US3401006A - Treatment of cellulose textiles with a crease-proofing agent and with mixtures of nu-methylolstearamide and polyethylene - Google Patents
Treatment of cellulose textiles with a crease-proofing agent and with mixtures of nu-methylolstearamide and polyethylene Download PDFInfo
- Publication number
- US3401006A US3401006A US293268A US29326863A US3401006A US 3401006 A US3401006 A US 3401006A US 293268 A US293268 A US 293268A US 29326863 A US29326863 A US 29326863A US 3401006 A US3401006 A US 3401006A
- Authority
- US
- United States
- Prior art keywords
- polyethylene
- methylolstearamide
- textile
- mixtures
- monoamide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- -1 polyethylene Polymers 0.000 title claims description 56
- 239000004698 Polyethylene Substances 0.000 title claims description 50
- 229920000573 polyethylene Polymers 0.000 title claims description 50
- 239000000203 mixture Substances 0.000 title claims description 44
- 239000004753 textile Substances 0.000 title claims description 39
- 239000003795 chemical substances by application Substances 0.000 title claims description 9
- 229920002678 cellulose Polymers 0.000 title claims description 6
- 239000001913 cellulose Substances 0.000 title claims description 6
- 238000011282 treatment Methods 0.000 title description 10
- 238000004855 creaseproofing Methods 0.000 title description 3
- 238000000034 method Methods 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 12
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 5
- 238000004132 cross linking Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 239000004744 fabric Substances 0.000 description 35
- JHOKTNSTUVKGJC-UHFFFAOYSA-N n-(hydroxymethyl)octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCO JHOKTNSTUVKGJC-UHFFFAOYSA-N 0.000 description 32
- 230000037303 wrinkles Effects 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 238000011084 recovery Methods 0.000 description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 229920000742 Cotton Polymers 0.000 description 12
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 238000005299 abrasion Methods 0.000 description 10
- 239000002253 acid Substances 0.000 description 10
- 239000003431 cross linking reagent Substances 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 9
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 6
- XIOUDVJTOYVRTB-UHFFFAOYSA-N 1-(1-adamantyl)-3-aminothiourea Chemical compound C1C(C2)CC3CC2CC1(NC(=S)NN)C3 XIOUDVJTOYVRTB-UHFFFAOYSA-N 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 239000003377 acid catalyst Substances 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- WVJOGYWFVNTSAU-UHFFFAOYSA-N dimethylol ethylene urea Chemical compound OCN1CCN(CO)C1=O WVJOGYWFVNTSAU-UHFFFAOYSA-N 0.000 description 4
- 238000005108 dry cleaning Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 229920000126 latex Polymers 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 239000004816 latex Substances 0.000 description 3
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VZXTWGWHSMCWGA-UHFFFAOYSA-N 1,3,5-triazine-2,4-diamine Chemical compound NC1=NC=NC(N)=N1 VZXTWGWHSMCWGA-UHFFFAOYSA-N 0.000 description 2
- XFRVVPUIAFSTFO-UHFFFAOYSA-N 1-Tridecanol Chemical compound CCCCCCCCCCCCCO XFRVVPUIAFSTFO-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 229920004934 Dacron® Polymers 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- MTHSVFCYNBDYFN-UHFFFAOYSA-N anhydrous diethylene glycol Natural products OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 238000004900 laundering Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 150000003457 sulfones Chemical class 0.000 description 2
- 229940087291 tridecyl alcohol Drugs 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- AMTOHUZYCNNVHB-UHFFFAOYSA-N 1,5-dihydroxy-2,2-bis(hydroxymethyl)pentan-3-one Chemical compound OCCC(=O)C(CO)(CO)CO AMTOHUZYCNNVHB-UHFFFAOYSA-N 0.000 description 1
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 1
- GJMPSRSMBJLKKB-UHFFFAOYSA-N 3-methylphenylacetic acid Chemical compound CC1=CC=CC(CC(O)=O)=C1 GJMPSRSMBJLKKB-UHFFFAOYSA-N 0.000 description 1
- ZEYUSQVGRCPBPG-UHFFFAOYSA-N 4,5-dihydroxy-1,3-bis(hydroxymethyl)imidazolidin-2-one Chemical compound OCN1C(O)C(O)N(CO)C1=O ZEYUSQVGRCPBPG-UHFFFAOYSA-N 0.000 description 1
- NNTWKXKLHMTGBU-UHFFFAOYSA-N 4,5-dihydroxyimidazolidin-2-one Chemical compound OC1NC(=O)NC1O NNTWKXKLHMTGBU-UHFFFAOYSA-N 0.000 description 1
- OECTYKWYRCHAKR-UHFFFAOYSA-N 4-vinylcyclohexene dioxide Chemical compound C1OC1C1CC2OC2CC1 OECTYKWYRCHAKR-UHFFFAOYSA-N 0.000 description 1
- YIROYDNZEPTFOL-UHFFFAOYSA-N 5,5-Dimethylhydantoin Chemical compound CC1(C)NC(=O)NC1=O YIROYDNZEPTFOL-UHFFFAOYSA-N 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical class C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 241000220010 Rhode Species 0.000 description 1
- FYAMXEPQQLNQDM-UHFFFAOYSA-N Tris(1-aziridinyl)phosphine oxide Chemical compound C1CN1P(N1CC1)(=O)N1CC1 FYAMXEPQQLNQDM-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- SOIFLUNRINLCBN-UHFFFAOYSA-N ammonium thiocyanate Chemical compound [NH4+].[S-]C#N SOIFLUNRINLCBN-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229940053200 antiepileptics fatty acid derivative Drugs 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000003945 chlorohydrins Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 1
- 239000004664 distearyldimethylammonium chloride (DHTDMAC) Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- VPVSTMAPERLKKM-UHFFFAOYSA-N glycoluril Chemical compound N1C(=O)NC2NC(=O)NC21 VPVSTMAPERLKKM-UHFFFAOYSA-N 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- HSEMFIZWXHQJAE-UHFFFAOYSA-N hexadecanamide Chemical compound CCCCCCCCCCCCCCCC(N)=O HSEMFIZWXHQJAE-UHFFFAOYSA-N 0.000 description 1
- 229940081141 hexadecanamide Drugs 0.000 description 1
- YAMHXTCMCPHKLN-UHFFFAOYSA-N imidazolidin-2-one Chemical compound O=C1NCCN1 YAMHXTCMCPHKLN-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229940037312 stearamide Drugs 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229940117957 triethanolamine hydrochloride Drugs 0.000 description 1
- ILWRPSCZWQJDMK-UHFFFAOYSA-N triethylazanium;chloride Chemical compound Cl.CCN(CC)CC ILWRPSCZWQJDMK-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/227—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
Definitions
- the present invention relates to the treatment of cellulosic fibers and fabrics with a synergistic composition containing polyethylene and an N-methylol monoamide of a higher carboxylic acid.
- the treatment improves the physical characteristics of fabrics such as handle, tear strength, wrinkle resistance and/or wrinkle recovery and abrasion resistance in such a way that the improvements are not destroyed by laundering or similar operations during normal use.
- the treatment usually is carried out by impregnating the fabric or fibers with an aqueous dispersion of the treating agent and then heating the impregnated material for curing. It has been found to be particularly useful in conjunction with wash-wear cross-linking agents and/ or resins.
- cross-linking treatment however, has an adverse effect on the tear strength, handle and abrasion resistance of the textile.
- the cross-linked cellulosic textile although exhibiting the beneficial characteristics of wrinkle-resistance and/0r wrinkle recovery behavior, has poor resistance to tear and abrasion during the use of the textile.
- Softener-lubricating agents have been used in the textile industry to increase the tear strength, handle, abrasion resistance and wrinkle-recovery of crosslinked cellulosic textiles.
- These softeners are generally fatty acid derivatives such as fatty acid esters, amides and fatty amines and their quaternary ammonium derivatives, or polymers such as emulsified polyethylene, acrylics and silicones.
- the softener-lubricating agents have been completely acceptable in all respects, however,
- the initial beneficial effects on handle, tear strength and wrinkle recovery obtained with fatty esters, such as glyceryl monostearate, and quaternary ammonium compounds, such as distearyldimethylammonium chloride are readily removed by washing and dry cleaning.
- the polymerics, such as polyethylene exhibit some durability to washing, but the softening-lubrication effects are slowly removed by multiple washes, and the handle of the textile is poor.
- the polyethylene used is preferably of a type which is emulsifiable or in an emulsified form. Such types are readily available. For example, partially oxidized, low molecular weight (2,000) polyethylenes, which are readily emulsified, are available from Allied Chemical and Dye Corporation. A typical polyethylene, called A-C Polyethylene 629, has the following properties: melting point of 213-221 F.; penetration hardness (100 g., 5 sec., 77 F.) of 3-6 and an acid number of 14-17. Similar products are available from Eastman Chemical Products, Inc. under the names of Epolene E-lO, Epolene E-ll and Epolene E-12.
- ring and ball softening point ASTM 0-36-26
- 213-224 F. penetration hardness (100 g., 5 sec. 77 F.), 1.5-2.5
- acid number 14-15
- saponification number 24-30
- density 78 F.
- Emulsions of these polyethylenes can be readily prepared using typical nonionic, anionic and cationic emulsifying agents, and are well known to those skilled in the art.
- Polyethylene latices can also be employed. These are prepared by an emulsion polymerization process, that is, the latex particles are formed directly by polymerizing ethylene in water containing an emulsifier. Excellent results have been obtained with a polyethylene latex available from Spencer Industrials called Poly-Em No. 20017. Typical properties of the solid polymer are as follows: density (gm/cc), 0920-0935; average molecular weight, 15,000-30,000; melting point, greater than 200 F.
- the amide is an N-methylol monoamide of a higher carboxylic acid such as linear or branched monocarboxylic acids containing 12 to 22 carbon atoms.
- the most satisfactory compound in this group is N-methylolstearamide.
- the amount of N-methylol monoamide is about 25 to 80% by weight of the total of polyethylene and N-methylol monoamide.
- the aqueous emulsions or dispersions containing polyethylene and the N-methylol monoamide can be made by mixing a dispersion of the polyethylene with a dispersion of the N-methylol monoamide, or by mixing the polyethylene and the N-methylol monoamide and dispersing the mixture in water with an emulsifying agent.
- a nonionic dispersion of A-C Polyethylene 629 can be prepared by adding a mixture of 40 parts of A-C Polyethylene 629, 10 parts of a 10-m0le ethylene oxide adduct of nonyl phenol, and 3 parts of a 20% potassium hydroxide solution at 230 F. to 147 parts of water at 212 F.
- N-methylolstearamide can be prepared as described in Example I of US. Patent 2,944,921. These two dispersions can then be mixed in various amounts to give a mixture of polyethylene and N-methylolstearamide in any desired proportions. Those skilled in the art can readily envisage many modifications of this procedure.
- Particularly suitable materials include ammonium salts such as ammonium chloride, ammonium dihydrogen phosphate and ammonium thiocyanate, amine salts such as triethylamine hydrochloride, triethanolamine hydrochloride, and metal salts such as magnesium chloride, magnesium sulfate, zinc nitrate, aluminum sulfate, and the like.
- the amount of catalyst will depend on the amount of polyethylene and N-methylolstearamide to be deposited on the fabric. Satisfactory results were obtained with proportions of 2 /2 to 20%, preferably about of the weight of the mixtures of polyethylene and N-methylolstearamide.
- sufiicient acid or latent acid catalyst must be used to ensure a satisfactory cure of both compositions.
- the amount of polyethylene and N-methylol monoamide deposited is 0.l2.5% of the dry weight of the textile and the amount of acid curable cross-linking agent and/ or resin is -15%, the amount of catalyst required is 0.05-15%.
- the time and temperature required for the cure of the mixture of N-methylol monoamide and polyethylene are inversely proportional to one another, that is to say, the higher the temperature used, the shorter the period of time necessary.
- the temperature should generally be above 248 F. and preferably in the range of 284340 F. Excellent results have been obtained with 5-minute cures at 300 F. and 3-minute cures at 330 F.
- Wash-Wear cross-linking agents and/ or resins with which said compositions can be used satisfactorily include acid curable (1) aminoplasts such as melamine-formaldehyde reaction products, guanamine and substituted guanamine reaction products, urea formaldehyde reaction products, formaldehyde reaction products of ethylene urea, 1,3-propylene urea, S-hydroxypropylene urea, triazones such as N-ethyltriazone and N-hydroxyethyltriazone, acetylene urea, 4,5-dihydroxyethylene urea, dimethylhydantoin, uron, formamide, ethyl carbamate and the like, their alkylated derivatives and the like, either singly or in combination with one another, (2) aldehydes such as formaldehyde, glyoxal, a-hydroxy adipaldehyde and the like, either singly or in combination with one another, (3) aldehy
- This invention is not to be restricted to the aforementioned wash-wear cross-linking agents and/ or resins.
- the composition comprising N-methylol monoamide and polyethylene does not affect the wash-wear cross-linking agents and/or resins as such, but brings about modification of the properties of the textile itself. Consequently, it is an obvious advantage of this invention that the said composition can be used in conjunction with all types of wash-wear cross-linking agents and/or resins, the only restriction being that the said composition of N-methylol monoamide and polyethylene must be cured under conditions which efiect reaction of the N-methylol monoamide with the cellulosic textile as previously described.
- the cellulosic textiles which may be used are textiles composed of cellulose or modified cellulose, such as cotton, rayon, linen, etc., and mixtures thereof, either with each other or with noncellulosics such as nylon, Perlon (polyhexamethylene adipamide or polycaproamide), Dacron (polyethylene terephthalate), Acrilan (an acrylic), etc. and the like.
- the textile may be in the form of filaments, fibers, threads, yarns, etc., or in woven, nonwoven, knit or otherwise-formed fabrics, sheets, cloths and the like.
- the wrinkle recovery evaluations were performed according to A.A.T.C.C. Tentative Test Method 664959.
- Abrasion resistance evaluations were performed by the flexing, folding bar (Stoll) method, Specifications CCC- T-191b, method 5300. Values given are averages of four sets.
- Durability to washing was determined by evaluating the textiles after multiple washes in a typical home laundry using a detergent such as Tide.
- Paddings of mercerized 80 x 80 cotton fabric were prepared at wet pickup, air dried, cured at 310 F. for 4 minutes, and then given an after-wash with 0.1%
- HOJKDDD EXAMPLE 5 Mercerized x 80 cotton was preshrunk by washing in a home washer with a nonionic wetting agent prepared from nonyl phenol and 7 moles of ethylene oxide. The fabrics were dried and then padded through a formulation as given in Example 1 and cured at 310 F. for 5 minutes. Tear strength evaluations were performed after the fabrics were subjected to 10 Wash cycles.
- Cotton fabrics were padded through the following formulation.
- the wet piokup was 70% Percent Dimethylol ethylene urea 4 Zinc nitrate hexahydrate 0.64
- a method of treating a textile material containing cellulose textile which comprises applying to said textile a cellulose-reactive cross-linking crease-proofing agent and a mixture containing about 25-80% of N-monomethylol monoamide of a higher carboxylic acid containing about 12 to 22 carbon atoms and about 20-75% of fiber-lubricating emulsified polyethylene, and thereafter curing by heating the material to an elevated temperature.
- a method of treating a textile material as set forth in claim 1 including the step of drying the textile material before curing.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Description
United States Patent 3,401,006 TREATMENT OF CELLULOSE TEXTILES WITH A CREASE-PROOFING AGENT AND WITH MIXTURES 0F N-METHYLOLSTEARAMIDE AND POLYETHYLENE Albert C. Perrino, Crauston, R.I., assignor to I.C.I./0rganics/Inc., a corporation of Rhode Island No Drawing. Filed July 8, 1963, Ser. No. 293,268 6 Claims. (Cl. 8115.6)
The present invention relates to the treatment of cellulosic fibers and fabrics with a synergistic composition containing polyethylene and an N-methylol monoamide of a higher carboxylic acid. The treatment improves the physical characteristics of fabrics such as handle, tear strength, wrinkle resistance and/or wrinkle recovery and abrasion resistance in such a way that the improvements are not destroyed by laundering or similar operations during normal use.
The treatment usually is carried out by impregnating the fabric or fibers with an aqueous dispersion of the treating agent and then heating the impregnated material for curing. It has been found to be particularly useful in conjunction with wash-wear cross-linking agents and/ or resins.
Treatment of cellulosic textiles with wash-wear cross linking agents and/or resins imparts a memory to the textile. That is, this treatment stabilizes the fibers in the configuration they had in the textile during the curing. Consequently, when a stress is applied to the treated textile and then released, the textile tends to return to the original configuration. This results in the textile exhibiting wrinkle-resistance and/or wrinkle recovery characteristics.
The cross-linking treatment, however, has an adverse effect on the tear strength, handle and abrasion resistance of the textile. Thus the cross-linked cellulosic textile, although exhibiting the beneficial characteristics of wrinkle-resistance and/0r wrinkle recovery behavior, has poor resistance to tear and abrasion during the use of the textile.
A number of softener-lubricating agents have been used in the textile industry to increase the tear strength, handle, abrasion resistance and wrinkle-recovery of crosslinked cellulosic textiles. These softeners are generally fatty acid derivatives such as fatty acid esters, amides and fatty amines and their quaternary ammonium derivatives, or polymers such as emulsified polyethylene, acrylics and silicones.
None of the softener-lubricating agents have been completely acceptable in all respects, however, For example, the initial beneficial effects on handle, tear strength and wrinkle recovery obtained with fatty esters, such as glyceryl monostearate, and quaternary ammonium compounds, such as distearyldimethylammonium chloride, are readily removed by washing and dry cleaning. The polymerics, such as polyethylene, exhibit some durability to washing, but the softening-lubrication effects are slowly removed by multiple washes, and the handle of the textile is poor.
The durability of the softening-lubrication effects of any agent is of the utmost importance. It is obvious that since the effects of the cross-linking are essentially durable to a number of washes and/0r dry cleaning, the effects of the softener-lubricant, as measured by tear strength, wrinkle recovery, abrasion resistance and handle, must also be durable to these treatments if these agents are to have any appreciable effect on the life of the textile.
It now have been discovered that treatment of cellulosic textiles with a composition containing polyethylene and an N-methylol monoamide of a higher carboxylic acid improves the physical characteristics of the fabrics such as handle, tear strength, wrinkle recovery and/or wrinkle resistance in such a way that the improvements are not destroyed by laundering, dry cleaning or similar operations during normal use.
The improvements in the physical properties of the textiles obtained with this mixture are not the average or mean effects to be expected by a simple combination of the two components, but are illustrative of a true synergism. This will become apparent on considering the examples. I
The polyethylene used is preferably of a type which is emulsifiable or in an emulsified form. Such types are readily available. For example, partially oxidized, low molecular weight (2,000) polyethylenes, which are readily emulsified, are available from Allied Chemical and Dye Corporation. A typical polyethylene, called A-C Polyethylene 629, has the following properties: melting point of 213-221 F.; penetration hardness (100 g., 5 sec., 77 F.) of 3-6 and an acid number of 14-17. Similar products are available from Eastman Chemical Products, Inc. under the names of Epolene E-lO, Epolene E-ll and Epolene E-12. These products have the following typical properties: ring and ball softening point (ASTM 0-36-26), 213-224 F.; penetration hardness (100 g., 5 sec. 77 F.), 1.5-2.5; acid number, 14-15; saponification number, 24-30; density (78 F.), 0.938- 0.950. Emulsions of these polyethylenes can be readily prepared using typical nonionic, anionic and cationic emulsifying agents, and are well known to those skilled in the art.
Polyethylene latices can also be employed. These are prepared by an emulsion polymerization process, that is, the latex particles are formed directly by polymerizing ethylene in water containing an emulsifier. Excellent results have been obtained with a polyethylene latex available from Spencer Industrials called Poly-Em No. 20017. Typical properties of the solid polymer are as follows: density (gm/cc), 0920-0935; average molecular weight, 15,000-30,000; melting point, greater than 200 F.
The amide is an N-methylol monoamide of a higher carboxylic acid such as linear or branched monocarboxylic acids containing 12 to 22 carbon atoms. The most satisfactory compound in this group is N-methylolstearamide.
The samples of stearamide employed in the examples which follow are generally commercial grades and therefore were mixtures of octadecanamide and hexadecanamide. These mixtures were completely acceptable for the purposes of this invention and should not be construed as limiting the scope of the invention.
The amount of N-methylol monoamide is about 25 to 80% by weight of the total of polyethylene and N-methylol monoamide.
The aqueous emulsions or dispersions containing polyethylene and the N-methylol monoamide can be made by mixing a dispersion of the polyethylene with a dispersion of the N-methylol monoamide, or by mixing the polyethylene and the N-methylol monoamide and dispersing the mixture in water with an emulsifying agent. For example, a nonionic dispersion of A-C Polyethylene 629 can be prepared by adding a mixture of 40 parts of A-C Polyethylene 629, 10 parts of a 10-m0le ethylene oxide adduct of nonyl phenol, and 3 parts of a 20% potassium hydroxide solution at 230 F. to 147 parts of water at 212 F. with rapid stirring, and allowing the dispersion to cool to 110 F. with moderate stirring. A dispersion of N-methylolstearamide can be prepared as described in Example I of US. Patent 2,944,921. These two dispersions can then be mixed in various amounts to give a mixture of polyethylene and N-methylolstearamide in any desired proportions. Those skilled in the art can readily envisage many modifications of this procedure.
It is necessary to cure the treated textiles to effect reaction of the N-methylol monoamide with the cellulosic textile. The exact nature of the cure depends on N-methylol monoamide being employed. For example, with mixtures of N-methylolstearamide and polyethylene, it has been found necessary to employ an acid or latent acid catalyst and elevated temperatures. By latent acid catalysts we mean substances which develop acidity during the curing stage. Particularly suitable materials include ammonium salts such as ammonium chloride, ammonium dihydrogen phosphate and ammonium thiocyanate, amine salts such as triethylamine hydrochloride, triethanolamine hydrochloride, and metal salts such as magnesium chloride, magnesium sulfate, zinc nitrate, aluminum sulfate, and the like. The amount of catalyst will depend on the amount of polyethylene and N-methylolstearamide to be deposited on the fabric. Satisfactory results were obtained with proportions of 2 /2 to 20%, preferably about of the weight of the mixtures of polyethylene and N-methylolstearamide. If an acid curable cross-linking agent and/or resin is applied simultaneously with the mixture of polyethylene and N-methylolstearamide, sufiicient acid or latent acid catalyst must be used to ensure a satisfactory cure of both compositions. Thus, if the amount of polyethylene and N-methylol monoamide deposited is 0.l2.5% of the dry weight of the textile and the amount of acid curable cross-linking agent and/ or resin is -15%, the amount of catalyst required is 0.05-15%.
The time and temperature required for the cure of the mixture of N-methylol monoamide and polyethylene are inversely proportional to one another, that is to say, the higher the temperature used, the shorter the period of time necessary. The temperature should generally be above 248 F. and preferably in the range of 284340 F. Excellent results have been obtained with 5-minute cures at 300 F. and 3-minute cures at 330 F.
Wash-Wear cross-linking agents and/ or resins with which said compositions can be used satisfactorily include acid curable (1) aminoplasts such as melamine-formaldehyde reaction products, guanamine and substituted guanamine reaction products, urea formaldehyde reaction products, formaldehyde reaction products of ethylene urea, 1,3-propylene urea, S-hydroxypropylene urea, triazones such as N-ethyltriazone and N-hydroxyethyltriazone, acetylene urea, 4,5-dihydroxyethylene urea, dimethylhydantoin, uron, formamide, ethyl carbamate and the like, their alkylated derivatives and the like, either singly or in combination with one another, (2) aldehydes such as formaldehyde, glyoxal, a-hydroxy adipaldehyde and the like, either singly or in combination with one another, (3) aldehyde derivatives such as tetramethylolacetone, diethyleneglycol acetal and the like, either singly or in combination with one another, (4) epoxides such as ethylene glycol diglycidyl ether, vinylcyclohexene dioxide and the like, either singly or in combination with one another, (5) ethyleneimine derivatives such as bisaziridinylcarbonyl, tris(1-aziridinyl) phosphine oxide and the like, either singly or in combination with one another; and alkaline curable agents such as (a) chlorohydrins such as 1,3-dichloropropanol-Z and the like, either singly or in combination with one another, (b) sulfone derivatives such as divinyl sulfone, divinyl sulfone B unte salt, fl, 9'-dihydroxyethyl sulfone and the like, either singly or in combination with one another, and sulfonium salts such as disodium tris (fl-sulphatoethyl) sulfonium inner salt. The amount of such agents and/or resins is that which would normally be used, for example, 1 to 20% of the dry Weight of the fabric.
This invention is not to be restricted to the aforementioned wash-wear cross-linking agents and/ or resins. The composition comprising N-methylol monoamide and polyethylene does not affect the wash-wear cross-linking agents and/or resins as such, but brings about modification of the properties of the textile itself. Consequently, it is an obvious advantage of this invention that the said composition can be used in conjunction with all types of wash-wear cross-linking agents and/or resins, the only restriction being that the said composition of N-methylol monoamide and polyethylene must be cured under conditions which efiect reaction of the N-methylol monoamide with the cellulosic textile as previously described. Consequently, if an acid curable mixture of polyethylene and N'methylol monoamide is used with an acid curable Wash-wear cross-linking agent and/or resin, both compositions may be cured simultaneously. If, however, an acid curable mixture of polyethylene and N-methylol monoamide, such as the mixture of polyethylene and N-methylolstearamide, is used with an alkaline curable wash-wear cross-linking agent and/or resin, such as disodium tris(5-sulphatoethyl)sulfonium inner salt, the said mixture of polyethylene and N-methylol monoamide must be cured at a separate stage. Example IV illustrates this technique.
The cellulosic textiles which may be used are textiles composed of cellulose or modified cellulose, such as cotton, rayon, linen, etc., and mixtures thereof, either with each other or with noncellulosics such as nylon, Perlon (polyhexamethylene adipamide or polycaproamide), Dacron (polyethylene terephthalate), Acrilan (an acrylic), etc. and the like. The textile may be in the form of filaments, fibers, threads, yarns, etc., or in woven, nonwoven, knit or otherwise-formed fabrics, sheets, cloths and the like.
The following examples illustrate the invention and the synergistic effect observed when using the combination of polyethylene and N-methylol monoamide. When the polyethylene employed is in the form of a latex, the designation (PL) is used. Otherwise, the designation (P) is used.
In these:
The wrinkle recovery evaluations were performed according to A.A.T.C.C. Tentative Test Method 664959.
Tear strength evaluations were run on the Elmendorf Tear Tester.
Abrasion resistance evaluations were performed by the flexing, folding bar (Stoll) method, Specifications CCC- T-191b, method 5300. Values given are averages of four sets.
Subjective evaluations were used for evaluating handle softness.
Durability to washing was determined by evaluating the textiles after multiple washes in a typical home laundry using a detergent such as Tide.
EXAMPLE 1 Effect of mixtures of N-methylolstearamide (MS) and polyethylene (P) on tear strength Mixtures of N-methylolstearamide and polyethylene vs. N-methylolstearamide.-A formulation was prepared containing N-methylolstearamide and polyethylene dispersed in an aqueous liquid containing:
Percent Dimethylol ethylene urea 5 9-mole ethylene oxide adduct of nonyl phenol 0.025 Acetic acid 0.05 Zinc nitrate hexahydrate 0.7
Paddings of mercerized 80 x 80 cotton fabric were prepared at wet pickup, air dried, cured at 310 F. for 4 minutes, and then given an after-wash with 0.1%
of a 7-mole ethylene oxide adduct of tridecyl alcohol and 0.1% soda ash. This was followed by wash cycles in a typical home laundry using Tide detergent. Tear strength tests were then performed with 'the following resu ts:
Ehnendori Tear Strength (Warp and Fill) Cone. of Softener in Bath (percent) Ratio M SIP Mixtures of N-methylolstearamide and polyethylene vs. polyethylene.The above procedure was repeated using a cure at 310 F. for 5 minutes. The fabrics were given wash cycles and tear strength tests were performed as above.
Elmendorf Tear Strength (Warp and Fill) Cone. of Softener in Bath (percent) Ratio MS/P EXAMPLE 2 Cotton fabrics were treated with the formulation of Example 1 and were then dry cleaned using Stoddard Solvent for 15 minutes. Tear strength tests gave the following results:
Cone. of Softener Elmendorf in Bath (percent) Ratio MS/P 'Iear Strength (Warp and Fill) EXAMPLE 3 Cotton fabrics (80 x 80 print cloth) were treated with the formulation given in Example 1. After the cure, the fabrics were dry cleaned for 15 minutes in Stoddard Solvent and then subjected to 10 wash cycles using Tide."
Elmendorf Tear Strength (Warp and Fill) Ratio MS/P or MS/PL Cone. of Softener in Bath (Percent) These examples clearly illustrate the utility of mixtures of N-methylolsteararnide and polyethylene. After dry cleaning and/ or multiple washings, the fabrics treated with said mixtures exhibit much superior tear strengths than fabrics not treated with these mixtures. Furthermore, it is apparent that the magnitude of this effect is not the average or mean of the values obtained with N-methylolstearamide or polyethylene, but is characteristic of a synergistic mixture. The following examples illustrate further.
EXAMPLE 4 A bath was prepared containing the following:
Percent Disodium tris (B-sulphatoethyl) sulfonium inner salt 12 Dimethylol hexahydropyrirnidinone-2 6.25 Zinc chloride 0.8 Softener-lubricant (as in the following table).
00110. 01f3 Sgrfltener in Ratio MS/P Tear Strength (lbs.)
HOJKDDD EXAMPLE 5 Mercerized x 80 cotton was preshrunk by washing in a home washer with a nonionic wetting agent prepared from nonyl phenol and 7 moles of ethylene oxide. The fabrics were dried and then padded through a formulation as given in Example 1 and cured at 310 F. for 5 minutes. Tear strength evaluations were performed after the fabrics were subjected to 10 Wash cycles.
Cone. of Softener Elmendorf Tear in Bath (percent) Strength (Warp and Fill) EXAMPLE 6 Fabric containing 65% Dacron (polyester) and 35% cotton was soaked in an aqueous suspension containing 2.5% dihydroxy dimethylol ethylene urea, 0.3% zinc nitrate hexahydrate and 0.1% of a 9-mo1e ethylene oxide adduct of nonyl phenol together with N-methylolstearamide and polyethylene. The fabric was cured at 300 F. for 5 minutes and subjected to 10 wash cycles using Tide.
Cone. of Softener Ratio MS/P Tear Strength in Bath (percent) (Fill Only) EXAMPLE 7 Effect of mixtures of N-methylolstearamide and polyethylene on abrasion resistance A cotton fabric was soaked to 70% wet pickup in an aqueous dispersion containing:
Percent Dimethylol ethylene urea 5 9-mole ethylene oxide adduct of nonyl phenol 0.025 Acetic acid a- 0.5 Zinc nitrate hexahydrate 0.1
and N-methylolstearamide and polyethylene in proportions and amounts shown in the table below. It was cured for 5 minutes at 310 F. Abrasion tests were made with the following results:
Ratio MS/P Stoll Abrasion (Cycles) Warp and Fill Cone. of Softener in Bath (percent) 7 EXAMPLE 8 Example 7 was repeated on mercerized cotton fabrics. The abrasion resistance of the fabrics was tested after 50 wash cycles using Tide, and the results were as follows:
Effect of mixtures of N-rnethylolstearamide and polyethylene on handle A formulation as described in Example 1 was used on 80 x 80 cotton print cloth. The cure was 310 F. for 5 minutes. After the mild soaping, the fabrics Were subjected to 50 Wash cycles using Tide detergent, and ironed before handle evaluation.
Fabric Cone. of Softener in Ratio MS/P Bath (percent) Handle (Softness) Fabric Rating g}- Excellent, Very Soft.
v II l Good.
I... Very Poor.
EXAMPLE Cotton fabrics were padded through the following formulation. The wet piokup was 70% Percent Dimethylol ethylene urea 4 Zinc nitrate hexahydrate 0.64
9-mole ethylene oxide adduct of nonyl phenol 0.025 Acetic acid 0.06 Softener (as in the following table).
After a 5-minute cure at 300 F., the fabrics were subjected to 10 wash cycles and ironed. Handle evaluations gave the following results:
Fabric Cone. of Softener in Ratio MS/P Bath Handle (softness) Fabric Rating II Good.
III Fair. (Noticea-bly inferior to II.)
I-...- Very Poor.
IV Excellent.
V- Noticeably inferior to IV.
I.. Very Poor.
8 EXAMPLE 11 Effect of mixtures of N-methylolstearamide and polyethylene on wrinkle recovery Cotton fabrics x 80 print cloth) were padded through a suspension containing 4% dimethylol ethylene urea, 0.7% zinc nitrate hexahydrate, 0.06% acetic acid, 0.025% of a 7-mole ethylene oxide adduct of tridecyl alcohol, and N-methylolstearamide and polyethylene in proportions and amounts shown in the table which follows. The fabrics were tested for tear strength and wrinkle recovery after 10 wash cycles with Tide. Both the tear strength and wrinkle recovery are given to illustrate that the higher tear strength of the fabric treated with the mixtures of N-methylolstearamide and polyethylene is not due to a concomitant lower wrinkle recovery, which is obviously undesirable, but that the superior tear strength of the fabric is accompanied by an increase in wrinkle recovery.
What is claimed is:
1. A method of treating a textile material containing cellulose textile which comprises applying to said textile a cellulose-reactive cross-linking crease-proofing agent and a mixture containing about 25-80% of N-monomethylol monoamide of a higher carboxylic acid containing about 12 to 22 carbon atoms and about 20-75% of fiber-lubricating emulsified polyethylene, and thereafter curing by heating the material to an elevated temperature.
2. A method of treating a textile material as set forth in claim 1 in which said monoamide is N-methylolstearamide.
3. A method of treating a textile material as set forth in claim 1 in which said curing is carried out in the presence of an acid catalyst.
4. A method of treating a textile material as set forth in claim 1 in which the curing is carried out at 300- 330 F. for 5 to 3 minutes.
5. A method of treating a textile material as set forth in claim 1 in which said cellulose-textile is cotton.
6. A method of treating a textile material as set forth in claim 1 including the step of drying the textile material before curing.
References Cited UNITED STATES PATENTS 1/ 1964 Goldstein et al 8-1156 4/1966 Shipee 1l7-l39.5
NORMAN G. TORCHIN, Primary Examiner.
H. WOLMAN, Assistant Examiner.
Claims (1)
1. A METHOD OF TREATING A TEXTILE MATERIAL CONTAINING CELLULOSE TEXTILE WHICH COMPRISES APPLYING TO SAID TEXTILE A CELLULOSE-REACTIVE CROSS-LINKING CREASE-PROFFING AGENT AND A MIXTURE CONTAINING ABOUT 25-80% OF N-MONOMETHYLOL MONOAMIDE OF A HIGHER CARBOXYLIC ACID CONTAINING ABOUT 12 TO 22 CARBON ATOMS AND ABOUT 20-75% OF FIBER-LUBRICATING EMULSIFIED POLYETHYLENE, AND THEREAFTER CURING BY HEATING THE MATERIAL TO AN ELEVATED TEMPERATURE.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US293268A US3401006A (en) | 1963-07-08 | 1963-07-08 | Treatment of cellulose textiles with a crease-proofing agent and with mixtures of nu-methylolstearamide and polyethylene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US293268A US3401006A (en) | 1963-07-08 | 1963-07-08 | Treatment of cellulose textiles with a crease-proofing agent and with mixtures of nu-methylolstearamide and polyethylene |
Publications (1)
Publication Number | Publication Date |
---|---|
US3401006A true US3401006A (en) | 1968-09-10 |
Family
ID=23128402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US293268A Expired - Lifetime US3401006A (en) | 1963-07-08 | 1963-07-08 | Treatment of cellulose textiles with a crease-proofing agent and with mixtures of nu-methylolstearamide and polyethylene |
Country Status (1)
Country | Link |
---|---|
US (1) | US3401006A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3658570A (en) * | 1969-12-09 | 1972-04-25 | Larry L Crooks | Imparting a satin like finish to one side of a fabric |
US3854866A (en) * | 1972-04-27 | 1974-12-17 | Us Agriculture | Recurable crosslinked cellulose fabrics from methylol reagents and polycarboxylic acids and method of making |
US3900663A (en) * | 1973-04-11 | 1975-08-19 | Gaf Corp | Method of treating fabrics |
US4211815A (en) * | 1973-12-01 | 1980-07-08 | Ciba-Geigy Corporation | Waterproofing of textiles |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3116967A (en) * | 1958-01-09 | 1964-01-07 | Sun Chemical Corp | Creaseproofing compositions for textiles |
US3245831A (en) * | 1961-04-21 | 1966-04-12 | Gulf Oil Corp | Process of finishing textiles with mechanically stable latex of emulsified particles of emulsion-polymerized nonoxidized polyethylene |
-
1963
- 1963-07-08 US US293268A patent/US3401006A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3116967A (en) * | 1958-01-09 | 1964-01-07 | Sun Chemical Corp | Creaseproofing compositions for textiles |
US3245831A (en) * | 1961-04-21 | 1966-04-12 | Gulf Oil Corp | Process of finishing textiles with mechanically stable latex of emulsified particles of emulsion-polymerized nonoxidized polyethylene |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3658570A (en) * | 1969-12-09 | 1972-04-25 | Larry L Crooks | Imparting a satin like finish to one side of a fabric |
US3854866A (en) * | 1972-04-27 | 1974-12-17 | Us Agriculture | Recurable crosslinked cellulose fabrics from methylol reagents and polycarboxylic acids and method of making |
US3900663A (en) * | 1973-04-11 | 1975-08-19 | Gaf Corp | Method of treating fabrics |
US4211815A (en) * | 1973-12-01 | 1980-07-08 | Ciba-Geigy Corporation | Waterproofing of textiles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3649165A (en) | Soil-release characteristics of textile materials | |
US3220869A (en) | Process for improving textile fabrics | |
US3597145A (en) | Treatment of a cellulosic-containing textile with a fluorocarbon,an aminoplast,and a synthetic acid copolymer,and textile obtained therefrom | |
US3540835A (en) | Carboxylic acid group containing copolymer is applied to textile which has been treated with an aminoplast resin to improve soil release characteristics thereof | |
US3731411A (en) | Process for producing durable press textiles | |
US3475207A (en) | Fabrics having improved tear strength obtained by treatment with high density oxidized polyethylene | |
US3218118A (en) | Crease-proofing cellulosic fabrics, the fabrics obtained and methods of making them | |
US3096524A (en) | Process for improving crease-retention properties of cotton garments | |
US5126387A (en) | Flame retardant compositions and method of use | |
US3690942A (en) | Stain release and durable press finishing using solution polymers | |
USRE28914E (en) | Treatment of a cellulosic-containing textile with a fluorocarbon, an aminoplast, and a synthetic acid copolymer, and textile obtained therefrom | |
US3521993A (en) | Soil releasing textiles | |
US3401006A (en) | Treatment of cellulose textiles with a crease-proofing agent and with mixtures of nu-methylolstearamide and polyethylene | |
US5879410A (en) | Process for resin finishing textile containing cellulosic fiber | |
US2987421A (en) | Composition for treating textile materials, method, and article produced thereby | |
US3094705A (en) | Method for producing a pucker-free seam in a garment | |
US3627556A (en) | Durable press finish for wool/cellulosic fabrics (melamine/dihydroxy-imidazolidinone resins) | |
US3617188A (en) | Soil release fabrics and method for producing same | |
US4240795A (en) | Treatment of textiles with modified alpha-olefins | |
US3181927A (en) | Process of wet and dry wrinkleproofing cellulose fabric with an aminoplast resin and zinc chloride | |
US3632422A (en) | Textile fabric having soil release finish and method of making same | |
US3245831A (en) | Process of finishing textiles with mechanically stable latex of emulsified particles of emulsion-polymerized nonoxidized polyethylene | |
US3526474A (en) | Abrasion-resistant durably-pressed cellulosic textiles | |
US3039167A (en) | Method for improving the properties of fabrics containing cross-linked regenerated cellulose material | |
US3506390A (en) | Process of reacting cellulosic fibers with sultones and optionally with other creaseproofing agents and resulting products |