US3392301A - Klystron having high frequency radiation means comprising a half-wave short-circuited choke - Google Patents
Klystron having high frequency radiation means comprising a half-wave short-circuited choke Download PDFInfo
- Publication number
- US3392301A US3392301A US469652A US46965265A US3392301A US 3392301 A US3392301 A US 3392301A US 469652 A US469652 A US 469652A US 46965265 A US46965265 A US 46965265A US 3392301 A US3392301 A US 3392301A
- Authority
- US
- United States
- Prior art keywords
- klystron
- gap
- collector
- high frequency
- choke
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J19/00—Details of vacuum tubes of the types covered by group H01J21/00
- H01J19/74—Cooling arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
Definitions
- a high power klystron of the metal ceramic'construct tion type having a hollow collector which is spaced from the adjacent end of the last drift tube by a ceramic member which forms part of the evacuated envelope is disclosed.
- a half- Wave choke is provided which is external with respect to the gap and short circuited at its outer end outside the evacuated space of the klystron.
- the length of the halfwave choke is made up of the sum of the radial length of the gap, the length of a space communicating with the gap and situated between a part of the outer surface of the collector structure and a ceramic member which bridges the gap and forms part of the evacuated envelope of the tube, and the length, parallel to the axis of the tube, of the ceramic material of the ceramic member.
- This invention relates to high frequency high power klystrons and more particularly to high frequency high power klystrons of so called metal-ceramic construction type wherein the electron beam, after passing the drift tubes of the klystron enters a 'hollow collector which is spaced from the adjacent end of the last drift tube by a ceramic member which form part of the evacuated envelope of the klystron.
- the length of the half wave choke is made up of the sum of the radial length of the gap, the length of a space communicating with said gap and situated between a part of the outer surface of the collector structure and a ceramic member which bridges the said gap and forms part of the evacuated envelope of the tube, and the length, parallel to the axis of the tube, of the ceramic material of said ceramic member.
- the said part of the outer surface of the collector structure is preferably (in the case of a water cooled collector) part of the outer wall of the cooling water jacket thereof.
- the ceramic member is metallised on 1ts inner and. outer surfaces, the metallisation on the inner surface being connected to a metal part of the klystron structure on one side only of the gap and the metallisation on the outer surface being connected to a metal part of the klystron structure on the other side only of said gap.
- theinner metalhsation extends from one end of the ceramic member but stops short of theend thereof nearer the collector and the outer metallisation extends from the other end of said member but stops short of said one end.
- the half wave choke is short circu ted at its outer end by means of a foil wrapping in electrical contact with the metallisation on the outer surface of the ceramic member and extending over but insulated as respects DC from a metal member in electrical connection with the last drift tube.
- the foil wrapping may be conveniently held in place by one or more encircling tensioned elastic rings.
- the invention is illustrated in the accompanying drawing which shows schematically and half in section in the centre line, a preferred embodiment of the invention so far as is necessary to an understanding thereof.
- the drawing shows the adjacent ends of the last drift tube and the collector together with the parts adjacent the gap between said drift tube and collector.
- the remainder of the klystron is in accordance with known practice and is accordingly not illustrated.
- the collector is water jacketed for cooling the water jacket space, which is 1ndicated by the reference letter Wbeing the space between the parts 4 and 5 and the collector 2, containing a partition Wall 6 so that water circulation is up one side of this wall and down the other. It will be observed that the water jacket extends practically to the end of the col lector so that very effective cooling is obtained, the collector being water jacketed almost up to its entry end.
- the reference letter W indicates a water jacket space round the drift tube 1.
- the said drift tube is seated in a mounting flange member 7 which is of ferro-magnetic material and forms part of the usual focussing magnetic circuit of the klystron.
- This flange is parallel to and spaced from the parts 3 and 4.
- a ceramic cylinder 8 is provided between the part 7 and a flange 9 extending outwardly from the outer wall of the collector water jacket.
- This ceramic cylinder is metallised by molybdenum which is fired on and then nickel plated, the metallisation M being on both inner and outer faces but stopping short of the end adjacent the flange 9 on the inner face and also stopping short of the end adjacent the flange 7 on the outer face.
- the ceramic cylinder 8 is fixed in position by means of re-entrant metal ring members 10 and 11 adjacent its ends as in the usual way.
- Each re-entrant ring is constituted by two rings welded together when they meet to give a vacuum seal the inner of these two rings being flanged and fitted to the ceramic as shown.
- ester tape the tape being also turned over the edge of the ring to the inside as shown.
- a wrapping 13 of metal foil e.g. aluminium, which is insulated from the ring by the tape but is in good electrical contact with the metallisation M on the outside of the ceramic cylinder 8.
- Good contact between the foil 13 and the metallisation is maintained by an encircling tensioned neoprene rubber or similar elastic band 14.
- a wider similar outer rubber or like band is fitted, this band being of such Width as to extend over and between the rings 10 and 11. Thisholds the foil 13 tight against the tape 12 and provides an outer cover between the rings 10 and 11.
- the inner metallisation on the ceramic cylinder 8 is in good electrical contact with the ring 10 and the outer metallisation is in good electrical contact with the ring 11.
- the gap between the parts 1 and 7 on the one hand and the parts 3 and 4 on the other; the space extending at right angles to that gap, and between the parts 5 and 8; and the dielectric-filled (ceramic-filled) space between the inner and outer metallic coatings M on the ceramic cylinder 8 are of such pre-determined combined length as to be electrically one half a wave length long at the mean designed working frequency of the tube so as to constitute a half wave length line which is short circuited at its outer end, outside the evacuated space of the tube, by means of the foil 13 which, as respects the working high frequency, short circuits the outer metallisation 0n the cylinder 8 to the upper ring 10, the tape 12, which is an insulator so far as DC is concerned being, of course, ineffective to prevent the required HF short circuit occurring.
- the radiation-preventing half-wave choke is not only external with respect to the gap from which radiation is to be prevented but extends outside the evacuated envelope of the tube, the outward part of the length of the choke being constituted by part of the envelope itself (the metallised ceramic cylinder 8) and being short circuited (by the foil 13) outside the vacuum.
- a high power klystron of the metal-ceramic construction type defining an evacuated envelope and including at least one drift tube and a hollow collector which is spaced from the adjacent end of the last drift tube by a ceramic member which forms part of the evacuated envelope wherein high frequency radiation from the gap between the last drift tubeand the collector is prevented by means of a half-wave choke which is external with'respe'ct to said gap and is short circuited at its outer end outside the evacuated space of the klystron, the length of the half wavec'hokebeing made up of the sum of the radial length of the gap, the length of a space communicating with said gap and situated between a part of the outer surface of the collector structure and a ceramic member which bridges said gap and forms part of the evacuated envelope of the tube, and the length, parallel to the axis of the tube, of the ceramic material of said ceramic member.
- a klystron as claimed in claim 5 wherein the foil wrapping i held in place by one or more encircling tensioned elastic rings.
Landscapes
- Microwave Tubes (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB28580/64A GB1035399A (en) | 1964-07-10 | 1964-07-10 | Improvements in or relating to klystrons |
Publications (1)
Publication Number | Publication Date |
---|---|
US3392301A true US3392301A (en) | 1968-07-09 |
Family
ID=10277861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US469652A Expired - Lifetime US3392301A (en) | 1964-07-10 | 1965-07-06 | Klystron having high frequency radiation means comprising a half-wave short-circuited choke |
Country Status (4)
Country | Link |
---|---|
US (1) | US3392301A (xx) |
CH (1) | CH441515A (xx) |
GB (1) | GB1035399A (xx) |
NL (1) | NL6508865A (xx) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3852636A (en) * | 1972-10-11 | 1974-12-03 | English Electric Valve Co Ltd | Klystrons |
JPS50124250U (xx) * | 1974-03-25 | 1975-10-11 | ||
US5780969A (en) * | 1994-08-05 | 1998-07-14 | Kabushiki Kaisha Toshiba | Gyrotron apparatus including reflecting cylinders which provide undesired wave absorption |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2678392A (en) * | 1952-06-12 | 1954-05-11 | Raytheon Mfg Co | Mounting choke |
US3104338A (en) * | 1960-06-27 | 1963-09-17 | Varian Associates | Ribbed collector for cooling klystrons |
US3344306A (en) * | 1962-03-26 | 1967-09-26 | Varian Associates | Klystron having temperature modifying means for the electrodes therein and the focusing magnetic circuit |
-
1964
- 1964-07-10 GB GB28580/64A patent/GB1035399A/en not_active Expired
-
1965
- 1965-07-06 US US469652A patent/US3392301A/en not_active Expired - Lifetime
- 1965-07-08 CH CH958965A patent/CH441515A/fr unknown
- 1965-07-09 NL NL6508865A patent/NL6508865A/xx unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2678392A (en) * | 1952-06-12 | 1954-05-11 | Raytheon Mfg Co | Mounting choke |
US3104338A (en) * | 1960-06-27 | 1963-09-17 | Varian Associates | Ribbed collector for cooling klystrons |
US3344306A (en) * | 1962-03-26 | 1967-09-26 | Varian Associates | Klystron having temperature modifying means for the electrodes therein and the focusing magnetic circuit |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3852636A (en) * | 1972-10-11 | 1974-12-03 | English Electric Valve Co Ltd | Klystrons |
JPS50124250U (xx) * | 1974-03-25 | 1975-10-11 | ||
JPS5439976Y2 (xx) * | 1974-03-25 | 1979-11-26 | ||
US5780969A (en) * | 1994-08-05 | 1998-07-14 | Kabushiki Kaisha Toshiba | Gyrotron apparatus including reflecting cylinders which provide undesired wave absorption |
Also Published As
Publication number | Publication date |
---|---|
NL6508865A (xx) | 1966-01-11 |
GB1035399A (en) | 1966-07-06 |
CH441515A (fr) | 1967-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3315121A (en) | Crossed-field electric discharge device | |
US2698913A (en) | Cathode structure | |
US2406277A (en) | High-frequency electric discharge device | |
US3846667A (en) | Magnetron having external choke structure | |
US2128236A (en) | Vacuum discharge tube | |
US4297612A (en) | Electron gun structure | |
US2489131A (en) | Electron discharge device of the cavity resonator type | |
US2489891A (en) | Cesium electric discharge device | |
US3392301A (en) | Klystron having high frequency radiation means comprising a half-wave short-circuited choke | |
US4194142A (en) | Mode control apparatus for a separable-insert coaxial magnetron | |
US2282856A (en) | Magnetron oscillator | |
US3484642A (en) | Electron discharge devices having inner and outer insulating annular projections at the gun end of the device | |
US3852636A (en) | Klystrons | |
US4300072A (en) | Magnetron having an internal capacitor for suppressing leakage of high frequency | |
US2229152A (en) | Rotary anode X-ray tube | |
US2454031A (en) | Electric discharge device of the magnetron type | |
US3270240A (en) | Extended interaction resonant electric discharge system | |
US3231781A (en) | Reverse magnetron with slot mode absorber | |
US2955229A (en) | Secondary emission suppression in electron beam tubes | |
US3555222A (en) | Vacuum switch with cylindrical guide means and annular field deflector means | |
US3370197A (en) | Travelling wave tubes | |
US3480828A (en) | Thyratron waveguide switch with density enhancement for operation in 27 to 40 ghz. range | |
US5990621A (en) | Electron beam tubes including ceramic material for realizing rf chokes | |
EP0707334B1 (en) | Electron beam tubes | |
US3059142A (en) | High power microwave device |