US3391355A - Low impedance slotted line - Google Patents

Low impedance slotted line Download PDF

Info

Publication number
US3391355A
US3391355A US500830A US50083065A US3391355A US 3391355 A US3391355 A US 3391355A US 500830 A US500830 A US 500830A US 50083065 A US50083065 A US 50083065A US 3391355 A US3391355 A US 3391355A
Authority
US
United States
Prior art keywords
conductor
line
slotted
slotted line
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US500830A
Inventor
Robert A Felsenheld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
ITT Inc
Original Assignee
Deutsche ITT Industries GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche ITT Industries GmbH filed Critical Deutsche ITT Industries GmbH
Priority to US500830A priority Critical patent/US3391355A/en
Application granted granted Critical
Publication of US3391355A publication Critical patent/US3391355A/en
Assigned to ITT CORPORATION reassignment ITT CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/24Transmission-line, e.g. waveguide, measuring sections, e.g. slotted section
    • G01R1/26Transmission-line, e.g. waveguide, measuring sections, e.g. slotted section with linear movement of probe

Definitions

  • This invention relates to slotted transmission lines for high and low frequency measurement of impedances and the like, and more particularly to a slotted line having a helically wound conductor.
  • Slotted transmission lines for measuring impedances and the like having straight inner conductors have long been known in the art. For example, to measure an impedance at a given frequency one must measure the maximum and minimum value of the signal radiated from a slotted line driven with a signal of predetermined frequency and terminated by said impedance. Also the distance from the terminating load to the first minimum must be measured. Th se maxima and minima will occur one-quarter wavelength apart. Since it is not known how far from the end of the line the first minimum of the radiated signal will occur, a slotted line whose length is approximately onehalf wavelength is required. At low frequencies the length of a line having a straight inner conductor becomes very large and impractical to build. Therefore a line with a helical inner conductor, the uncoiled length thereof being approximately equal to one-half wavelength, could be utilized to shorten the physical length of said line for a given electrical length.
  • a transmission line having a slotted outer conductor and a helically wound inner conductor is further provided with a third conductor mounted within said helical conductor and separated therefrom by a layer of dielectric.
  • This third conductor is electrically coupled at one end to one end of the outer conductor of said line.
  • the inclusion of the third conductor increases the capacity of the line, thereby reducing the characteristic impedance thereof according to the equation thus compensating for the increase in inductance introduced by said helically wound conductor.
  • FIGURE 1 s a cross-sectional view taken along the longitudinal axis of a slotted line according to the invention
  • FIGURE 2 is a cross-sectional view taken perpendicular to the longitudinal axis of a slotted line according to this invention
  • FIGURE 3 is a schematic illustration of a slotted line according to this invention utilizing a probe slidably mounted in the slot to detect the radiated field;
  • FIGURE 4 is a schematic illustration of a slotted line according to this invention utilizing a current loop probe slidably mounted on said line to detect the radiated field.
  • one embodiment of this invention comprises a tubular outer conductor 1 having a slot 7 formed along its length.
  • a helically wound inner conductor 3 whose length is such as to provide a line having the desired electrical length. Separating the helically wound conductor 3 from said slotted outer conductor 1 is a first layer of dielectric 2.
  • This dielectric 2 usually would be air, but it is apparent that any other suitable dielectric may be used.
  • Mounted within the helically Wound inner conductor 3 is a third conductor 5 which is spaced from said helical conductor 3 by another layer of dielectric 4. This dielectric could be air, but it is apparent that any other suitable dielectric may be used.
  • the third conductor 5 is connected at one end to one end of the slotted outer conductor 1 by means of conductor 6, for example. This is to maintain them at the same relative potential without producing current loops.
  • the insertion of the third conductor 5 within said helically wound inner conductor 3 serves to increase the capacitance of the line, thereby compensating for the increased inductance introduced by the helically wound conductor 3. This decreases the characteristic impedance of the slotted line-according to the equation to a value consistent with the characteristic impedance of a slotted line operating in the same frequency range but having a straight instead of helically wound inner conductor. It should be noted that ideally, all of the conductors should be mounted substantially concentrically within each other.
  • FIGURE 3 there is shown a slotted line according to the invention utilizing a slidably mounted probe 8 for detecting the electric field radiated from said line.
  • This type of probe is inserted in the slot 7 and is commonly used in known slotted lines having straight inner conductors. Due to the construction of the subject slotted line (i.e., the inner conductors are helically Wound) undesirable peaks and valleys in the radiation pattern will occur along the length thereof since the probe 8 will be in varying degrees of proximity to the helically wound inner conductor 3 as it is moved along said line. For accurate measuren ents using this type of probe, it would be most desirable to only measure the radiated field at the points where the helically woundinner conductor is closest to the probe. Otherwise, the peaks and valleys in the radiation pattern must be taken into account in the measurernents.
  • the probe 9 of FIG- URE 4 may be utilized.
  • a current loop 9 is slidably mounted on said slotted line to detect the magnetic field radiated therefrom.
  • the response of the line is effectively smoothed out. That is, the small undulations (peaks and valleys) that appear while utilizing the probe 8 of FIGURE 3 do not appear while utilizing the probe 9 of FIGURE 4. This is because the current loop probe is never really in very close proximity to the helically wound inner conductor 3, and due to fringing effects of the radiated field, the said field is eifectively smoothed out.
  • a low impedance slotted line of predetermined length comprising:
  • a third conductor mounted within said helical inner conductor, one end thereof being electrically coupled to one end of said outer conductor;
  • a slotted line according toclaim 1 wherein said means for detecting includes:
  • a slotted line according to claim 1 wherein said means for detecting includes:

Description

July 2, 1968 R. A. FELSENHELD LOW IMPEDANCE SLOTTED LINE Filed Oct. 22, 1965 INVENTOR.
ROfl'RT A. FELSENHELD l m mm ATTORNEY United States Patent 3,391,355 LOW IMPEDANCE SLOTTED LINE Robert A. Felsenheld, Livingston, N.J., assignor to International Telephone and Telegraph Corporation, a corporation of Delaware Filed Oct. 22, 1965, Ser. No. 500,830 8 Claims. (Cl. 333-31) This invention relates to slotted transmission lines for high and low frequency measurement of impedances and the like, and more particularly to a slotted line having a helically wound conductor.
Slotted transmission lines for measuring impedances and the like having straight inner conductors have long been known in the art. For example, to measure an impedance at a given frequency one must measure the maximum and minimum value of the signal radiated from a slotted line driven with a signal of predetermined frequency and terminated by said impedance. Also the distance from the terminating load to the first minimum must be measured. Th se maxima and minima will occur one-quarter wavelength apart. Since it is not known how far from the end of the line the first minimum of the radiated signal will occur, a slotted line whose length is approximately onehalf wavelength is required. At low frequencies the length of a line having a straight inner conductor becomes very large and impractical to build. Therefore a line with a helical inner conductor, the uncoiled length thereof being approximately equal to one-half wavelength, could be utilized to shorten the physical length of said line for a given electrical length.
The use of such a helical inner conductor now causes the characteristic impedance of the slotted line to increase since the helically coiled inner conductor increases the inductance of the line. The effect of this increased inductance on the characteristic impedance is readily seen by examining the equation for the characteristic impedance of a transmission line, to wit:
where L is the inductance of the line and C is the capacitance of the line. This increases in the characteristic impedance is undesirable since it causes a mismatch with the driving and terminating equipment, thereby producing unwanted standing waves and inaccuracies in the resulting measurements.
Therefore, it is the object of this invention to provide a slotted line having a helical inner conductor which has a characteristic impedance in the same order of magnitude as the characteristic impedance of a slotted line having a straight inner conductor which operates in the same frequency range.
According to this invention a transmission line having a slotted outer conductor and a helically wound inner conductor is further provided with a third conductor mounted within said helical conductor and separated therefrom by a layer of dielectric. This third conductor is electrically coupled at one end to one end of the outer conductor of said line. The inclusion of the third conductor increases the capacity of the line, thereby reducing the characteristic impedance thereof according to the equation thus compensating for the increase in inductance introduced by said helically wound conductor.
The above-mentioned and other objects and features of this invention will become apparent by reference to the following description taken in conjunction with the following drawings, in which:
3,391,355 Patented July 2, 1968 "Ice FIGURE 1 s a cross-sectional view taken along the longitudinal axis of a slotted line according to the invention;
FIGURE 2 is a cross-sectional view taken perpendicular to the longitudinal axis of a slotted line according to this invention;
FIGURE 3 is a schematic illustration of a slotted line according to this invention utilizing a probe slidably mounted in the slot to detect the radiated field; and
FIGURE 4 is a schematic illustration of a slotted line according to this invention utilizing a current loop probe slidably mounted on said line to detect the radiated field.
As shown in FIGURES 1 and 2, one embodiment of this invention comprises a tubular outer conductor 1 having a slot 7 formed along its length. Mounted within said tubular outer conductor 1 is a helically wound inner conductor 3 whose length is such as to provide a line having the desired electrical length. Separating the helically wound conductor 3 from said slotted outer conductor 1 is a first layer of dielectric 2. This dielectric 2 usually would be air, but it is apparent that any other suitable dielectric may be used. Mounted within the helically Wound inner conductor 3 is a third conductor 5 which is spaced from said helical conductor 3 by another layer of dielectric 4. This dielectric could be air, but it is apparent that any other suitable dielectric may be used. The third conductor 5 is connected at one end to one end of the slotted outer conductor 1 by means of conductor 6, for example. This is to maintain them at the same relative potential without producing current loops. The insertion of the third conductor 5 within said helically wound inner conductor 3 serves to increase the capacitance of the line, thereby compensating for the increased inductance introduced by the helically wound conductor 3. This decreases the characteristic impedance of the slotted line-according to the equation to a value consistent with the characteristic impedance of a slotted line operating in the same frequency range but having a straight instead of helically wound inner conductor. It should be noted that ideally, all of the conductors should be mounted substantially concentrically within each other.
In FIGURE 3 there is shown a slotted line according to the invention utilizing a slidably mounted probe 8 for detecting the electric field radiated from said line. This type of probe is inserted in the slot 7 and is commonly used in known slotted lines having straight inner conductors. Due to the construction of the subject slotted line (i.e., the inner conductors are helically Wound) undesirable peaks and valleys in the radiation pattern will occur along the length thereof since the probe 8 will be in varying degrees of proximity to the helically wound inner conductor 3 as it is moved along said line. For accurate measuren ents using this type of probe, it would be most desirable to only measure the radiated field at the points where the helically woundinner conductor is closest to the probe. Otherwise, the peaks and valleys in the radiation pattern must be taken into account in the measurernents.
In order to eliminate the above-mentioned disadvantage of the probe 8 shown in FIGURE 3, the probe 9 of FIG- URE 4 may be utilized. In this embodiment, a current loop 9 is slidably mounted on said slotted line to detect the magnetic field radiated therefrom. By utilizing a current loop 9 for detecting the radiated field, the response of the line is effectively smoothed out. That is, the small undulations (peaks and valleys) that appear while utilizing the probe 8 of FIGURE 3 do not appear while utilizing the probe 9 of FIGURE 4. This is because the current loop probe is never really in very close proximity to the helically wound inner conductor 3, and due to fringing effects of the radiated field, the said field is eifectively smoothed out. For measuring impedances utilizing the probe 9 of FIGURE 4 it is now necessary to measure the maximum and minimum currents and the distance of the current minimum from the end of the line. While I have described above the principles of my in vention in connection with specific apparatus, it is to be clearly understood that this description is made only by way of example and not as a limitation to the scope of my invention, as set forth in the accompanying claims.
I claim:
1. A low impedance slotted line of predetermined length comprising:
a hollow outer conductor having a slot formed along the length thereof;
a helically Wound inner conductor mounted within said outer conductor;
a first layer of dielectric between said outer conductor and said helical inner conductor;
a third conductor mounted within said helical inner conductor, one end thereof being electrically coupled to one end of said outer conductor;
a second layer of dielectric between said third conductor and said helical inner conductor; and
means coupled to said line for detecting the field radiated therefrom at various points along its length.
2. A slotted line according toclaim 1 wherein said means for detecting includes:
a probe slidably mounted within said slot; and
means for moving said probe along the length of said line.
3. A slotted line according to claim 1 wherein said means for detecting includes:
means forming a current loop slidably mounted around i said outer conductor for detecting the radiated field; and
means for moving said current loop along the length of said line to detect the strength of said radiated field at various points along said line.
4. A slotted line according to claim 1 wherein the electrical length thereof is approximately one-half wavelength.
-5. A slotted line according to claim 1 wherein one end of said third conductor is directly connected to one end of said outer conductor.
6'. A slotted line according to claim 1 wherein said outer conductor has a cylindrical cross-section.
7. A slotted line according to claim 1 wherein said third conductor is hollow.
8. A slotted line according to claim 7 wherein said third conductor has a cylindrical cross-section.
References Cited UNITED STATES PATENTS 2,843,791 7/1958 Pierce 333-31 2,915,718 12/1959 Grieg et al. 333-84- 3,l99,054 8/1965 Holland et al. 33384 OTHER REFERENCES Generation and Transmission of Microwave Energy, Dept. of the Army, Technical Manual TM 1l-6 73, G.P.O., Washington, DC. 1953.
Harvey, A.F., Microwave Engineering, Academic Press, New York, 1963.
ELI LIEBERMAN, Primary Examiner. HERMAN KARL SAALBACH, Examiner.
L. ALLAHUT, Assistant Examiner.

Claims (1)

1. A LOW IMPEDANCE SLOTTED LINE OF PREDETERMINED LENGTH COMPRISING: A HOLLOW OUTER CONDUCTOR HAVING A SLOT FORMED ALONG THE LENGTH THEREOF; A HELICALLY WOUND INNER CONDUCTOR MOUNTED WITHIN SAID OUTER CONDUCTOR; A FIRST LAYER OF DIELECTRIC BETWEEN SAID OUTER CONDUCTOR AND SAID HELICAL INNER CONDUCTOR; A THIRD CONDUCTOR MOUNTED WITHIN SAID HELICAL INNER CONDUCTOR, ONE END THEREOF BEING ELECTRICALLY COUPLED TO ONE END OF SAID OUTER CONDUCTOR; A SECOND LAYER OF DIELECTRIC BETWEEN SAID THIRD CONDUCTOR AND SAID HELICAL INNER CONDUCTOR; AND MEANS COUPLED TO SAID LINE FOR DETECTING THE FIELD RADIATED THEREFROM AT VARIOUS POINTS ALONG ITS LENGTH.
US500830A 1965-10-22 1965-10-22 Low impedance slotted line Expired - Lifetime US3391355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US500830A US3391355A (en) 1965-10-22 1965-10-22 Low impedance slotted line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US500830A US3391355A (en) 1965-10-22 1965-10-22 Low impedance slotted line

Publications (1)

Publication Number Publication Date
US3391355A true US3391355A (en) 1968-07-02

Family

ID=23991119

Family Applications (1)

Application Number Title Priority Date Filing Date
US500830A Expired - Lifetime US3391355A (en) 1965-10-22 1965-10-22 Low impedance slotted line

Country Status (1)

Country Link
US (1) US3391355A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452773B1 (en) * 2000-03-21 2002-09-17 Andrew Corporation Broadband shorted stub surge protector
US8212629B1 (en) * 2009-12-22 2012-07-03 Christos Tsironis Wideband low frequency impedance tuner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2843791A (en) * 1953-03-30 1958-07-15 Bell Telephone Labor Inc Traveling wave tube
US2915718A (en) * 1955-08-05 1959-12-01 Itt Microwave transmission lines
US3199054A (en) * 1960-10-17 1965-08-03 Thompson Ramo Wooldridge Inc Shielded delay line

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2843791A (en) * 1953-03-30 1958-07-15 Bell Telephone Labor Inc Traveling wave tube
US2915718A (en) * 1955-08-05 1959-12-01 Itt Microwave transmission lines
US3199054A (en) * 1960-10-17 1965-08-03 Thompson Ramo Wooldridge Inc Shielded delay line

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452773B1 (en) * 2000-03-21 2002-09-17 Andrew Corporation Broadband shorted stub surge protector
US8212629B1 (en) * 2009-12-22 2012-07-03 Christos Tsironis Wideband low frequency impedance tuner
US8405466B2 (en) 2009-12-22 2013-03-26 Christos Tsironis Wideband low frequency impedance tuner

Similar Documents

Publication Publication Date Title
US3265995A (en) Transmission line to waveguide junction
US2423390A (en) Reflectometer for transmission lines and wave guides
US2151118A (en) Termination for dielectric guides
US2433011A (en) Ultra high frequency energy coupling
US2438795A (en) Wave-guide system
US2606974A (en) Directional coupler
US2514544A (en) High-frequency attenuating device
US2527146A (en) Broad band coaxial line to wave guide coupler
US2423506A (en) Wavemeter for centimeter waves
CA1080313A (en) Coaxial cavity resonator
US3496498A (en) High-frequency filter
US3375474A (en) Microwave waveguide to coax coupling system
US3391355A (en) Low impedance slotted line
US3121206A (en) Helically wound circular cross-section waveguides in conduit with epoxy bonding between elements
US2443921A (en) Coupling arrangement
US2597867A (en) High-frequency attenuating device
US2413836A (en) High-frequency tuning device
KR880004533A (en) Magnetron filter device
US2736864A (en) Broadband hybrid network
US3163832A (en) Superconductive coaxial line useful for delaying signals
US2507692A (en) High-frequency impedance transformer for transmission lines
US2489433A (en) Radio-frequency coupling device
US3243704A (en) Coaxial line reflectometer having a resistance connected between sections of the outer conductor
US4153885A (en) Microwave equalizer with coaxial cable resonant stubs
US2794958A (en) Transmission line directional coupler

Legal Events

Date Code Title Description
AS Assignment

Owner name: ITT CORPORATION

Free format text: CHANGE OF NAME;ASSIGNOR:INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION;REEL/FRAME:004389/0606

Effective date: 19831122