US3396198A - Vinylsulfonylethyl-hydroxy ethers - Google Patents

Vinylsulfonylethyl-hydroxy ethers Download PDF

Info

Publication number
US3396198A
US3396198A US303696A US30369663A US3396198A US 3396198 A US3396198 A US 3396198A US 303696 A US303696 A US 303696A US 30369663 A US30369663 A US 30369663A US 3396198 A US3396198 A US 3396198A
Authority
US
United States
Prior art keywords
adduct
divinyl sulfone
alcohol
solution
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US303696A
Inventor
Clark M Welch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Agriculture USDA
Original Assignee
Agriculture Usa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US160673A external-priority patent/US3359061A/en
Application filed by Agriculture Usa filed Critical Agriculture Usa
Priority to US303696A priority Critical patent/US3396198A/en
Application granted granted Critical
Publication of US3396198A publication Critical patent/US3396198A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/16Sulfones; Sulfoxides having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C317/18Sulfones; Sulfoxides having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton with sulfone or sulfoxide groups bound to acyclic carbon atoms of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/248Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing sulfur
    • D06M13/272Unsaturated compounds containing sulfur atoms
    • D06M13/278Vinylsulfonium compounds; Vinylsulfone or vinylsulfoxide compounds

Definitions

  • This invention relates to the attachment of organic alcohols to cellulose with divinyl sulfone to give hitherto unknown alkoxyethylsulfonylethyl ethers of cellulose, with the simultaneous formation of crosslinks in the cellulose by divinyl sulfone present as such or as its addition products with alcohols.
  • the process affords a method of durably attaching to cellulosic materials, such as cotton textiles those water repellents, rotproofing agents, flame retardants and other textile finishing agents which are alcohols. Simultaneous with such attachment, crosslinking of the cellulose occurs and the cellulosic fibers are rendered insoluble in cuprammonium hydroxide solution.
  • Durable wrinkle resistance in the wet state, or in both the wet and dry state can be imparted to cellulosic fabrics, along with increased dimensional stability.
  • cellulose OCH2CH2SO2CHzCH2-O cellulose ROH is a primary, secondary or tertiary alcohol
  • HO- cellulose is a portion of the cellulose chain
  • X is a base used as the catalyst.
  • the process may be carried out in a single step by applying the reagents and catalyst in one solution to the cellulose, followed by curing at elevated temperatures. Alternatively, it may be conducted as a two step process as follows:
  • Step 1 is carried out in such a way as to give a 1:1 adduct as shown; i.e., the alcohol and divinyl sulfone are made to combine in a mole ratio of 1:1.
  • Such adducts may be prepared separately and stored for later use. They are a new class of compound.
  • the only previously reported adducts of monohydric alcohols with divinyl sulfone have 2 moles of the alcohol combined with each mole of divinyl sulfone. (Alexander and McCombie, J. Chem. Soc. 1913 (1931).)
  • Such 2:1 adducts of monohydric alcohols lack free vinyl groups, and are less reactive toward cellulose.
  • the formation of the 2:1 adducts, which are undesirable for the process of this invention, is minimized by keeping the mole ratio of monohydric alcohol to divinyl sulfone actually used below 1.5 1, and preferably below 1.05: 1.
  • ethylene glycol and divinyl sulfone may combine in glycol/sulfone mole ratio of 1:1, 1:2, 2:2, 2:1, 2:3, 3:3, 3:2, 3:4, 4:4, 4:3, 4:5, 5:5, 5:4
  • the series of adducts so formed range from low molecular weight compounds to high polymers. Alcohols having more than two hydroxyl groups per molecule give, in addition to the above series of combining ratios, still others.
  • alcohol/divinyl sulfone combining ratios of 1:0 or less represent adducts which have free vinyl groups and are reactive toward cellulose. Such combining ratios may be obtained by keeping the mole ratio of alcohol to divinyl sulfone actually used at less than 1.2 and preferably less than 1.05. When alcohol/divinyl sulfone mole ratios less than 0.66 are used, the proportion of water-insoluble adducts in the case of diols and triols becomes too large for convenience in application to textiles.
  • adducts particularly those of polyhydric alcohols, are soluble in Water, and their aqueous solutions are odorless in contrast to divinyl sulfone which alone or in solution is highly poisonous, lachrymatory, and irritating to the mucous membrane. For this reason it is frequently advantageous to prepare the adduct first and carry out its application to the cellulose subsequently (the two-step method).
  • the process is applicable both to monohydric and polyhydric alcohols; however, it has been found that the efiiciency of the crosslinking and attachment reactions increases as the number of hydroxyl groups in the alcohol molecule is increased.
  • Polymeric alcohols such as polyvinyl alcohol and starch are readily attached. Long-chain alcohols, as well as branched-chain alcohols may be used, although adducts of these alcohols with divinyl sulfone react with cellulose less efiiciently than do the adducts of other types of alcohols.
  • graft polymerization of the adduct readily occurs on cellulose in the presence of heat and alkaline catalysts, regardless of whether the process is carried out in one step or in two. Graft polymerization is advantageous for increasing both the overall reaction efficiency and the degree of wrinkle resistance obtained in the case of textile treatment. Graft polymerization also results in higher strength retention than is normally observed in crosslinked and wrinkle-resistant cellulosic fabrics.
  • Catalysts which may be used in treating cellulose by the above methods are such bases as alkali metal carbonates and bicarbonates, alkali or alkaline earth metal hydroxides, and organic quaternary ammonium carbonates, bicarbonates and hydroxides.
  • the catalyst concentration should not be so high that it causes the latter materials to precipitate or the divinyl sulfone to react with water.
  • Catalyst concentrations of 05-30% may be used, with the preferred concentrations being 1.02.5%. The higher concentrations are useful where the catalyst is applied to the cellulose separately.
  • Water-insoluble alcohols and adducts may be applied from inert organic solvents followed by drying to remove the solvent.
  • the catalyst alone or with divinyl sulfone is in such cases applied separately from aqueous solution. After the reagents and catalyst have been applied, the fabric is kept at 20170 C. for 05-30 minutes. The stronger the base used as catalyst, the lower the temperature needed for rapid reaction.
  • the preparation of alcohol-divinyl sulfone adducts is simple and rapid.
  • the base used as a catalyst for the adduct preparation is preferably one that is soluble in the alcohol-divinyl sulfone reaction mixture.
  • Bases suitable with monohydric alcohols are alkali metal hydroxides, alkoxides, and phenoxides, quaternary ammonium hydroxides, tertiary amines, and tetramethylguanidine. Tetramethylguanidine tends to impart yellowing when cured with fabric, and should therefore be removed completely from the adduct prior to fabric treatment.
  • a base that is too strong may cause undesired polymerization of the adduct, and may also cause the reaction to become uncontrollably exothermic.
  • Preferred bases in such cases are tertiary amines, alkali metal bicarbonates and alkali metal carbonates, with the bicarbonates particularly preferred over the carbonates because of their greater solubility in polyhydric alcohols. Good control of the reactions is obtained by using low concentrations (OJ-5%) of catalyst.
  • the reaction of the alcohol with divinyl sulfone may be carried out by adding the alcohol containing the dissolved catalyst to the sulfone, followed by warming the mixture until exothermic reaction sets in.
  • the temperatures required for reaction fall in the range of 20140 C., the optimum values depending on the alcohol used and the catalyst concentration.
  • the preparation of the adducts may also be carried out by adding the catalyst to a mixture of the alcohol and divinyl sulfone followed by heating.
  • addition of divinyl sulfone to a mixture of the alcohol and catalyst can be carried out.
  • This last named order of reagent addition is desirable when heating is subsequently required to initiate reaction, but is undesirable when reaction occurs immediately as the sulfone is added, since it will cause a varying mole ratio of divinyl sulfone to the alcohol as the reaction proceeds.
  • Inert diluents such as N,N-dimethylformamide; N,N-dimethylacetamide, or tetrahydrofuran may be used to increase the solubility of solid alcohols and of polar catalysts; as well as to dissipate the heat evolved and moderate the rate of reaction.
  • the resulting adduct may be isolated by ordinary methods or may be stored in solution.
  • EXAMPLE 1 The 1:1 adduct of methanol with divinyl sulfone was prepared in aqueous solution as follows: to 10 ml. (11.8 g., 0.10 mole) of divinyl sulfone was added slowly, and with sufficient cooling to keep the temperature at 40-45 C., a solution of 3.7 ml. (2.93 g., 0.092 mole) of methanol and 0.8 ml. of 40% benzyltrimethylammonium hydroxide in 4 ml. of tetrahydrofuran. The addition re quired 5-10 minutes, after which heat evolution ceased. The mixture was kept at 50 C. for 10 minutes, after which it was stirred with ml. of water.
  • the application of the 12% aqueous adduct to 80 x 80 print cloth was carried out as follows: to 24 ml. of the aqueous adduct was added 0.80 g. of sodium bicarbonate. The solution was applied in one clip, one nip to the fabric giving a wet pickup of 91%. The fabric was cured at 135 C. for 5 minutes in a forced draft oven. It was washed in running water at 60 C. for 15 minutes, was oven-dried and equilibrated with the atmosphere. It had the following properties: weight gain-3.4%; sulfur content1.03%; breaking strength loss18%. Fibers of the treated cotton were insoluble in cupriethylenediamine solution, indicating the cellulose had been crosslinked.
  • EXAMPLE 2 The 1:1 adduct of t-butyl alcohol with divinyl sulfone was prepared as follows: 0.10 g. of sodium was reacted with 9.5 ml. (0.10 mole) of boiling t-butyl alcohol. The solution was made up to 9.5 ml. with additional t-butyl alcohol to replace evaporation losses. The solution at room temperature was added slowly to 10 ml. (0.10 mole) of divinyl sulfone. After half the addition was completed, an exothermic reaction began. Sufficient cooling was used to keep the temperature below 45 C. during the rest of the additon. Subsequently, the mixture was shaken with 25 ml. of water, giving three liquid phases.
  • a solution containing 20% by volume of the crude adduct in toluene was applied in one dip and one nip to 80x80 print cloth to a wet pickup of 74%.
  • the fabric was dried at 80 C. for 3 minutes, and was equilibrated in air. It was then treated with a solution containing 2% sodium hydroxide and 1% sodium lauryl sulfate in one dip and one nip to a wet pickup of 77%. It was cured at C. for 5 minutes, washed in running water at 60 C. for minutes, oven-dried and air-equilibrated. The weight gain was 1.2%. Fibers of the cotton were insoluble in cupriethylenediamine solution, indicating that crosslinking had occurred.
  • EXAMPLE 3 The 1:1 adduct of n-octadecyl alcohol and divinyl sulfone was prepared as follows: sodium phenoxide was made by warming a mixture of 0.94 g. (0.01 mole) phenol and 0.40 g. (0.01 mole) of sodium hydroxide pellets while grinding up the solid base, until the entire mixture solidified. The solid sodium peroxide was cooled and powdered. To a solution of 6.7 g. (0.025 mole) of octadecyl alcohol and 3.8 ml. (0.038 mole) of divinyl sulfone in 10 ml. of N,N-dimethylformamide at 45 C. was added 0.20 g. of the sodium phenoxide. The temperature rose spontaneously to 60 C. The base went into solution when stirred. The mixture was allowed to stand for 40 minutes, after which 0.20 ml. of glacial acetic acid was added. The
  • 80X 80 print cloth of the crude adduct as its 2% solution in toluene was carried out in one dip and one nip to a wet pickup of 84%.
  • the fabric was ovendried and air-equilibrated. It was then treated in one dip and one nip with a solution containing 2% sodium hydroxide and 1% sodium lauryl sulfate in water, to a wet pickup of 93%. It was cured at 135 C. for 5 minutes, washed in running water at 60 C. for 15 minutes, ovendried, extracted with boiling toluene, acetone, and tetrahydrofuran to remove any organic material present merely as a coating. It was again oven-dried and air-equilibrated. The cloth had a spray rating of 50 (AATCC Test Method 224952) indicating moderate water repellency caused by attachment of the long-chain alcohol.
  • EXAMPLE 4 The 1:1 adduct of ethylene glycol with divinyl sulfone was prepared as follows: to 5.6 ml. (6.2 g., 0.1 mole) of ethylene glycol was added 0.05 g. of sodium hydroxide. The mixture was warmed to 60 C. and the sodium hydroxide crushed. After the alkali had dissolved, the mixture was cooled to room temperature and added to 10 ml. (11.8 g., 0.10 mole) of divinyl sulfone in a 50 ml. beaker. The resulting mixture was stirred and warmed to 35 C., whereupon the temperature rose spontaneously. After 5 minutes it reached 55 C.
  • the 33% aqueous adduct was applied to 80 x 80 print cloth as follows: to 25 ml. of the solution was added 0.80 g. of sodium bicarbonate. The solution was applied in one dip, one nip to a wet pickup of 116%. The fabric was cured at C. for 5 minutes. It was washed in running water at 60 C. for 15 minutes, and after being oven-dried, was equilibrated with the atmosphere.
  • the fabric properties were as follows: weight gain1l%; sulfur content3.11%; wet crease recovery angle-255 for untreated fabric); dry crease recovery-271 for untreated fabric); breaking strength loss-38% EXAMPLE 5
  • the 1:1 adduct of glycerol with divinyl sulfone was prepared as follows: to 9.2 g. (0.10 mole) of glycerol in a 50 ml. beaker was added 0.10 g. of sodium bicarbonate. The mixture was warmed to 60 C. with stirring until nearly all of the solid had dissolved. The solution was cooled to 30 C. and 10 ml. (0.1 mole) of divinyl sulfone was added. The mixture was warmed to 75 C.
  • adduct solution to 80 x 80 print cloth was carried out as follows: the 36% solution was diluted with water and 3.3% of sodium bicarbonate was added. The fabric was treated in one dip and one nip to a wet pickup of 8692%. It was cured at 135 C. for 5 minutes, was washed in running Water at 60 for 15 minutes, was oven-dried and air-equilibrated. The fabric properties are given in the following table.
  • EXAMPLE 6 The 1:1 adduct of glycerol with divinyl sulfone was prepared in the following way: A mixture of 9.2 g. (0.10 mole) glycerol and 0.05 g. of sodium methoxide powder in a 50 ml. beaker was war-med to 50 C. and stirred until solution was complete. Then 10 ml. (0.10 mole) of divinyl sulfone was added. The mixture was heated to 90 C., causing the two liquid phases to merge, and then to 115 whereupon the temperature rose spontaneously to 140 C. Suflicient cooling was applied to keep the temperature from rising further. After 5 minutes, heat evolution ceased. The mixture was warmed to keep it at 130 for 5 minutes longer.
  • the product at room temperature was a highly viscous, water-soluble syrup. It was diluted with 20 ml. of water and shaken with three 20 ml. portions of benzene to remove unreacted divinyl sulfone. Evaporation of the benzene extracts gave only 0.04 g. of the divinyl sulfone.
  • the aqueous phase (33 ml.) was diluted to 50 ml. with water, giving a 36% solution of the adduct. This was odorless after traces of benzene were evaporated from it.
  • Example 4 Application of the adduct at a concentration of 18% to 80 x 80 print cloth was similar to that of Example 4.
  • the weight gain was 16% using a wet pickup of 115%.
  • the fabric properties were as follows: sulfur content-2.14%; wet crease recovery-301; dry crease recovery257, breaking strength loss-28%.
  • the wet and dry crease re covery of untreated fabric were 160 and 165 respectively.
  • EXAMPLE 7 The adduct preparation of Example 6 was repeated using only 6.9 g. (0.075 mole) of glycerol, so as to give a glycerol/divinyl sulfone mole ratio of 3:4.
  • the adduct in 30 ml. of water was shaken with benzene as usual, after which it existed as two aqueous phases. These were merged after separation from the benzene layer, by addition of 11 ml. of tetrahydrofuran to give a total volume of 52 ml.
  • the adduct concentration was approximately 32%.
  • the solution was diluted with varying amounts of aqueous tetrahydrofuran (33% by volume), and sodium bicarbonate was added to the extent of 3% of the total weight of the mixture.
  • the solution was applied to 80 x 80 print cloth as in Example 4, a wet pickup of Ill-112% being used.
  • the fabric properties obtained were as follows:
  • Pentaerythritol was attached to cellulose with divinyl 8 sulfone by the method used with glycerol in Example 8.
  • a sample of x 80 print cloth so treated showed a weight gain of 17% whereas in the absence of pentaerythritol the treatment produced a weight 'gain of only 7.5%.
  • the test sample had high wet and dry wrinkle resistance.
  • EXAMPLE 11 Polyvinyl alcohol was attached to cellulose by the onestep method, as follow: a mixture of 1.0 g. polyvinyl alcohol in 15 ml. of water was heated to boiling and stirred for 10 minutes. The solution was cooled to room temperature, and a solution of 0.8 g. sodium bicarbonate in 10 ml. of water was added. The mixture was stirred until homogeneous. Then 0.50 ml. of divinyl sulfone was added. The rather viscous solution was used to treat 80 x 80 print cloth in 2 dips and 2 nips, care being taken to obtain thorough Wetting of the fabric. The wet pickup was The fabric was cured at C. for 5 minutes, and washed in running water at 60 C. for 30 minutes. It was oven-dried and equilibrated with the atmosphere. It then exhibited a highly starched feel. The weight gain was 6%.
  • Fabric properties observed were: wet crease recovery 267 (untreated fabric-156), stiffness (bending moment)44.02 10 lbs.
  • EXAMPLE l2 Starch was attached to cellulose as follows: 1.0 g. of potato starch powder was added to 25 ml. of boiling water and the mixture was boiled for 15 minutes. The solution was cooled to room temperature and 0.8 g. of sodium bicarbonate was added. After this dissolved, 0.50 ml. of divinyl sulfone was added. The resulting solution was stable at room temperature, in contrast to solutions containing starch and divinyl sulfone at a pH of 10 or above. The latter solutions quickly gelled due to crosslinking of the starch by the divinyl sulfone.
  • the starch-sulfonebicarbonate solution was applied to 80 x 80 print cloth in one dip, one nip to a wet pickup of 91%. Curing was at 135 C. for 10 minutes. The fabric was washed in running water at 60 for 30 minutes, and was oven-dried prior to equilibration with the atmosphere. The weight gain of 4.5% was unaffected by 2 /2 hours in running water at 60 C., or by 30 minutes in boiling water. Fabric treated as above except that the divinyl sulfone was omitted showed a 2% weight gain, but this was entirely removed by extended washing following by the treatment with boiling water.
  • Polyvinyl alcohol was attached to cellulose in the following way: a mixture of 1.0 g. of polyvinyl alcohol and 24 ml. of water was heated to boiling for 10 minutes. The solution was cooled and 0.50 ml. of divinyl sulfone was added. The resulting solution was applied in one dip and one nip to 80 x 80 print cloth to a wet pickup of 100%. The cloth was dried at 70 C. for 3 minutes. It was then soaked for 5 minutes in 20% aqueous sodium hydroxide at room temperature. The treated fabric was thoroughly washed, and was kept in boiling water for one hour to remove any unattached polyvinyl alcohol. The dried and airequilibrated fabric showed a weight increase of 6.5% and a crisp starched feel. When wet, it had high wrinkle resistance.
  • adduct of divinyl sulfone and a monohydric alcohol selected from the group consisting of t-butyl alcohol and n-octadecyl alcohol wherein the adduct components are present in a molecular ratio of 1:1, said adduct represented by the formula wherein the R'O moiety is derived from the alcohol.
  • a process for preparing the 1:1 adduct of a monohydric alcohol and divinyl sulfone which comprises reacting at a temperature of from 20 to C. and in the presence of from 0.1% to 5% by weight of an alkaline catalyst the monohydric alcohol with divinyl sulfone in a mole ratio that does not exceed 1.5: l.
  • a process for preparing the essentially monomeric 1:1 adduct of a polyhydric alcohol and divinyl sulfone which comprises reacting at a temperature of from 20 to 140 C. and in the presence of from 0.1 to 5% by weight of an alkaline catalyst the polyhydric alcohol with divinyl sulfone within the mole ratio limits of 0.85:1 and 12:1.
  • a process for preparing the adducts of polyhydric alcohols with divinyl sulfone which comprises reacting at a temperature of from 20 to 140 C. and in the presence of from 0.1 to 5% by weight of an alkaline catalyst the polyhydric alcohols with divinyl sulfone within the mole ratio limits of 0.66:1 and 0.85:1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

United States Patent O 3,396,198 VINYLSULFONYLETHYL-HYDROXY ETHERS Clark M. Welch, New Orleans, La., assiguor to the United States of America as represented by the Secretary of Agriculture No Drawing. Original application Dec. 19, 1961, Ser. No. 160,673. Divided and this application Jan. 17, 1963, Ser. No. 303,696
11 Claims. (Cl. 260-607) This application is a division of Serial No. 160,673, filed December 19, 1961.
A non-exclusive, irrevocable, royalty-free license in the invention herein described, throughout the world for all purposes of the United States Government, with the power to grant sublicenses for such purposes, it hereby granted to the Government of the United States of America.
This invention relates to the attachment of organic alcohols to cellulose with divinyl sulfone to give hitherto unknown alkoxyethylsulfonylethyl ethers of cellulose, with the simultaneous formation of crosslinks in the cellulose by divinyl sulfone present as such or as its addition products with alcohols. The process affords a method of durably attaching to cellulosic materials, such as cotton textiles those water repellents, rotproofing agents, flame retardants and other textile finishing agents which are alcohols. Simultaneous with such attachment, crosslinking of the cellulose occurs and the cellulosic fibers are rendered insoluble in cuprammonium hydroxide solution. Durable wrinkle resistance in the wet state, or in both the wet and dry state, can be imparted to cellulosic fabrics, along with increased dimensional stability.
The process consists of two competing reactions, (a) and (b), which are as follows:
cellulose OCH2CH2SO2CHzCH2-O cellulose ROH is a primary, secondary or tertiary alcohol, HO- cellulose is a portion of the cellulose chain and X is a base used as the catalyst. The process may be carried out in a single step by applying the reagents and catalyst in one solution to the cellulose, followed by curing at elevated temperatures. Alternatively, it may be conducted as a two step process as follows:
Step 1:
X ROH GH CHSO CH=CHz ROCH CHzSO CH=CH Step 2:
X. heat RO-CHaCHzSOzCH=CHz ROH CHFCHSOqCH=CH3 CHg=CHSO CH=CHz 2HO-cell call O-CHgCHgSOjCHzCH:-O cellulose When a monohydric alcohol is employed, Step 1 is carried out in such a way as to give a 1:1 adduct as shown; i.e., the alcohol and divinyl sulfone are made to combine in a mole ratio of 1:1. Such adducts may be prepared separately and stored for later use. They are a new class of compound. The only previously reported adducts of monohydric alcohols with divinyl sulfone have 2 moles of the alcohol combined with each mole of divinyl sulfone. (Alexander and McCombie, J. Chem. Soc. 1913 (1931).)
"ice
Such 2:1 adducts of monohydric alcohols lack free vinyl groups, and are less reactive toward cellulose. The formation of the 2:1 adducts, Which are undesirable for the process of this invention, is minimized by keeping the mole ratio of monohydric alcohol to divinyl sulfone actually used below 1.5 1, and preferably below 1.05: 1.
In the case of polyhydric alcohols, a larger number of combining ratios may be obtained. With ethylene glycol products having the following structure are obtained:
wherein X is a member of the group consisting of the structures HOCH CH O and CH =CHSO CH CI-I O-CH CH O and Y is a member of the group consisting of and -H. Thus the ethylene glycol and divinyl sulfone may combine in glycol/sulfone mole ratio of 1:1, 1:2, 2:2, 2:1, 2:3, 3:3, 3:2, 3:4, 4:4, 4:3, 4:5, 5:5, 5:4 The series of adducts so formed range from low molecular weight compounds to high polymers. Alcohols having more than two hydroxyl groups per molecule give, in addition to the above series of combining ratios, still others. In all cases however, alcohol/divinyl sulfone combining ratios of 1:0 or less represent adducts which have free vinyl groups and are reactive toward cellulose. Such combining ratios may be obtained by keeping the mole ratio of alcohol to divinyl sulfone actually used at less than 1.2 and preferably less than 1.05. When alcohol/divinyl sulfone mole ratios less than 0.66 are used, the proportion of water-insoluble adducts in the case of diols and triols becomes too large for convenience in application to textiles.
Neither the adducts mentioned above nor mixtures of alcohols with divinyl sulfone have hitherto been applied to cellulose in the presence of a catalyst to form alkoxyethylsulfonylethyl ethers of cellulose, with simultaneous crosslinking of the cellulose.
Many of the adducts, particularly those of polyhydric alcohols, are soluble in Water, and their aqueous solutions are odorless in contrast to divinyl sulfone which alone or in solution is highly poisonous, lachrymatory, and irritating to the mucous membrane. For this reason it is frequently advantageous to prepare the adduct first and carry out its application to the cellulose subsequently (the two-step method).
Regardless of which method of application is chosen, it is possible to exercise some control over the extent to which attachment of alkoxyethylsulfonylethyl groups occurs, as compared with the crosslinking reaction that also takes place. In the one-step method, alcohol/divinyl sulfone mole ratios between 0 and 0.8 favor crosslinking while ratios between 0.8 and 3.0 favor attachment. Higher ratios suppress both reactions with cellulose. The type of alcohol or adduct used, as well as the catalyst and curing temperature are other controlling factors in the two methods.
The process is applicable both to monohydric and polyhydric alcohols; however, it has been found that the efiiciency of the crosslinking and attachment reactions increases as the number of hydroxyl groups in the alcohol molecule is increased. Polymeric alcohols such as polyvinyl alcohol and starch are readily attached. Long-chain alcohols, as well as branched-chain alcohols may be used, although adducts of these alcohols with divinyl sulfone react with cellulose less efiiciently than do the adducts of other types of alcohols.
Where the number of free hydroxyl groups remaining in the alcohol-divinyl sulfone adduct is two or more for every vinyl group in the adduct, as can be the case with trihydric alcohols for example, graft polymerization of the adduct readily occurs on cellulose in the presence of heat and alkaline catalysts, regardless of whether the process is carried out in one step or in two. Graft polymerization is advantageous for increasing both the overall reaction efficiency and the degree of wrinkle resistance obtained in the case of textile treatment. Graft polymerization also results in higher strength retention than is normally observed in crosslinked and wrinkle-resistant cellulosic fabrics.
Catalysts which may be used in treating cellulose by the above methods are such bases as alkali metal carbonates and bicarbonates, alkali or alkaline earth metal hydroxides, and organic quaternary ammonium carbonates, bicarbonates and hydroxides. Where the catalyst is applied to the cellulose from the same solution as the alcohol and the divinyl sulfone or the alcohol-divinyl sulfone adduct, the catalyst concentration should not be so high that it causes the latter materials to precipitate or the divinyl sulfone to react with water. Catalyst concentrations of 05-30% may be used, with the preferred concentrations being 1.02.5%. The higher concentrations are useful where the catalyst is applied to the cellulose separately. Water-insoluble alcohols and adducts may be applied from inert organic solvents followed by drying to remove the solvent. The catalyst alone or with divinyl sulfone is in such cases applied separately from aqueous solution. After the reagents and catalyst have been applied, the fabric is kept at 20170 C. for 05-30 minutes. The stronger the base used as catalyst, the lower the temperature needed for rapid reaction.
The preparation of alcohol-divinyl sulfone adducts is simple and rapid. The base used as a catalyst for the adduct preparation is preferably one that is soluble in the alcohol-divinyl sulfone reaction mixture. Bases suitable with monohydric alcohols are alkali metal hydroxides, alkoxides, and phenoxides, quaternary ammonium hydroxides, tertiary amines, and tetramethylguanidine. Tetramethylguanidine tends to impart yellowing when cured with fabric, and should therefore be removed completely from the adduct prior to fabric treatment. With certain of the polyhydric alcohols, the use of a base that is too strong may cause undesired polymerization of the adduct, and may also cause the reaction to become uncontrollably exothermic. Preferred bases in such cases are tertiary amines, alkali metal bicarbonates and alkali metal carbonates, with the bicarbonates particularly preferred over the carbonates because of their greater solubility in polyhydric alcohols. Good control of the reactions is obtained by using low concentrations (OJ-5%) of catalyst.
The reaction of the alcohol with divinyl sulfone may be carried out by adding the alcohol containing the dissolved catalyst to the sulfone, followed by warming the mixture until exothermic reaction sets in. The temperatures required for reaction fall in the range of 20140 C., the optimum values depending on the alcohol used and the catalyst concentration. The preparation of the adducts may also be carried out by adding the catalyst to a mixture of the alcohol and divinyl sulfone followed by heating. As another variant, addition of divinyl sulfone to a mixture of the alcohol and catalyst can be carried out. This last named order of reagent addition is desirable when heating is subsequently required to initiate reaction, but is undesirable when reaction occurs immediately as the sulfone is added, since it will cause a varying mole ratio of divinyl sulfone to the alcohol as the reaction proceeds. Inert diluents such as N,N-dimethylformamide; N,N-dimethylacetamide, or tetrahydrofuran may be used to increase the solubility of solid alcohols and of polar catalysts; as well as to dissipate the heat evolved and moderate the rate of reaction. The resulting adduct may be isolated by ordinary methods or may be stored in solution.
The following examples illustrates the many procedures that are possible in obtaining various degrees of cellulose substitution and crosslinking. Crease recovery angles cited are double the values measured in the warp direction by the Monsanto crease recovery test. The adaptation of Lawrence and Phillips, Am. Dyestutf Reptr., 45 p. 548 (1956) was used for crease recovery tests in the wet state. Stitfness was determined with a Tinius Olsen tester. A Scott tester was used for breaking strength determinations. The fabric used was desized, scoured and bleached x 80 cotton print cloth, except where otherwise specified.
EXAMPLE 1 The 1:1 adduct of methanol with divinyl sulfone was prepared in aqueous solution as follows: to 10 ml. (11.8 g., 0.10 mole) of divinyl sulfone was added slowly, and with sufficient cooling to keep the temperature at 40-45 C., a solution of 3.7 ml. (2.93 g., 0.092 mole) of methanol and 0.8 ml. of 40% benzyltrimethylammonium hydroxide in 4 ml. of tetrahydrofuran. The addition re quired 5-10 minutes, after which heat evolution ceased. The mixture was kept at 50 C. for 10 minutes, after which it was stirred with ml. of water. The solution was filtered free of a gummy polymer, the yield of polymer being 1.2 g. Shaking the filtrate ml.) with half its volume of benzene to extract traces of unreacted divinyl sulfone gave a clear aqueous solution (107 ml.) free of the irritating divinyl sulfone odor.
The application of the 12% aqueous adduct to 80 x 80 print cloth was carried out as follows: to 24 ml. of the aqueous adduct was added 0.80 g. of sodium bicarbonate. The solution was applied in one clip, one nip to the fabric giving a wet pickup of 91%. The fabric was cured at 135 C. for 5 minutes in a forced draft oven. It was washed in running water at 60 C. for 15 minutes, was oven-dried and equilibrated with the atmosphere. It had the following properties: weight gain-3.4%; sulfur content1.03%; breaking strength loss18%. Fibers of the treated cotton were insoluble in cupriethylenediamine solution, indicating the cellulose had been crosslinked.
EXAMPLE 2 The 1:1 adduct of t-butyl alcohol with divinyl sulfone was prepared as follows: 0.10 g. of sodium was reacted with 9.5 ml. (0.10 mole) of boiling t-butyl alcohol. The solution was made up to 9.5 ml. with additional t-butyl alcohol to replace evaporation losses. The solution at room temperature was added slowly to 10 ml. (0.10 mole) of divinyl sulfone. After half the addition was completed, an exothermic reaction began. Sufficient cooling was used to keep the temperature below 45 C. during the rest of the additon. Subsequently, the mixture was shaken with 25 ml. of water, giving three liquid phases. These were separated and the two most dense layers were each shaken With 25 ml. of water, causing an organic liquid of density greater than water to separate. The combined organic material was treated with 25 ml. of benzene, causing a polymeric solid impurity to separate. The solution was decanted from the solid and freed of solvent by evaporation, giving 8.75 g. of crude adduct. A 3 ml. (3.3 g.) quantity of this was treated with ml. of boiling water to extract the desired product. The solution was decanted from a viscous gum, and was evaporated to a volume of 15 ml. It was extracted with 15 ml. of ether. Evaporation of the ether extract gave 1.05 g. of mobile, nearly colorless liquid whose sulfur content was 17.9%.
A solution containing 20% by volume of the crude adduct in toluene was applied in one dip and one nip to 80x80 print cloth to a wet pickup of 74%. The fabric was dried at 80 C. for 3 minutes, and was equilibrated in air. It was then treated with a solution containing 2% sodium hydroxide and 1% sodium lauryl sulfate in one dip and one nip to a wet pickup of 77%. It was cured at C. for 5 minutes, washed in running water at 60 C. for minutes, oven-dried and air-equilibrated. The weight gain was 1.2%. Fibers of the cotton were insoluble in cupriethylenediamine solution, indicating that crosslinking had occurred.
EXAMPLE 3 The 1:1 adduct of n-octadecyl alcohol and divinyl sulfone was prepared as follows: sodium phenoxide was made by warming a mixture of 0.94 g. (0.01 mole) phenol and 0.40 g. (0.01 mole) of sodium hydroxide pellets while grinding up the solid base, until the entire mixture solidified. The solid sodium peroxide was cooled and powdered. To a solution of 6.7 g. (0.025 mole) of octadecyl alcohol and 3.8 ml. (0.038 mole) of divinyl sulfone in 10 ml. of N,N-dimethylformamide at 45 C. was added 0.20 g. of the sodium phenoxide. The temperature rose spontaneously to 60 C. The base went into solution when stirred. The mixture was allowed to stand for 40 minutes, after which 0.20 ml. of glacial acetic acid was added. The
solid reaction mixture was dissolved in 100 ml. of boiling methanol, the solution was decanted from a small amount of insoluble material, and was diluted with an additional 200 ml. of methanol. To the boiling solution was added 6 g. of decolorizing charcoal. After 5-10 minutes of boiling, the mixture was filtered under suction. The charcoal was treated with two 75 ml. portions of boiling methanol which was also filtered. The combined filtrates were cooled to C. and filtered to remove by-products. The filtrate was chilled to 4 C. and the solid products collected by filtration. Additional solid was obtained by adding water to the filtrate and re-filtering. The combined solids were freed of methanol by aspiration and were dissolved in 100 ml. of boiling ether. The solution was filtered and then chilled to 8 C. with stirring. Filtration removed solid by-products. The filtrate was concentrated to 50 ml. and chilled to 8 C. with stirring. Suction filtration gave solid products (A) and a filtrate (B). Solids (A) were stirred with 25 ml. of boiling ether, were cooled to 15 C. and filtered. The filtrate was evaporated to dryness giving 3.04 g. of crude product melting at 45.0-47.5 C. It contained 9.0% sulfur. Evaporation of filtrate (B) gave an additional 2.04 g. of crude product melting at 44.5- 465 C. and containing 9.0% sulfur. This material was suitable for use in textile finishing, but could be further purified as follows: a 1.00 g. sample of the crude product was dissolved in 50 ml. of petroleum ether (B.P. 60) and cooled with stirring to 15 C. It was filtered rapidly by suction. The filtrate was diluted to ml. with additional petroleum ether and chilled to 8 C. with stirring. After suction filtration, the filtrate was again diluted to 50 ml. with petroleum ether, and was chilled to 34 C. with stirring, followed by suction filtration. The dilution, chilling and filtration were repeated. The filtrate was concentrated, and the resulting product was dried. The yield was 0.60 g. of solid melting at 48.049.0 C., and containing 8.0% sulfur. The theoretical sulfur content for the 1:1 adduct is 8.2%.
Application to 80X 80 print cloth of the crude adduct as its 2% solution in toluene was carried out in one dip and one nip to a wet pickup of 84%. The fabric was ovendried and air-equilibrated. It was then treated in one dip and one nip with a solution containing 2% sodium hydroxide and 1% sodium lauryl sulfate in water, to a wet pickup of 93%. It was cured at 135 C. for 5 minutes, washed in running water at 60 C. for 15 minutes, ovendried, extracted with boiling toluene, acetone, and tetrahydrofuran to remove any organic material present merely as a coating. It was again oven-dried and air-equilibrated. The cloth had a spray rating of 50 (AATCC Test Method 224952) indicating moderate water repellency caused by attachment of the long-chain alcohol.
EXAMPLE 4 The 1:1 adduct of ethylene glycol with divinyl sulfone was prepared as follows: to 5.6 ml. (6.2 g., 0.1 mole) of ethylene glycol was added 0.05 g. of sodium hydroxide. The mixture was warmed to 60 C. and the sodium hydroxide crushed. After the alkali had dissolved, the mixture was cooled to room temperature and added to 10 ml. (11.8 g., 0.10 mole) of divinyl sulfone in a 50 ml. beaker. The resulting mixture was stirred and warmed to 35 C., whereupon the temperature rose spontaneously. After 5 minutes it reached 55 C. and the beaker was immediately cooled in an ice bath to keep the temperature below 60 C. After 10 minutes longer, heat evolution ceased. The reaction mixture was warmed to C. for 5 minutes and then cooled. It was a highly viscous syrup completely miscible with water. The addition of 36 ml. of water gave 50 ml. of solution which was shaken with three 50 ml. portions of benzene to remove any unreactcd divinyl sulfone. Evaporation of the benzene extracts gave only 0.67 g. of divinyl sulfone. The aqueous phase containing the adduct was placed under an air jet to remove small amounts of benzene, after which it was odorless.
The 33% aqueous adduct was applied to 80 x 80 print cloth as follows: to 25 ml. of the solution was added 0.80 g. of sodium bicarbonate. The solution was applied in one dip, one nip to a wet pickup of 116%. The fabric was cured at C. for 5 minutes. It was washed in running water at 60 C. for 15 minutes, and after being oven-dried, was equilibrated with the atmosphere. The fabric properties were as follows: weight gain1l%; sulfur content3.11%; wet crease recovery angle-255 for untreated fabric); dry crease recovery-271 for untreated fabric); breaking strength loss-38% EXAMPLE 5 The 1:1 adduct of glycerol with divinyl sulfone was prepared as follows: to 9.2 g. (0.10 mole) of glycerol in a 50 ml. beaker was added 0.10 g. of sodium bicarbonate. The mixture was warmed to 60 C. with stirring until nearly all of the solid had dissolved. The solution was cooled to 30 C. and 10 ml. (0.1 mole) of divinyl sulfone was added. The mixture was warmed to 75 C. whereupon the two liquid phases merged and the temperature rose spontaneously to 85 C. The beaker was immediately cooled in an ice bath so as to keep the tem perature at 7580 C. After 10 minutes, heat evolution ceased. The solution was warmed to keep it at 80 for 5 minutes longer, and then was cooled. The product was a highly viscous, clear, watersoluble syrup. It was dissolved in 20 ml. of water to give 35 ml. of solution which was then shaken with three 30 ml. portions of benzene to remove any unreacted divinyl sulfone. Evaporation of the benzene extracts gave only 0.04 g. of divinyl sulfone. The aqueous phase (34 ml.) containing the adduct was diluted to 50 ml. with 16 ml. of water and placed under an air jet to remove traces of benzene. It was then clear and odorless.
Application of the adduct solution to 80 x 80 print cloth was carried out as follows: the 36% solution was diluted with water and 3.3% of sodium bicarbonate was added. The fabric was treated in one dip and one nip to a wet pickup of 8692%. It was cured at 135 C. for 5 minutes, was washed in running Water at 60 for 15 minutes, was oven-dried and air-equilibrated. The fabric properties are given in the following table.
1 Decrease in breaking strength as compared with untreated fabric. 2 Untreated.
EXAMPLE 6 The 1:1 adduct of glycerol with divinyl sulfone was prepared in the following way: A mixture of 9.2 g. (0.10 mole) glycerol and 0.05 g. of sodium methoxide powder in a 50 ml. beaker was war-med to 50 C. and stirred until solution was complete. Then 10 ml. (0.10 mole) of divinyl sulfone was added. The mixture was heated to 90 C., causing the two liquid phases to merge, and then to 115 whereupon the temperature rose spontaneously to 140 C. Suflicient cooling was applied to keep the temperature from rising further. After 5 minutes, heat evolution ceased. The mixture was warmed to keep it at 130 for 5 minutes longer. The product at room temperature was a highly viscous, water-soluble syrup. It was diluted with 20 ml. of water and shaken with three 20 ml. portions of benzene to remove unreacted divinyl sulfone. Evaporation of the benzene extracts gave only 0.04 g. of the divinyl sulfone. The aqueous phase (33 ml.) was diluted to 50 ml. with water, giving a 36% solution of the adduct. This was odorless after traces of benzene were evaporated from it.
Application of the adduct at a concentration of 18% to 80 x 80 print cloth was similar to that of Example 4. The weight gain was 16% using a wet pickup of 115%. The fabric properties were as follows: sulfur content-2.14%; wet crease recovery-301; dry crease recovery257, breaking strength loss-28%. The wet and dry crease re covery of untreated fabric were 160 and 165 respectively.
Repetition of the above adduct preparation using twice as much sodium methoxide catalyst resulted in uncontrollable heat evolution and polymerization at 50 C.
EXAMPLE 7 The adduct preparation of Example 6 was repeated using only 6.9 g. (0.075 mole) of glycerol, so as to give a glycerol/divinyl sulfone mole ratio of 3:4. The adduct in 30 ml. of water was shaken with benzene as usual, after which it existed as two aqueous phases. These were merged after separation from the benzene layer, by addition of 11 ml. of tetrahydrofuran to give a total volume of 52 ml. The adduct concentration was approximately 32%.
The solution was diluted with varying amounts of aqueous tetrahydrofuran (33% by volume), and sodium bicarbonate was added to the extent of 3% of the total weight of the mixture. The solution was applied to 80 x 80 print cloth as in Example 4, a wet pickup of Ill-112% being used. The fabric properties obtained were as follows:
Wt. Wet Dry B.S. Sulfur Adduct Conc., Gain, Crease Crease Loss, Content,
percent percent Recovery, Recovery, percent percent de deg.
l Untreated.
EXAMPLE 8 Mole ratio glycerol/sulfones 0 0. 25 0. 50 1. 35 2.0 2. 7 Percent Weight gain 10 16 19 16 9 EXAMPLE 9 The attachment of sorbitol to cellulose with divinyl sulfone was carried out in the same way as for glycerol in Example 8. A weight gain of 23% was obtained at a sorbitol/sulfone mole ratio of 0.5.
EXAMPLE Pentaerythritol was attached to cellulose with divinyl 8 sulfone by the method used with glycerol in Example 8. A sample of x 80 print cloth so treated showed a weight gain of 17% whereas in the absence of pentaerythritol the treatment produced a weight 'gain of only 7.5%. The test sample had high wet and dry wrinkle resistance.
EXAMPLE 11 Polyvinyl alcohol was attached to cellulose by the onestep method, as follow: a mixture of 1.0 g. polyvinyl alcohol in 15 ml. of water was heated to boiling and stirred for 10 minutes. The solution was cooled to room temperature, and a solution of 0.8 g. sodium bicarbonate in 10 ml. of water was added. The mixture was stirred until homogeneous. Then 0.50 ml. of divinyl sulfone was added. The rather viscous solution was used to treat 80 x 80 print cloth in 2 dips and 2 nips, care being taken to obtain thorough Wetting of the fabric. The wet pickup was The fabric was cured at C. for 5 minutes, and washed in running water at 60 C. for 30 minutes. It was oven-dried and equilibrated with the atmosphere. It then exhibited a highly starched feel. The weight gain was 6%.
Fabric properties observed were: wet crease recovery 267 (untreated fabric-156), stiffness (bending moment)44.02 10 lbs.
(untreated fabric-5 .25 x 10 breaking strength lossl6%.
EXAMPLE l2 Starch was attached to cellulose as follows: 1.0 g. of potato starch powder was added to 25 ml. of boiling water and the mixture was boiled for 15 minutes. The solution was cooled to room temperature and 0.8 g. of sodium bicarbonate was added. After this dissolved, 0.50 ml. of divinyl sulfone was added. The resulting solution was stable at room temperature, in contrast to solutions containing starch and divinyl sulfone at a pH of 10 or above. The latter solutions quickly gelled due to crosslinking of the starch by the divinyl sulfone. The starch-sulfonebicarbonate solution was applied to 80 x 80 print cloth in one dip, one nip to a wet pickup of 91%. Curing was at 135 C. for 10 minutes. The fabric was washed in running water at 60 for 30 minutes, and was oven-dried prior to equilibration with the atmosphere. The weight gain of 4.5% was unaffected by 2 /2 hours in running water at 60 C., or by 30 minutes in boiling water. Fabric treated as above except that the divinyl sulfone was omitted showed a 2% weight gain, but this was entirely removed by extended washing following by the treatment with boiling water.
The fabric properties were then as follows:
Polyvinyl alcohol was attached to cellulose in the following way: a mixture of 1.0 g. of polyvinyl alcohol and 24 ml. of water was heated to boiling for 10 minutes. The solution was cooled and 0.50 ml. of divinyl sulfone was added. The resulting solution was applied in one dip and one nip to 80 x 80 print cloth to a wet pickup of 100%. The cloth was dried at 70 C. for 3 minutes. It was then soaked for 5 minutes in 20% aqueous sodium hydroxide at room temperature. The treated fabric was thoroughly washed, and was kept in boiling water for one hour to remove any unattached polyvinyl alcohol. The dried and airequilibrated fabric showed a weight increase of 6.5% and a crisp starched feel. When wet, it had high wrinkle resistance.
I claim:
1. The adduct of divinyl sulfone and a monohydric alcohol selected from the group consisting of t-butyl alcohol and n-octadecyl alcohol wherein the adduct components are present in a molecular ratio of 1:1, said adduct represented by the formula wherein the R'O moiety is derived from the alcohol.
2. The adduct of claim 1 wherein the RO moiety of the adduct is derived from t-butyl alcohol.
3. The adduct of claim 1 wherein the R-O moiety of the adduct is derived from n-octadecyl alcohol.
4. The adduct of divinyl sulfone and a polyhydric alcohol wherein the adduct components are present in a molecular ratio of 1:1, the said adduct represented by the formula 9. A process for preparing the 1:1 adduct of a monohydric alcohol and divinyl sulfone which comprises reacting at a temperature of from 20 to C. and in the presence of from 0.1% to 5% by weight of an alkaline catalyst the monohydric alcohol with divinyl sulfone in a mole ratio that does not exceed 1.5: l.
10. A process for preparing the essentially monomeric 1:1 adduct of a polyhydric alcohol and divinyl sulfone which comprises reacting at a temperature of from 20 to 140 C. and in the presence of from 0.1 to 5% by weight of an alkaline catalyst the polyhydric alcohol with divinyl sulfone within the mole ratio limits of 0.85:1 and 12:1.
11. A process for preparing the adducts of polyhydric alcohols with divinyl sulfone which comprises reacting at a temperature of from 20 to 140 C. and in the presence of from 0.1 to 5% by weight of an alkaline catalyst the polyhydric alcohols with divinyl sulfone within the mole ratio limits of 0.66:1 and 0.85:1.
References Cited UNITED STATES PATENTS 3,068,123 12/1962 Feldman 260607 CHARLES B. PARKER, Primary Examiner.
D. R. PHILLIPS, Assistant Examiner.

Claims (2)

1. THE ADDUCT OF DIVINYL SULFONE AND A MONOHYDRIC ALCOHOL SELECTED FROM THE GROUP CONSISTING OF T-BUTYL ALCOHOL AND N-COTADECYL ALCOHOL WHEREIN THE ADDUCT COMPONENTS ARE PRESENT IN A MOLECUALR RATIO OF 1:1, SAID ADDUCT REPRESENTED BY THE FORMULA
4. THE ADDUCT OF DIVINYL SULFONE AND A POLYHYDRIC ALCOHOL WHEREIN THE ADDUCT COMPONENTS ARE PRESENT IN A MOLECULAR RATIO OF 1:1, THE SAID ADDUCT REPRESENTED BY THE FORMULA
US303696A 1961-12-19 1963-01-17 Vinylsulfonylethyl-hydroxy ethers Expired - Lifetime US3396198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US303696A US3396198A (en) 1961-12-19 1963-01-17 Vinylsulfonylethyl-hydroxy ethers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US160673A US3359061A (en) 1961-12-19 1961-12-19 Process for making alkoxyethylsulfonylethyl ethers of cellulose
US303696A US3396198A (en) 1961-12-19 1963-01-17 Vinylsulfonylethyl-hydroxy ethers

Publications (1)

Publication Number Publication Date
US3396198A true US3396198A (en) 1968-08-06

Family

ID=26857114

Family Applications (1)

Application Number Title Priority Date Filing Date
US303696A Expired - Lifetime US3396198A (en) 1961-12-19 1963-01-17 Vinylsulfonylethyl-hydroxy ethers

Country Status (1)

Country Link
US (1) US3396198A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3517068A (en) * 1963-05-01 1970-06-23 I C I Organics Inc Vinyl ethyl ether or thioether sulfones
US4696980A (en) * 1984-05-17 1987-09-29 Jerker Porath Sulfone activated thioether adsorbents for the separation of proteins and the like

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3068123A (en) * 1960-09-27 1962-12-11 Dan River Mills Inc Divinyl sulfone derivatives useful for rendering cellulosic textile fabric crease-resstant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3068123A (en) * 1960-09-27 1962-12-11 Dan River Mills Inc Divinyl sulfone derivatives useful for rendering cellulosic textile fabric crease-resstant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3517068A (en) * 1963-05-01 1970-06-23 I C I Organics Inc Vinyl ethyl ether or thioether sulfones
US4696980A (en) * 1984-05-17 1987-09-29 Jerker Porath Sulfone activated thioether adsorbents for the separation of proteins and the like

Similar Documents

Publication Publication Date Title
US2971815A (en) Chemically modified textiles
US2763649A (en) Melamine hardenable ternary
US3297519A (en) Water dispersible glycidyl ether of poly (bisphenol a) ether of polyethylene glycol
US3396198A (en) Vinylsulfonylethyl-hydroxy ethers
US3359061A (en) Process for making alkoxyethylsulfonylethyl ethers of cellulose
US2518444A (en) Manufacture and application of new textile treatment agents
Tesoro et al. Chemical modification of cotton with derivatives of divinyl sulfone
US3278561A (en) Hydrophobic diglycidylamines
US3639144A (en) Organo-phosphorus compounds containing perfluoroalkyl radicals and their application to cellulosic textiles
US3477802A (en) Modification of cellulose,polyvinyl alcohol and starch with compounds characterized by ethylene radicals having an electron attracting group which stabilizes carbanions on one carbon atom thereof and an alkoxy or hydroxy group on the other
US3748364A (en) Diether sulfones
US3896088A (en) Fluorinated oily soil release agents
US3219708A (en) Process for cross-linking cellulose with formaldehyde adducts of divinyl sulfone
US3230031A (en) Process for making aryloxyethylsul-fonylethyl ethers of cellulose
US3584000A (en) Certain phenyl n-aryl or n-heteroaryl carbamates and derivatives thereof
US3316308A (en) Polymeric adducts of divinyl sulfone with water and preparation thereof
US3202474A (en) Process for crosslinking cellulose with formaldehyde adducts of divinyl sulfone
US3281204A (en) Polymeric adducts of divinyl sulfone with water as crosslinking agents for cellulose
US3702232A (en) Tris(2-chloroethyl)phosphoramide used as a crosslinking agent for cellulosic compositions
US3636088A (en) Haloalkyl phosphinic acids and their application to cotton
US3427332A (en) Perfluoroalkyl amide derivatives of polyoxyalkylene carbamates
US3701792A (en) 1,4-bis-(heptafluoroisopropoxy)-2,3-epoxy-butane
US3972924A (en) 1-(1H,1H-perfluorooctyl)-1,3-trimethylenediphosphonic tetrachloride
DE2154811A1 (en) METHOD OF FLAME RETAINING ORGANIC FIBER MATERIAL
US3512922A (en) Novel cyclic compositions