship termed a cycle is adopted to facilitate the description. Therefore, in the following description of the metering, segregating and wrapping operations, the term cycle will be understood to indicate that period of operation of the machine required to perform the final steps in the wrapping method developed by the present invention.

In FIGS. 9 and 11 there are shown two pair of rubberfaced grippers 47 and 50 which, together with a plurality of like pairs of grippers, are carried on an endless belt (not shown). The belt is mounted on pulleys and is provided with an upper run adapted to travel in close pr0ximity to the undersurface of the conveyer belt 46. All of the rubber-faced grippers are cam operated for transverse movement relative to the direction of travel of the cracker column 45. Normally, they are held by spring tension in an open position so that they can be elevated to the position shown in FIG. 9 for engagement with the sides of the cracker column, and when operated by their respective cams they will be actuated to close inwardly and clamp the column as shown in FIG. 11. The column of crackers 45 is advanced to the conveyer belt 46 a distance of 13%" per cycle. The grippers 47 and 50 are carried at a uniform rate of speed, advancing 7 /2" per cycle. Thus, under the restraining influence of the grippers 47 on the column of crackers the belt slips relatively to the crackers approximately for each inch of travel of the crackers. 7

Still referring to FIGS. 9 and 11, when the cracker column 45 has advanced a distance of 7 /2 under the retarding influence of the leading pair of grippers 47 the grippers 47 are released and the following pair of grippers 50 become effective to clamp the sides of the column and thus free or meter off the group of crackers between the grippers 47 and 50.

However, for a fraction of a second prior to the instant that the rear pair of grippers close upon the sides of the column, the front grippers 47 release their hold at the head of the column.

Just prior to the release of the grippers 47 a flight finger 52 traveling at the same speed as the belt 46 is inserted in front of the leading cracker to prevent the crackers from falling forward when released. Upon release, the entire column of crackers moves at the higher speed of the belt 46, so that by the time the grippers 50 become effective the length of the group of crackers 54 being metered has been increased from 7 /2" to approximately 8%". When the grippers 50 close and restrain this increased speed of movement of the column of crackers, the metered group 54 continues to travel at the higher speed thereby creating a space into which a second flight finger 53 is inserted. Thus the metered group of crackers is confined between and carried by the fingers 52 and 53.

During the following cycle, the column of crackers retarded by the grippers travels 7 /2" only, while the metered group 54 travels 13%". Assuming the distances to be exact and constant, since the group 54 measures 8%", a space of 4%" (13 /s8-/ is created between the group 54 and the group next to be metered. This is the space required for sealing the wrapper at opposite ends of the group 54 as will be described later.

It is to be understood that the cycle for metering and segregating the slug 54 is repetitive and each projection and retraction of a gripper or a flight finger is periodically effected so that the cycle is continuously occurring at a rapid rate of speed.

It is to be noted also, that the steps which were described for metering and segregating were directed to only one metered group of crackers, or so-called slug, whereas the full embodiment of the invention as shown particu larly in FIG. 6, calls for four lines 55, 56, 57 and 58 of slugs in order to feed two wrapping machines and 61. Lines 55 and 56 form the left and right-hand slug feed, respectively, for feeding wrapping machine 60, and lines 57 and 58 form the left and right-hand slug feeds, respectively, for feeding wrapping machine 61, when viewing the machines endwise from their slug receiving end.

Wrapping operation Referring now to Stage I FIGS. 13 and 14, the slug of crackers 54 is shown entering one of the cracker feed lines 55, 56, 57 and 58, or any of them. At this stage, which is preparatory to the wrapper application, conveyer belt 46 has begun its return run and no longer supports the slugs 54. Each cracker slug is now held by its respective flight fingers 52 and 53 which advance the slug adjacent the path of a continuous web 62 of flexible, heat scalable, transparent wrapping material preferably of waxed paper, or waxed paper including butyl rubber, a well known heat-sealing medium. An end of the wrapping material is unwound from a supply reel (not shown) and fed around an idler roll 63 to tension the web 62 while it is drawn through a former plate 64 along with the cracker slug 54. The former plate 64 may be compared with a funnel, open along one side in its initial stages, and gradually enveloping its passageway as it progresses. The web 62 is drawn against the inner face of the former plate, the contour of which folds the web into a sleeve or channel, open at one side. The slug of crackers, held between the flight fingers 52 and 53, moves along with the progressively forming sleeve of wrapping material, which in Stage I surrounds the bottom, rear and top of the slug, its extended longitudinal margins later serving to close the open side.

During Stage II, the slug 54 is supported by a bottom panel 65 (FIG. 13A) of the former plate 64, and the flight fingers 52 and 53 are successively withdrawn through the open side by cam action so as not to interfere with the web 62, the longitudinal margins of which are progressively folded inwardly about each cracker slug by folder plates 67 and 68 as it advances through the former plate. Prior to the retraction of the flight fingers 52 and 53, the web of wrapping material and the slug of crackers are held together and carried through the former plate by a belt mechanism to be described shortly.

During the completion of Stage II and the commencement of Stage III of the wrapping operation, the longitudinal margins of the wrapper web, which when folded inward overlap substantially, are gradually brought to gether with their opposed edge portions in face-to-face contact, taking the form of a lip 66 of double thickness (FIG. 13B) extending laterally from the side of the slug 54 and lying parallel with the direction of travel of the slug and wrapper. The lip 66 is pressed together by a pair of folder plates 67 and 68 (partially shown only) which are adapted to guide the marginal edges of the wrapper as they are drawn into face-to-face relationship.

The wrapper, now surrounding the slug 54, has become slightly taut as the slug advances in Stage III preparatory to the heat sealing and seam pressing of the lip 66.

Referring to FIGS. 13 and 14 there is shown fragmentary portions of two sponge-rubber block belts 69 and 70, each of which is comprised of a plurality of rubber blocks 71, preferably of a soft sponge rubber, suitably fastened to a metal base mounted on a roller chain. The belts 69 and 70 are endless, mounted on sprockets and driven at substantially the same speed in the direction indicated by the arrows, the direction in which the slugs are moving. The belts are arranged in vertical alignment and spaced apart to accommodate the slugs between them. As shown in FIG. 13, at intervals corresponding to the spacing between the terminal ends of the slugs 54, certain rubber blocks 72 may be substantially thicker than other blocks 71 which span the top and bottom of the slugs, so that the blocks 72 may be pocketed between the terminal ends of the spaced slugs, thus forming upper and lower shoulders abutting the end crackers of each slug. The wrapper encased slugs 54 are propelled by the flight finger 53 into the entrance between the belts 69 and 70 and, as the slugs move onward sul'ficient pressure from the belts is brought to bear upon the wrapped slug to hold the crackers in slug form and carry the wrapper and crackers forward.

To form a strong seam of the marginal edges comprising the longitudinal lip 66, the edges are first drawn through a heat sealing device, indicated as a whole by the numeral 73 (FIG. 13), which comprises members 74 and 75 mounted for swinging movement outwardly (not shown) to gain access to the wrapper in case of tearing, and for threading the wrapper web when operation of the apparatus is commenced. The member 74 carries an electrical heating element (not shown) and conductors 59 leading to a source of electric current. Each of the members 74 and 75 may be formed of any of the well known heat retaining metals which will rapidly heat the surfaces of the lip 66 of the wrapper, causing the wax or butyl rubber layers of the heated aeas to melt and congeal, thus forming an adhesive bond between the surfaces as indicated by the dotted line 78 in FIG. 3.

As the wrapper enfolded slugs traverse wrapping Stage III (FIGS. 13 and 14), the heat sealed lip 66 is caused to enter a pair of scam forming plates 76 and 77 set in the path of the lip, the web of which is still in a sufficiently molten condition to permit the lip to be progressively folded to acquire the V-shaped conformation shown in FIG. 3. The upper plate 76 is set into the lower plate 77 as shown in dot-anddash outline in FIG. 2, except for the entrant portion at which area the plates diverge scissors-like (FIG. 13) to engage and guide the moving lip. As the lip 66 of the wrapper moves into the forming section of the plates 76 and 77, the clearance therebetween is progressively decreased, causing pressure to bear against the lip and bend it as at 79 into the condition shown in FIG. 3. In this manner, an off-set seamforming operation is advantageously effected without applying direct lateral pressure or heat to the enclosed crackers, the frangible nature of which very likely would not enable them to withstand a directly formed seaming operation.

By reason of the fact that the paraflin or butyl rubber, whichever is employed to form that part of the wrapping material which is to elfect the bond, when heated to its melting point will remain in a soft state for a substantial period of time, a cooling device is employed to rapidly dissipate the heat generated during the sealing operation, so that the seal will set. To this end, the wrapper enclosed slugs 54 are now drawn through Stage IV (FIGS. 13 and 14) in which the previously heated seam 79 is chilled. The cooling device 80 comprises cooling blocks 81 surrounding a seam presser 82 which is adapted to flatten the bonded seam 79 against the adjacent side wall of the wrapped slug. The cooling block 81 is provided with a refrigerant intake connection 83 and a refrigerant discharge connection 84 through which the adjacent surfaces of the seam presser 82 are maintained at low temperature.

A further result of the operation during Stage IV is the adherence of the seam 79 to the side wall of the Wrapper, in case a wrapper material is provided with paraflin or butyl rubber coatings on both sides. In this event, the previous heat-sealing operation which was effected during Stage III will also have melted the outer wax or butyl rubber covered areas 86 and 86 (FIG. 3) of the lip 66 which, when traversing under pressure of the cooling device 80, will become effectively sealed to the side wall of the wrapper at the respective adjacent areas before becoming thoroughly chilled. Should a wrapper material having a wax or butyl rubber coating on one side only be employed, then effective use of an end sealing operation, later to be described, can be relied upon to tighten the seam 79 by pulling of the wrapper lengthwise so that it becomes taut against the sides of the slug.

When the wrapper enclosed slugs 54 approach Stage V (FIGS. and 16), there is formed an air tight seam 79 lengthwise of the wrapper, and the wrapper extends without any break in continuity between the slugs, linking across the intervening spacing to form a chain of wrapper-enclosed groups of crackers, stacked on edge, in metered quantities of predetermined amount. The sponge rubber belts 69 and 70 now change their course, moving away from the enwrapped slugs as they travel to their inoperative runs, thus clearing the slug line area for the end-sealing operations next to be described.

As the wrapper enveloped slugs 54 continue to advance through the wrapping machine, there is disposed at each side of the advancing slugs (FIG. 16) a plurality of pairs of opposed traveling tucking jaws 87 carried on endless roller chains (not shown). Each pair of tucking jaws advances in unison and each jaw is mounted for limited reciprocal movement laterally into and out of the path of travel of the advancing slug packs, and is activated by cam motion to reciprocate in unison and in alignment with intervening connecting portions 90 of the chain of wrapper-enclosed slugs. Referring to FIG. 3A, side tucks 91 and 92 are shown in the sectional view of the connecting portions 90 of the wrapper. In effect, the inwardly projecting tucking jaws 87 (FIG. 16) serve to gusset the opposing sides of the connecting portions of the wrapper intermediate adjacent slugs, partially serving to form a bellows fold best illustrated in FIG. 3A.

Referring again to FIGS. 15 and 16, the tucking jaws are withdrawn from their respective gusset folds in order to permit upper and lower heat sealing jaws 97 and 98, respectively, to compress the wrapper between the spaced slugs 54 in such a manner as to form sealed areas 100. The timing is such that the tucking jaws are retracted just before the sealing jaws come together, thus assuring that the tucks remain and the desired seal is effected. The tucking jaws fit closely between successive slugs 54 insuring that the crackers do not become displaced, and the tucking exerts a tension on the wrapper along the sides of the slug. The sealing jaws, of course, exert a pull on top and bottom walls 95 and 96 of the wrapper, and thus a neat, firm wrapping results. Furthermore, the ends of the side seam 79 are tucked in between the walls 95 and 96 of the wrapper and become sealed therebetween.

The jaws 97 and 98 are substantially identical in construction and each includes an electrical heating element and flexible conductors 103 leading to a source of electric current.

The heat sealing jaws 97 and 98 are mounted in opposed relation and each is caused to travel in separate elliptical orbits, in counterwise direction to one another, but in synchronous unison, so that at specific intervals the upper and lower blocks will meet in alignment with the connecting portions 90 of the advancing wrapper.

Each heat sealing jaw is spring mounted, a heavy coil spring 101 being arranged so that by adjusting the amount of separation between the upper and lower jaws so that their elliptical orbits will intersect as they approach each other, compressive yielding of the springs 101 will prevent jamming of the jaws 97 and 98, the resilient action of the springs, however, being effective to collapse and compress the top and bottom of the wrapper at the gusset area. The upper jaw 97 travels in a counter-clockwise direction and the lower jaw 98 in a clockwise direction, so that traveling in elliptical orbits in timed relation to the linear speed of the slugs 54, under the influence of the springs 101 they partake of substantially a linear movement along with the wrapper during the sealing interval. Thus there is no form of intermittent motion in the travel of the slugs 54 or during the compressing and heat sealing operations.

The chain of wrapper enclosed slug packs are new advanced to Stage VI, wherein a second pair of jaws 104 and 105, mounted in tandem with the previously described heat sealing jaws 97 and 98, are effective to crimp the previously heat sealed portions of the wrapper, to cool the softened wax or other thermoplastic material which forms the sealing medium of the wrapper, and finally to sever the sealed connecting portions 90 of the wrapper medially of the seal. The jaws 104 and 105 travel in parallel orbits with the heat sealing jaws 97 and 98, respectively, and the two pairs of jaws are spaced from each other a distance equivalent to the length of a slug. Consequently, the crimping, cooling and severing operation performed by jaws 104 and 105 upon the advancing end of a slug pack is effected simultaneously with the heat sealing operation upon the opposite end of the slug pack.

The jaws 104 and 105 are spring mounted similarly to the sealing jaws, and each includes a crimping block 106 having complementary longitudinal corrugations or serrations, the elfect of which will be to corrugate the top and bottom layers of wrapper material in juxtaposition and in the areas previously heat sealed by jaws 97 and 98. The jaws 104 and 105 are each equipped with a cooling chamber having a refrigerant intake connection 107 and a refrigerant discharge connection 108, preferably of flexible construction to permit continuous operation of the cooling chamber during its elliptical travel. As a result of the cooling effect to chill the sealing thermoplastic, corrugations or ridges 102 (FIG. 1) pressed into the wrapper will take a permanent set. The elements of the mechanism are coupled and synchronized so that the time required for the tandem mounted jaws 97, 98 and 104, 105 to make one complete revolution throughout their elliptical orbit is the same as that required for the wrapper enclosed chain of slugs to advance longitudinally a distance equivalent to the length of one slug pack.

The final operation of Stage VI comprises the severing of the chain of slug packs. This is accomplished by severing mechanism 111 carried by the jaws 104 and 105. This may be briefly described as consisting of a transversely slotted holder carried in the lower jaw 105 and adapted to serve as a shear plate when receiving a complementary shear blade depending from the upper jaw 104. In operation the chilling of the seal and severing of the wrapper occur simultaneously.

The severed slug pack now takes the appearance of the package 112 shown in perspective in FIG. 1, in side elevation in FIG. 17, and in top plan view in FIG. 18. Two or more of the packs may be inserted into a semirigid carton 113 as shown in FIG. 5, one pack 114 of which is shown in open condition. The end seal of each pack is easily opened by grasping any of the oblique end walls of the pack, and rupturing the seal, thus exposing the crackers which may be readily tilted fiatwise and slid from the wrapper. After collapsing the emptied portion of the wrapper, it may be folded endwise to preserve the crackers remaining therein.

Having thus described my invention, what I claim is:

1. In apparatus for packaging articles, conveyor means for continuously advancing a column of articles to be packaged, means for automatically dividing said articles into spaced packageable units in said continuously advancing column, and means for progressively folding a web of flexible material around said continuously advancing units to form a continuous tubular wrapper around said spaced units, said conveyor means including a constant speed endless belt type conveyor and said means for automatically dividing said articles into spaced packageable units including means for periodically retarding a trailing portion of said column on said conveyor.

2. In apparatus for packaging articles, conveyor means for continuously advancing a column of articles to be packaged, means for automatically dividing said articles into spaced packageable units in said continuously advancing column, and means for progressively folding a web of flexible material around said continuously advancing units to form a continuous tubular wrapper around said spaced units, said conveyor means including an endless conveyor having means for engaging both the leading and trailing ends of each of said spaced packageable units for supporting and advancing the same in said column while said web is at least partially added around such unit.

3. In apparatus for packaging articles, continuously operating conveyor means for simultaneously advancing a plurality of columns of articles to be packaged, means for continuously automatically combining the articles of said columns into a single column, means for continuously advancing said single column of articles, means for automatically metering the continuously advancing articles in said single column and dividing said continuously advancing column into metered spaced apart units in the advancing column, and means for progressively folding a continuous web of flexible material around said units as the latter continue to advance to form a tubular wrapper around said units.

4. Apparatus as defined in claim 3 wherein said means for continuously advancing the articles in said single column includes a plurality of independent conveyor means continuously operable in series and comprising means for driving said independent conveyor means in unison.

5. In apparatus for packaging articles, constant speed conveyor means for continuously advancing a column of articles to be packaged, retarder means for periodically momentarily slowing down a trailing portion of said column while a leading portion of said column continues to travel at said constant speed to form spaced packageable units of said articles in the column, gripper conveyor means for gripping each of said units to support and continuously advance the same beyond said first-named conveyor means, means for continuously advancing a web of wrapping material beside said advancing units, and means for successively and progressively folding said web partially around said units while the same are being supported and advanced by said gripper conveyor means.

6. Apparatus as defined in claim 5 comprising other conveyor means for receiving said partially wrapped units from said gripper conveyor means, and means for thereafter progressively further folding said web to form a tubular wrapper around said units.

7. Apparatus as defined in claim 6 comprising means for progressively sealing the marginal edge portions of said web together to form a longitudinal seam for said tubular wrapper, and means for collapsing and sealing the wrapper between the ends of adjacent units to form end closures.

8. In apparatus for packaging articles, retractable gripping means for supporting and advancing spaced packageable units of said articles in a column, other means for supporting said units when the same are released by said gripping means and for simultaneously advancing said units and a web of flexible material, means for progressively folding said web about said units as the same are advanced by said gripping means to form a tubular wrapper therefor, means for retracting said gripping means from each of said units after the web has been wrapped partially around such unit and the latter is supported by said other means, means for progressively sealing the marginal edge portions of the web together as the same are advanced by said other means, and means for collapsing and sealing said wrapper intermediate said units to form end closures at the ends of said units.

9. In apparatus for packaging articles, first conveyor means for continuously advancing articles to be packaged in a column, means for dividing said column of articles as it advances into spaced packageable units, second retractable conveyor means for supporting and advancing said units in spaced relation in said column, third conveyor means for supporting said units and for simultaneously advancing said units and an adjacent web of flexible material, means for folding said web about said units while the same are advanced by said second and third conveyor means with the web to progressively form a tubular wrapper about said advancing units, and means for retracting said second conveyor means from each of said units when the latter is supported by said third conveyor means prior to the completion of the formation of said tubular wrapper.

10. Apparatus as defined in claim 9 wherein the web folding means folds the marginal edge portions of the Web to extend outwardly from the tubular wrapper in face-to-face engagement, and comprising means for progressively folding said marginal edge portions into interlocking relation and against the tubular wrapper while the latter advances with said units.

11. Apparatus as defined in claim 10 comprising means for sealing said marginal edge portions together.

12. In apparatus for packaging articles, such as biscuit on edge or the like, first conveyor means for advancing a group of articles to be packaged, said means including means for releasably engaging the leading and trailing ends of said groups to hold and advance said articles in assembled group relation, means for folding a web of flexible material partially about said advancing group while the latter is thus held, and second conveyor means for applying compressive pressure to said group laterally through said partially folded web for advancing said group and holding the articles in assembled group relation after release by said first conveyor means.

13. Apparatus as defined in claim 12 wherein said second conveyor means comprises endless belt type conveyors at opposed sides of said group and adapted to apply yieldable pressure thereto, at least one of said belt type conveyors compressing resilient blocks carried by an endless belt, such as a chain.

14. In apparatus for packaging articles, such as biscuit on edge or the like, conveyor means for releasably applying endwise pressure to a packageable unit of articles to support and advance said unit, means for folding a web of flexible material partially around said advancing unit while it is thus supported, and conveyor means for applying compressive pressure to said unit laterally through said partially folded web for supporting and further advancing said unit after release of the latter by said firstnamed conveyor means.

15. Apparatus as defined in claim 14 wherein said second-named conveyor means comprises endless block belts yieldably engaging said web at opposed sides of said unit.

16. A device for continuously forming wrappings of articles, comprising in combination: supply means supplying the articles to be wrapped up, a folding chamber, wrapping material being supplied in strip form to the said folding chamber and being folded therein around the said articles in the form of a hose enveloping the same, conveyor means advancing the said hose, first welding means interwelding a longitudinal seam of the said hose of wrapping material, second welding means forming transverse weld seams therein between consecutive articles, cutter means severing the individual wrappings from one another, a holder device including an endless flexible member running along the said hose between the said folding chamber and the said second welding means and acting on the side of the said hose opposite the said longitudinal seam, and elements arranged at uniform pitch on the said endless flexible member engaging the said hose and deforming the same inwardly between any consecutive articles, said elements preventing a mutual displacement or falling apart of the said articles up to the formation of the said transverse weld seams.

17. A device for continuously forming wrappings of articles, comprising in combination: supply means supplying the articles to be wrapped up, a folding chamber, wrapping material being supplied in strip form to the said folding chamber and being folded therein around the said articles in the form of a hose enveloping the same, conveyor means advancing the said hose, first welding means interwelding a longitudinal seam of the said hose of wrapping material, second welding means forming transverse weld seams therein between consecutive articles, cutter means severing the individual wrappings from one another, a holder device including an endless flexible member running along the said hose between the said folding chamber and the said second welding means and acting on the side of the said hose in peripherally spaced relation to the said longitudinal seam, and elements arranged at uniform pitch on the said endless flexible member engaging the said hose and deforming the same inwardly between any consecutive articles, said elements preventing a mutual displacement or falling apart of the said articles up to the formation of the said transverse weld seams.

18. A device for continuously forming wrappings of articles, comprising in combination: supply means supplying the articles to be wrapped up, folding means, wrapping material being supplied in strip form to the said folding means and being folded thereby around the said articles in the form of a hose enveloping the same, conveyer means advancing the said hose, first welding means interwelding a longitudinal seam of the said hose of wrapping material,

second welding means forming transverse weld seams therein between consecutive articles, cutter means severing the individual wrappings from one another, a holder device including an endless flexible member running along the said hose between the said folding means and the said second welding means and acting on the side of the said hose in peripherally spaced relation to the said 1ongitudinal seam, and elements arranged at uniform pitch on the said endless flexible member engaging the said hose and deforming the same inwardly between any consecutive articles, said elements preventing a mutual displacement or falling apart of the said articles up to the formation of the said transverse weld seams.

References Cited UNITED STATES PATENTS 420,743 2/1890 Smith et al. 107-45 708,255 9/1902 Prouty et al. 107-45 2,211,433 8/1940 Papendick 99-173 X 2,353,746 7/1944 Moore 99-171 2,358,413 9/1944 Monaco 10745 2,452,014 10/1948 Kihn 99-172 2,489,726 11/1949 Salerno 99-171 2,600,216 6/1952 Denison 99-171 X 2,632,985 3/1953 Schmitt 99-173 X 2,555,758 6/1951 Noble et al. 53-180 2,761,264 9/1956 Gossett 53-180 3,110,142 11/1963 Brook et al.

945,561 1/1910 Louden 198-193 1,485,141 2/1924 Macdonald 53-180 X 2,462,254 2/ 1949 Campbell 53-182 X 2,156,466 5/1939 Vogt 53-180 X 2,280,405 4/1942 Frostad 53-180 X 2,462,254 2/1949 Campbell 53-183 X 2,559,819 7/1951 Hettinger 53-159 X 2,605,597 8/1952 Scheib 53-182 2,625,776 1/1953 Brandenberger 53-180 X 2,641,095 6/ 1953 Burbank 53-28 X WILLIAM W. DYER, JR., Primary Examiner.

N. ABRAMS, Assistant Examiner.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3 a 5 D t d eptember 2%, 1968 Inventor(s) Arthur J Griner It is certified that error appears in the above-identified patent: and that said Letters Patent are hereby corrected as shown below:

Column 11, line 25, "added" should read folded Colum 12, line 52, "compressing" should read comprising Signed and sealed this 15th day of June 1971 (SEAL) Attest:

EDWARD M.FLETCI-ER,JR. WILLIAM E. SCHUYLER, JR. Attesting Officer Commissioner of Patents

Claims (1)

1. IN APPARATUS FOR PACKAGING ARTICLES, CONVEYOR MEANS FOR CONTINUOUSLY ADVANCING A COLUMN OF ARTICLES TO BE PACKAGED, MEANS FOR AUTOMATICALLY DIVIDING SAID ARTICLES INTO SPACED PACKAGEABLE UNITS IN SAID CONTINUOUSLY ADVANCING COLUMN, AND MEANS FOR PROGRESSIVELY FOLDING A WEBL OF FLEXIBLE MATERIAL AROUND SAID CONTINUOUSLY ADVANCING UNITS TO FORM A CONTINUOUS TUBULAR WRAPPER
US3402524A 1952-09-19 1962-01-05 Apparatus for packaging articles Expired - Lifetime US3402524A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US31053252 true 1952-09-19 1952-09-19
US3402524A US3402524A (en) 1952-09-19 1962-01-05 Apparatus for packaging articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3402524A US3402524A (en) 1952-09-19 1962-01-05 Apparatus for packaging articles

Publications (1)

Publication Number Publication Date
US3402524A true US3402524A (en) 1968-09-24

Family

ID=26864824

Family Applications (1)

Application Number Title Priority Date Filing Date
US3402524A Expired - Lifetime US3402524A (en) 1952-09-19 1962-01-05 Apparatus for packaging articles

Country Status (1)

Country Link
US (1) US3402524A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3530640A (en) * 1964-10-09 1970-09-29 Int Paper Canada Bundling machine
US3531912A (en) * 1968-05-23 1970-10-06 Nat Biscuit Co Assortment assembling apparatus
US3640051A (en) * 1970-04-13 1972-02-08 William S Cloud Jr Tube-forming packaging machine
JPS5071481A (en) * 1973-08-22 1975-06-13
DE2530718A1 (en) * 1974-08-27 1976-03-11 Sig Schweiz Industrieges Means for education of hose bag packaging
JPS5276190A (en) * 1975-12-19 1977-06-27 Fuji Machine Mfg Packaging position holding equipment for packaging machine
US4250689A (en) * 1978-03-30 1981-02-17 Conorelec Packing device
US4670279A (en) * 1982-08-13 1987-06-02 Otto Hansel Gmbh Method for wrapping essentially flat products of the luxury-item or foodstuffs industry, especially squares or bars of chocolate, in packaging foil
US4869055A (en) * 1987-01-23 1989-09-26 Omark Industries, Inc. Star-shaped flexible cutting line
US4955184A (en) * 1989-02-13 1990-09-11 Cavanna S.P.A. Method and equipment for forming multiple packs of products, particularly food products
US5052166A (en) * 1989-05-24 1991-10-01 Sig Schweizerische Industrie-Gesellschaft Method and apparatus for continuous package making
US5430943A (en) * 1992-12-10 1995-07-11 Lee; Anthony L. Unitary cutting attachment for vegetation cutting devices
US6148589A (en) * 1998-12-04 2000-11-21 Omori Machinery Co., Ltd. Method and apparatus for packaging group of cylindrical articles

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US420743A (en) * 1890-02-04 Cracker facing and stacking machine
US708255A (en) * 1902-04-04 1902-09-02 Burt Prouty Cracker-stacking machine.
US945561A (en) * 1908-04-20 1910-01-04 Thomas Louden Carrier for green-clay products.
US1485141A (en) * 1919-02-20 1924-02-26 Ivers Lee Co Packaging machine
US2156466A (en) * 1935-11-27 1939-05-02 Owens Illinois Glass Co Method and apparatus for making packages
US2211433A (en) * 1938-11-25 1940-08-13 Papendick Inc Sliced bread-loaf fractionating machine
US2280405A (en) * 1940-07-11 1942-04-21 George O Frostad Method of packaging soda straws
US2353746A (en) * 1940-07-13 1944-07-18 Shellmar Products Co Packaging process
US2358413A (en) * 1942-07-07 1944-09-19 George C Monaco Stacking machine
US2452014A (en) * 1944-08-09 1948-10-19 American Mach & Foundry Duplex package and method of making the same
US2462254A (en) * 1942-08-17 1949-02-22 Samuel J Campbell Multiple lane wrapping machine and method
US2489726A (en) * 1948-10-19 1949-11-29 George F Salerno Packaged food product and packing method
US2555758A (en) * 1947-05-09 1951-06-05 Robinson Waxed Paper Co Ltd Wrapping machine
US2559819A (en) * 1946-07-18 1951-07-10 Hettinger Charles Machine for automatically packaging articles
US2600216A (en) * 1947-09-15 1952-06-10 Tammen And Denison Inc Method of packaging oleomargarine and similar materials
US2605597A (en) * 1950-02-20 1952-08-05 Mars Inc Wrapping machine
US2625776A (en) * 1949-11-09 1953-01-20 Cellophane Sa Apparatus for the production of wrapped articles
US2632985A (en) * 1946-05-16 1953-03-31 American Mach & Foundry Bread wrapping
US2641095A (en) * 1949-01-13 1953-06-09 Sutherland Paper Co Machine for packaging stacked hollow ware such as nested paper cups or the like
US2761264A (en) * 1952-01-12 1956-09-04 Baxter Don Inc Apparatus for forming, filling, and sealing plastic containers
US3110142A (en) * 1960-10-20 1963-11-12 Forgrove Mach Wrapping apparatus

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US420743A (en) * 1890-02-04 Cracker facing and stacking machine
US708255A (en) * 1902-04-04 1902-09-02 Burt Prouty Cracker-stacking machine.
US945561A (en) * 1908-04-20 1910-01-04 Thomas Louden Carrier for green-clay products.
US1485141A (en) * 1919-02-20 1924-02-26 Ivers Lee Co Packaging machine
US2156466A (en) * 1935-11-27 1939-05-02 Owens Illinois Glass Co Method and apparatus for making packages
US2211433A (en) * 1938-11-25 1940-08-13 Papendick Inc Sliced bread-loaf fractionating machine
US2280405A (en) * 1940-07-11 1942-04-21 George O Frostad Method of packaging soda straws
US2353746A (en) * 1940-07-13 1944-07-18 Shellmar Products Co Packaging process
US2358413A (en) * 1942-07-07 1944-09-19 George C Monaco Stacking machine
US2462254A (en) * 1942-08-17 1949-02-22 Samuel J Campbell Multiple lane wrapping machine and method
US2452014A (en) * 1944-08-09 1948-10-19 American Mach & Foundry Duplex package and method of making the same
US2632985A (en) * 1946-05-16 1953-03-31 American Mach & Foundry Bread wrapping
US2559819A (en) * 1946-07-18 1951-07-10 Hettinger Charles Machine for automatically packaging articles
US2555758A (en) * 1947-05-09 1951-06-05 Robinson Waxed Paper Co Ltd Wrapping machine
US2600216A (en) * 1947-09-15 1952-06-10 Tammen And Denison Inc Method of packaging oleomargarine and similar materials
US2489726A (en) * 1948-10-19 1949-11-29 George F Salerno Packaged food product and packing method
US2641095A (en) * 1949-01-13 1953-06-09 Sutherland Paper Co Machine for packaging stacked hollow ware such as nested paper cups or the like
US2625776A (en) * 1949-11-09 1953-01-20 Cellophane Sa Apparatus for the production of wrapped articles
US2605597A (en) * 1950-02-20 1952-08-05 Mars Inc Wrapping machine
US2761264A (en) * 1952-01-12 1956-09-04 Baxter Don Inc Apparatus for forming, filling, and sealing plastic containers
US3110142A (en) * 1960-10-20 1963-11-12 Forgrove Mach Wrapping apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3530640A (en) * 1964-10-09 1970-09-29 Int Paper Canada Bundling machine
US3531912A (en) * 1968-05-23 1970-10-06 Nat Biscuit Co Assortment assembling apparatus
US3640051A (en) * 1970-04-13 1972-02-08 William S Cloud Jr Tube-forming packaging machine
JPS5071481A (en) * 1973-08-22 1975-06-13
JPS5546924B2 (en) * 1973-08-22 1980-11-27
DE2530718A1 (en) * 1974-08-27 1976-03-11 Sig Schweiz Industrieges Means for education of hose bag packaging
US3959952A (en) * 1974-08-27 1976-06-01 S I G Schweizerische Industrie-Gesellschaft Packaging apparatus using hose-shaped wrapper
JPS5276190A (en) * 1975-12-19 1977-06-27 Fuji Machine Mfg Packaging position holding equipment for packaging machine
JPS5435824B2 (en) * 1975-12-19 1979-11-06
US4250689A (en) * 1978-03-30 1981-02-17 Conorelec Packing device
US4670279A (en) * 1982-08-13 1987-06-02 Otto Hansel Gmbh Method for wrapping essentially flat products of the luxury-item or foodstuffs industry, especially squares or bars of chocolate, in packaging foil
US4869055A (en) * 1987-01-23 1989-09-26 Omark Industries, Inc. Star-shaped flexible cutting line
US4955184A (en) * 1989-02-13 1990-09-11 Cavanna S.P.A. Method and equipment for forming multiple packs of products, particularly food products
US5052166A (en) * 1989-05-24 1991-10-01 Sig Schweizerische Industrie-Gesellschaft Method and apparatus for continuous package making
US5430943A (en) * 1992-12-10 1995-07-11 Lee; Anthony L. Unitary cutting attachment for vegetation cutting devices
US5862598A (en) * 1992-12-10 1999-01-26 Lee; Anthony L. Unitary hub for vegetation cutting devices
US6427341B1 (en) 1992-12-10 2002-08-06 Anthony L. Lee Cutting blade for vegetation trimming device
US6148589A (en) * 1998-12-04 2000-11-21 Omori Machinery Co., Ltd. Method and apparatus for packaging group of cylindrical articles

Similar Documents

Publication Publication Date Title
US3327449A (en) Packaging compressible material
US3492783A (en) Apparatus for forming and filling bags
US3599388A (en) Method of and apparatus for forming and loading containers
US3303630A (en) Packaging apparatus and method for cylindrical articles
US3579948A (en) Bag handling apparatus and method
US3508378A (en) Packaging machine and package formed thereby
US3583888A (en) Packaging apparatus and method
US3540187A (en) Apparatus for packaging products
US3006119A (en) Wrapping machine
US3436894A (en) Packaging apparatus and method
US4314403A (en) Machine for automatically stacking plate groups for storage batteries
US4036362A (en) Package
US2330361A (en) Method of and apparatus for producing bags
US3289254A (en) Machine for manufacturing sanitary napkins and the like
US3000151A (en) Method and apparatus for forming and wrapping packs of envelopes and similar articles
US2468517A (en) Method and machine for packaging or wrapping of articles
US4537016A (en) Horizontal form, fill, seal machines
US3956868A (en) Carton opening, filling and closing apparatus
US3357151A (en) Article packaging
US5112632A (en) Method and apparatus for forming and hermetically sealing slices of food items
US3513629A (en) Overwrap packing machines
US2113078A (en) Art of wrapping toilet paper and the like
US2671587A (en) Bag filling machine
US4178740A (en) Wrapping machine
US3908333A (en) Device for registering articles and package elements therefor during feed to a packaging machine