US3394096A - Wax compositions for impregnating paperboard - Google Patents
Wax compositions for impregnating paperboard Download PDFInfo
- Publication number
- US3394096A US3394096A US43908865A US3394096A US 3394096 A US3394096 A US 3394096A US 43908865 A US43908865 A US 43908865A US 3394096 A US3394096 A US 3394096A
- Authority
- US
- United States
- Prior art keywords
- wax
- paperboard
- composition
- board
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title description 53
- 239000011087 paperboard Substances 0.000 title description 26
- 239000001993 wax Substances 0.000 description 60
- 238000002844 melting Methods 0.000 description 21
- 230000008018 melting Effects 0.000 description 21
- 230000014759 maintenance of location Effects 0.000 description 18
- 239000004200 microcrystalline wax Substances 0.000 description 12
- 235000019808 microcrystalline wax Nutrition 0.000 description 12
- 229920001577 copolymer Polymers 0.000 description 10
- 239000004615 ingredient Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000012188 paraffin wax Substances 0.000 description 6
- 235000019809 paraffin wax Nutrition 0.000 description 6
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 6
- 235000019271 petrolatum Nutrition 0.000 description 6
- -1 polyethylene Polymers 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 5
- 230000035515 penetration Effects 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 235000013305 food Nutrition 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000002655 kraft paper Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- QLZJUIZVJLSNDD-UHFFFAOYSA-N 2-(2-methylidenebutanoyloxy)ethyl 2-methylidenebutanoate Chemical compound CCC(=C)C(=O)OCCOC(=O)C(=C)CC QLZJUIZVJLSNDD-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/60—Waxes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L91/00—Compositions of oils, fats or waxes; Compositions of derivatives thereof
- C08L91/06—Waxes
- C08L91/08—Mineral waxes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G73/00—Recovery or refining of mineral waxes, e.g. montan wax
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/34—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/35—Polyalkenes, e.g. polystyrene
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/34—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/37—Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31801—Of wax or waxy material
- Y10T428/31804—Next to cellulosic
- Y10T428/31808—Cellulosic is paper
Definitions
- this invention relates to novel wax compositions particularly suitable for impregnating paperboard in order to improve the wet crush strength thereof.
- the invention relates to paperboard impregnated with either of these wax compositions as an article of manufacture.
- the invention also embraces methods of improving the wet crush strength of paperboard which involve impregnating the latter with either of the novel wax compositions.
- the food In the short-distance transportation of certain types of foods, e.g., chickens, fish, etc., the food is often packed in ice in the shipping container. Since most of the ice melts during transportation, the material from which the container is fabricated must have a high wet crush strength so that the containers can be stacked without danger of collapsing. Ideally the wet crush strength would be at least as high as the dry strength.
- wood containers have probably been the most widely used since they have adequate wet crush strength.
- corrugated paperboard containers are probably the most widely used containers if all packaging applications are considered, they are seldom used where the goods are packed in ice because paperboard has almost no wet crush strength.
- impregnation of the board with wax should permit immersion of the board in water without loss of more than preferably without any loss, of its crush strength.
- the strength retention of the board after submergence in liquid Water for 24 hours is at least 90% and is preferably at least 100%. The test used to measure crush strength is described in detail subsequently. I
- the other characteristic is that the crush strength property described above must be obtained with a wax pick-up of not more than 55%.
- a wax pick-up of 55% means that the amount of wax in the impregnated board is 55% by weight of the unimpregnated board, which is equivalent to 36.7% based on the total Weight of the impregnated board.
- Another manner of expressing this "ice second characteristic is that the board has a strength retention of at least at a wax pick-up not exceeding 55%. It will be noted that these two characteristics are extremely severe. Although there are a few wax compositions which will yield strength retentions of 90- the wax pick-up required is substantially higher than 55%.
- the use of a 24-hour submergence period in the water immersion test is substantially longer than the period normally employed. For example, 'in US. 3,085,026 a two-hour submergence period is used.
- composition A My two novel compositions, referred to hereinafter as Composition A and Composition B, will nowbe described in detail after which their remarkable effectiveness in improving the wet crush strength of paperboard will be shown by several examples.
- composition A The ingredients of Composition A and the operable and preferred amount of each ingredient are as follows. All percentages herein are by Weight of the total composition.
- operable amount means that so long as each ingredient is present in the amount specified the strength retention of the impregnated paperboard will be at least 90% at a wax pick-up of 55%. Best results are obtained, however, when each ingredient is present in the preferred amount in which case the strength retention will usually be at least 100% at a wax pick-up of 55%.
- Paraffin waxes are well known articles of commerce and can be obtained from petroleum by well known techniques. Paraffin waxes normally have melting points in the range of -1'65 F. (ASTM D87-57), penetrations in the range of 5-25 dmm. (ASTM D1321-61T, 100 g., 5 sec), and viscosities in the range of 30-50 S.U.S. (ASTM D446-53). The melting points, penetrations, and viscosities of the microcrystalline waxes are normally -200 F., 5-25 dmm., and 60-100 S.U.S., the tests by which these properties are determined being those used for parafiin wax except for melting point which is determined by ASTM Dl27-60. The paraffin and microcrystalline waxes preferably have melting points of l35-155 F. and -180 F. respec tively.
- the polyethylene suitable for use in Composition A should be a wax grade polyethylene. Accordingly it should have a molecular weight between 2000 and about 20,- 000 (by solution viscosity), preferably 3,000-15,000. Although not critical, polyethylenes suitable for the present purpose will normally have a density of 0.87-0.97 gms./cc. (ASTM D1505-57T).
- the ethylene-ethyl acrylate polymer is made by copolymerizing ethylene and ethyl acrylate according to well known techniques.
- suitable copolymers can be prepared by the procedures described in US. Patent 2,200,429.
- the copolymer should contain 10-40% ethyl acrylate, preferably 15-35%.
- the copolymer will normally have a melt index of 01-100 (gms./ 10 min.) and a Vicat Softening Point of 50- 500 F.
- composition B The ingredients of Composition B and the operable and preferred amount of each ingredient are as follows.
- waxes are made by reacting hydrogen and carbon monoxide and are characterized by a high percentage, e.g., over 80%, of normal paraflins.
- Fischer-Tropsch waxes normally have, and should have for the present purpose, melting points of 180250 F.
- melting point is 205 -235 F.
- compositions of the invention are, of course, homogeneous blends of the various ingredients. They can be prepared by heating the paraffin wax to, say, 200 F. at which temperature it will be molten. The other three ingredients are then added and the mixture stirred until it is homogeneous.
- the amount of the composition applied to the paperboard will vary depending upon use conditions, etc. It was pointed out previously that the superior properties of our compositions are evidenced by the fact that they yield strength retentions of at least 90%, usually at least 100%, at wax pick-ups as low as As will be evi dent from some of the examples infra, strength retentions of at least 90100% can often be obtained at wax pickups of less than 55%. In any event, regardless of the wax pick-up the compositions will yield higher strength retentions than are obtained with conventional compositions at the same wax pick-up.
- the amount of the present compositions applied to the paperboard will normally be equivalent to a wax pick-up of 3055% which is equivalent to 23.1-36.7% based on the total weight of the impregnated board. In most cases the wax content of the impregnated board will be at least 28.6% (a wax pickup of 40%) and will rarely exceed 36.7%.
- the paper stock used is 6" x 6" sheets of brown kraft paper (43 lbs./ 1000 ft. This particular stock is a typical paperboard for making corrugated board.
- a 6" x 6" sheet of board is weighed and then impregnated with the wax composition to be evaluated by dipping the board in the molten composition at 190 F. for 15 seconds and then removing the board and allowing it cool to room temperature.
- the impregnated board is then Weighed and the wax pick-up calculated.
- the amount of wax composition in the board is adjusted to the desired level by placing the impregnated board vertically in an oven at 190 F. and allowing excess wax to melt and drain off the board. Since it is extremely important that the board be uniformly impregnated the board is periodically inverted in the oven. After a short period the board is removed and weighed and the wax pick-up is again calculated. This oven draining procedure is then repeated until the desired wax pick-up is obtained.
- the impregnated board is then submerged in water at 73 F. for 24 hours after which time it is removed, excess water is wiped therefrom, and five strips /2 x 6" are cut from the board. Each of these 5 strips is then 4 immediately subjected to the Ring Crush Test using the well known Hinde-Dauch Crush Tester.
- the apparatus employed in this includes a holder which comprises a flat aluminum base containing a circular cutout A" deep by 6" in circumference and a plurality of circular discs A1 thick and of varying diameter.
- Each of the discs can be placed in the cutout and when this is 'done an annular groove is formed into which the /2 x 6" strip to be tested is inserted in an edgewise position leaving a width of A" protruding above the top of the holder.
- the disc employed is selected so that the annular groove receives the specimen snugly.
- the test is conducted by resting a flat surface on the entire top edge of the specimen and then applying force downward against the surface, i.e., against the specimen edge.
- the pounds required to crush the specimen is the wet crush strength for that specimen and the average wet crush strength for the five specimens is the wet crush strength of the impregnated paperboard.
- Table I shows the strength retention of kraft paper of the type described above'when impregnated with two diiferent wax compositions, the wax pickup in each case being 55%.
- One composition is exemplary of Composition A and the other composition is exemplary of Composition B.
- the paraffin wax used in each composition has a melting point of 145 F., a penetration at 77 F. of 9 dmm., and a viscosity at 210 F. of 40 S.U.S.
- the microcrystalline wax used in each composition has a melting point of 170 F., a penetration at 77 F. of 16 dmm., and a'viscosity at 210 F. of S.U.S.
- the ethylene ethyl acrylate copolymer used in each composition has an ethyl acrylate content of 18%, a melt index of 6, and is known commercially as DQD 6169.
- the polyethylene used in one composition has a molecular weight of 7000, a density of 0.93, and is known commercially at DYLT.
- the Fischer-Tropsch wax used in one composition has a melting point of about 215 F. and is known commercially at Parafiint.
- composition 3 is the same as Composition 2 except that the ethylene-ethyl acrylate copolymer is replaced by an ethylene-vinyl acetatc copolymer having a vinyl acetate content of about 25%. The latter type of copolymer is widely used in wax coating compositions.
- Composition 4 is the same as Composition 1 except that the polyethylene used (known commercially as DYNH-3) has a molecular weight in excess of about 25,000 instead of being 7000.
- An article of manufacture comprising paperboard impregnated with a wax composition containing 45-70% of a parafiin wax having a melting point of 120-165 E, 25-50% of a microcrystalline wax having a melting point of l40-200 F., 1-10% of the copolymer of ethylene and ethyl acrylate containing -40% ethyl acrylatc, and 1-10% of a Fischer-Tropsch wax having a melting point of ISO-250 F., said impregnated paperboard having a strength retention of at least 90% after submergence in liquid water for 24 hours when said wax composition constitutes 36.7% of said impregnated paperboard, all percentages being by weight.
- a wax impregnating composition for paperboard comprising 45-70% of a paraflin wax having a melting point of 165 F; 25-50% of a microcrystalline Wax having a melting point of l40200 F., 1-10% of the copolymer of ethylene and ethyl acrylate containing 10-40% ethyl acrylate, and 110% of a Fischer-Tropsch wax having a melting point of 180-25'0 F.
- Wax composition according to claim 3 wherein the amount of paraffin wax is 5 0-65%, the amount of microcrystalline wax is 30-45%, the amount of Fischer- Tropsch Wax is 2-8%, the amount of copolymer is 2-8%, the melting point of the paraffin wax is F., the melting point of the microcrystalline wax is -180 F., and the melting point of the Fischer- Tropsch wax is 205 -235 F.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Paper (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US43908865 US3394096A (en) | 1965-03-11 | 1965-03-11 | Wax compositions for impregnating paperboard |
GB334366A GB1136816A (en) | 1965-03-11 | 1966-01-25 | Wax compositions for impregnating paperboard |
IT506366A IT943019B (it) | 1965-03-11 | 1966-02-28 | Composizione cerosa per impregna zione della carta o cartone ed articoli impregnati con tale com posizione |
NL6603072A NL6603072A (OSRAM) | 1965-03-11 | 1966-03-09 | |
FR52892A FR1471410A (fr) | 1965-03-11 | 1966-03-10 | Compositions de cire pour l'imprégnation du carton |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US43908865 US3394096A (en) | 1965-03-11 | 1965-03-11 | Wax compositions for impregnating paperboard |
Publications (1)
Publication Number | Publication Date |
---|---|
US3394096A true US3394096A (en) | 1968-07-23 |
Family
ID=23743240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US43908865 Expired - Lifetime US3394096A (en) | 1965-03-11 | 1965-03-11 | Wax compositions for impregnating paperboard |
Country Status (4)
Country | Link |
---|---|
US (1) | US3394096A (OSRAM) |
GB (1) | GB1136816A (OSRAM) |
IT (1) | IT943019B (OSRAM) |
NL (1) | NL6603072A (OSRAM) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4196247A (en) * | 1978-04-17 | 1980-04-01 | American Can Company | Packaging material having non-blocking coating |
US5114482A (en) * | 1990-03-02 | 1992-05-19 | Hertel Terry J | Ski wax for use with sintered base snow skis |
US20040139885A1 (en) * | 2003-01-21 | 2004-07-22 | Hudson Carl W. | Wax composition for construction board application |
WO2017128745A1 (zh) * | 2016-01-30 | 2017-08-03 | 扬州金橡塑化工材料厂 | 复合型高分子蜡的制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE634016A (OSRAM) * | 1962-05-14 | 1900-01-01 | ||
US2967781A (en) * | 1959-10-07 | 1961-01-10 | Atlantic Refining Co | Wax coating composition and paperboard coated therewith |
US3085026A (en) * | 1960-09-28 | 1963-04-09 | Exxon Research Engineering Co | Impregnated corrugated paperboard and process of making same |
US3102040A (en) * | 1960-03-31 | 1963-08-27 | California Research Corp | Paraffin wax compositions |
NL6400903A (OSRAM) * | 1963-02-05 | 1964-08-06 | ||
FR1389415A (fr) * | 1962-03-12 | 1965-02-19 | Socony Mobil Oil Co | Composition plastique de revêtement |
US3205186A (en) * | 1961-03-09 | 1965-09-07 | Sun Oil Co | Coating composition containing wax, polyolefin, and ethylene-vinyl acetate copolymer |
US3245930A (en) * | 1963-05-21 | 1966-04-12 | Exxon Research Engineering Co | Compositions containing paraffin wax, semi-microcrystalline wax, ethylenevinyl acetate copolymer and polyethylene |
-
1965
- 1965-03-11 US US43908865 patent/US3394096A/en not_active Expired - Lifetime
-
1966
- 1966-01-25 GB GB334366A patent/GB1136816A/en not_active Expired
- 1966-02-28 IT IT506366A patent/IT943019B/it active
- 1966-03-09 NL NL6603072A patent/NL6603072A/xx unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2967781A (en) * | 1959-10-07 | 1961-01-10 | Atlantic Refining Co | Wax coating composition and paperboard coated therewith |
US3102040A (en) * | 1960-03-31 | 1963-08-27 | California Research Corp | Paraffin wax compositions |
US3085026A (en) * | 1960-09-28 | 1963-04-09 | Exxon Research Engineering Co | Impregnated corrugated paperboard and process of making same |
US3205186A (en) * | 1961-03-09 | 1965-09-07 | Sun Oil Co | Coating composition containing wax, polyolefin, and ethylene-vinyl acetate copolymer |
FR1389415A (fr) * | 1962-03-12 | 1965-02-19 | Socony Mobil Oil Co | Composition plastique de revêtement |
BE634016A (OSRAM) * | 1962-05-14 | 1900-01-01 | ||
NL6400903A (OSRAM) * | 1963-02-05 | 1964-08-06 | ||
US3245930A (en) * | 1963-05-21 | 1966-04-12 | Exxon Research Engineering Co | Compositions containing paraffin wax, semi-microcrystalline wax, ethylenevinyl acetate copolymer and polyethylene |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4196247A (en) * | 1978-04-17 | 1980-04-01 | American Can Company | Packaging material having non-blocking coating |
US5114482A (en) * | 1990-03-02 | 1992-05-19 | Hertel Terry J | Ski wax for use with sintered base snow skis |
US20040139885A1 (en) * | 2003-01-21 | 2004-07-22 | Hudson Carl W. | Wax composition for construction board application |
US6830614B2 (en) * | 2003-01-21 | 2004-12-14 | Exxonmobile Research And Engineering Co. | Wax composition for construction board application |
WO2017128745A1 (zh) * | 2016-01-30 | 2017-08-03 | 扬州金橡塑化工材料厂 | 复合型高分子蜡的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
NL6603072A (OSRAM) | 1966-09-12 |
GB1136816A (en) | 1968-12-18 |
IT943019B (it) | 1973-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2728735A (en) | Wax composition | |
US3085026A (en) | Impregnated corrugated paperboard and process of making same | |
US3205186A (en) | Coating composition containing wax, polyolefin, and ethylene-vinyl acetate copolymer | |
US3280064A (en) | Hot melt coating compositions containing paraffin wax, petroleum ceresin wax, and a copolymer of ethylene or propylene and a monoethylenically unsaturated ester | |
US3306882A (en) | Wax-resin compositions | |
US3428591A (en) | Wax compositions containing graft polymer of polyethylene and to paperboards coated therewith | |
NZ288537A (en) | Paperboard coated with a composition containing triglyceride(s) | |
US3440194A (en) | Wax composition containing ethylene vinyl acetate or ethylene ethyl acrylate and a graft copolymer of ethylene with maleic acid | |
US3362839A (en) | Wax coating composition containing n-substituted fatty amides | |
US3394096A (en) | Wax compositions for impregnating paperboard | |
US3048551A (en) | Polyethylene-wax compositions | |
US3117101A (en) | Wax coating compositions | |
US2842508A (en) | Polyethylene-wax compositions and method for preparing same | |
US3322709A (en) | Coating compositions | |
US3467547A (en) | Corrugated paperboard having improved wet strength properties | |
US4224204A (en) | Use of hydrocarbon polymers to improve oil-containing waxes | |
AU2009253717B2 (en) | Protective coating composition | |
US2601109A (en) | Method of preparing blends of hydrocarbon polymers and petroleum waxes | |
US2803612A (en) | 9-octadecenamide-polyethylene compositions | |
US3178383A (en) | Mixed-wax, ethylene-vinyl acetate nonflaking coating composition | |
US3515691A (en) | Wax polymer coating compositions | |
US2967781A (en) | Wax coating composition and paperboard coated therewith | |
US3236796A (en) | Microcrystalline wax coated wrapper sheet | |
US3197426A (en) | Coating composition containing wax, thermoplastic petroleum resin, and ethylene-vinyl acetate copolymer | |
US3654207A (en) | Block-resistant heat sealable wax composition |