US3388440A - Strand windup treatment apparatus - Google Patents
Strand windup treatment apparatus Download PDFInfo
- Publication number
- US3388440A US3388440A US543129A US54312966A US3388440A US 3388440 A US3388440 A US 3388440A US 543129 A US543129 A US 543129A US 54312966 A US54312966 A US 54312966A US 3388440 A US3388440 A US 3388440A
- Authority
- US
- United States
- Prior art keywords
- strand
- chamber
- crimped
- accumulation
- windup
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G1/00—Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
- D02G1/12—Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using stuffer boxes
- D02G1/125—Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using stuffer boxes including means for monitoring or controlling yarn processing
Definitions
- This invention relates to stutter-crimping of textile strands, concerning particularly improved windup of the strands after being stutter-crimped.
- Well known methods, primarily mechanical, of modifying the regularity of surface or rectilinearity of configuration of textile strands include gear-crimping, jetcrimping, twist-crimping, and stutter-crimping. Synchronization of the windup of the crimped strand with the infeed of the strand to be crimped is an accepted procedure in stutter-crimping, as well as in the other mentioned crimping methods.
- stutter-crimping the strand to be crimped is fed by and between a pair of counterrotating nip rolls into a confined region or passage from which its escape is impeded by a suitable back-pressure means sufiiciently to cause the strand entering the region to assume a crimped configuration upon coming into forcible contact with the accumulation of strand already present therein.
- stutter-crimping is dependent upon accumulation and temporary confinement of the strand under crimping pressure. It will be apparent that while the crimped strand preferably is wound up preparatory to further use, rather than being collected in the form of an accumulated mass, an excessive windup rate might impair the crimping process to tend to uncrimp or even break the strand.
- a primary object of the present invention is improved crimping of textile strands.
- Another object is fluid treatment of stutter-crimped strands at or after emergence from compact accumulation thereof.
- a further object is provision of fluid-actuated windup synchronizing means for stutfer-crimpers.
- FIG. 1 is a schematic representation of a stuffer-crimper and related apparatus suited to practice of the present invention
- FIG. 2 is a front elevation, partly broken away, of the stutfer-crimper of FIG. 1;
- FIG. 3 is a plan of the same apparatus taken at IIL-HI of FIG. 2.
- FIG. 4 is a side sectional elevation of a portion of the apparatus previously shown, with yarn in place and including winding apparatus;
- FIG. 5 is a view corresponding to that of FIG. 4 but with the winding apparatus activated.
- FIG. 6 is a schematic representation of interconnections for the apparatus shown in FIGS. 4 and 5;
- FIG. 7 is a sectional elevation of a modified form of a portion of the apparatus of the preceding views.
- FIG. 8 is a sectional elevation of another modified form of such portion of the previous apparatus.
- FIG. 9 is a sectional elevation of yet another modified form thereof.
- the objects of the present invention are accomplished, in strand-crimping apparatus including a stuffer-crimper having a strand passage therethrough and including windup means for removing the crimped strand from the exit of the passage, by fluid-supply means located adjacent the passage intermediate the entrance and the exit, the pressure or throughput of fluid being dependent upon the presence of crimped strand accumulated in the passage, and fluid-actuated means adapted to control the action of the windup means so as to regulate the rate of removal of crimped strand from the passage, preferably through a cocurrent flow of the fluid injected into the passage.
- FIG. 1 represents in rather schematic form apparatus useful in practicing the present invention.
- Strand 10 is withdrawn from bobbin or similar package 11 through pigtail or similar guide 13 by forwarding rolls 14, 14 between which it passes. After the forwarding rolls, which themselves may be heated, the strand passes over heating block 5 to stutter rolls 16, 16' at hidden entrance to stufling-chamber 17. Passage of the strand through the chamber is impeded by a suitable back-pressure element (45, concealed in this view but shown in subsequent views). It is to be understood that the stuffing-chamber extends in close-fitting manner well over the ends of the adjacent rolls and to their nip so as to receive the strand therefrom. From the open top of the chamber the crimped strand (denoted at 10' to distinguish it from uncrimped portion 10) passes over recessed front edge 19 and then about idler roll 20 and is wound onto bobbin or cone 12 by contacting winding roll 22.
- FIG. 2 shows in front elevation (partly cut away), and FIG. 3 in sectional plan (taken at IIIIII of FIG. 2), a stuifer-crimper useful according to the present invention.
- Base 1 carries upstanding supports 26, 26' for the rolls and infeed guide 23, which conforms closely to the bight of those rolls, immediately underneath them.
- Bore 24 (shown in broken lines) of the guide is aligned with the nip of the rolls, and an arrow indicates the direction of passage of the strand to be crimped.
- back-pressure gear 45 Aligned with the nip and extending into the bight of the rolls from the rear is back-pressure gear 45, which intercepts bore 25 of the chamber from the rear.
- back-pressure gear 45 which intercepts bore 25 of the chamber from the rear.
- front flange 29 of chamber 17 is largely cut away in this view, along with part of the chamber itself, to reveal various interior elements of the apparatus.
- a corresponding flange 29' at the rear is slotted, as is the rear wall of chamber 17, to receive the back-pressure gear.
- the base also supports motor 30, which has drive pulley 32 afi'ixed to motor shaft 31.
- Belt 33 passes about the drive pulley and about a driven pulley 36 mounted on shaft 21' of roll 16.
- Drive gear 35 and driven gear 35' are keyed onto the respective shafts between rear and front walls 37 and 38, in which the shafts are journaled.
- Rolls 16, 16' are retained on their respective shafts 21, 21 by hex nuts 34, 34 visible at the front.
- the back-pressure gear is carried on shaft 47 mounted in upstanding supports 46, 46' carried on the base.
- the other end of the gear shaft carries pulley 48, about which passes belt 49.
- This belt loops over coupling 40, which attaches to one end of extension spring 42 and is secured non-rotatively by means of rivet 41.
- the other end of the expansion spring is retained against the base by eyebolt 43 secured by nut 44'.
- leaf 55 is visible against the inside wall. Near the top of the chamber bail 50 is pivoted at the sides and extends to the front and rests on the top of recessed front edge 19. These portions of the apparatus appear in further detail in subsequent views.
- Uncrimped strand 10 which may have been preheated, is fed through the bore of the infeed guide and injected into the nip of the countenrotating rolls, which stuff the strand into the confined region provided at the entrance of the stufiing chamber, thereby compressing the strand longitudinally, buckling it into a crimped configuration, and normally heating it.
- the strand accumulation proceeds upward into the chamber proper, where it cools either immediately or subsequent to any further heating therein.
- FIGS. 4 and 5 show in front and side elevation, respectively, partly in section, a portion of the apparatus previously shown, together with a more or less diagrammatic representation of associated variable-speed winding apparatus.
- Crimped strand (shown somewhat stylized) accumulates inside chamber 17, rising therein as more uncrimped strand is fed into the chamber from below.
- flexible leaf 55 is fastened at its lower end in a slot provided in the back portion of the chamber wall.
- apertures 53 Immediately behind the leaf, the wall is pierced by apertures 53, which communicate with housing 54 terminating supply pipe 60 for the actuating fluid (flow thereof being indicated by arrows).
- the fluid is referred to for convenience as air, although it will be understood that other gas or vapor (e.g., steam) may be employed, as may water or other liquid, or mixtures of fiuids, such as sprays, for example.
- a single strand rising from the strand accumulation exists over recessed edge 19 at the top, underneath bail 50, which is pivoted at opposite ends in recesses 51, 51' in opposite sides of the outside wall of the chamber.
- the strand proceeds to cone or bobbin 12, which is in contact with winding roll 22 and is rotated thereby.
- Attached to winding roll 22 is pulley 62, which carries belt 63; the
- second pulley 64 which may be mounted on shaft 31 of the drive motor or on other suitable driving means for this variable-speed winding means for withdrawing crimped strand from the chamber.
- the belt appears slack in FIG. 4, corresponding to relative inaction of the windup.
- roller 71 carried on shaft 72 of piston 73.
- helical compression spring 74 Located about the piston shaft is helical compression spring 74, while the portion of surrounding cylinder 75 on the other side of the piston from the spring receives pipe 77 through which air can be forced.
- the mechanical linkage interconnecting the spring-biased piston with the winding means is shown, largely diagrammatically, in these views in only two extreme positions; it will be understood that a continuous range of intermediate positions occurs in practice.
- crimped strand 10' When the windup is actuated, crimped strand 10' is withdrawn from the top of the chamber, out of the underlying strand accumulation in the lower portion of the chamber, and through the flow of air or other fluid, thereby cooling the strand and fixing or setting the crimp therein unless the fluid itself is hotter than the strand, in which event exposure thereto will heat-relax the strand (preferably already cooled).
- FIG. 5 shows the changed position of the various elements when the strand accumulation has become sufficient to actuate the windup fully.
- leaf 55 is forced against the chamber wall by compaction of the strand accumulation thereagainst, closing off the apertures that previously acted as air inlets.
- suitable pipe connections shown in the next view
- the air is diverted into the cylinder carrying the piston and the belt-tightening idler roller, forcing the roller as shown against belt 63 to tauten it.
- the strand will wind onto the package until the level in the chamber drops sufiiciently to permit the air pressure to be dissipated past the leaf into the chamber instead of being forced into the pressure cylinder.
- FIG. 6 shows a suitable T-connection for the air lines or pipes of the previous views.
- Pump P in base 80 of the T supplies air or other suitable fluid at essentially constant pressure and forces it therethrough and into branches 60 and 77, the former terminating at the stufiing chamber and the latter at the pressure cylinder.
- the respective areas of the inlet apertures in the chamber Wall and the piston in the cylinder will be selected so that the force that must be applied to the leaf in order to actuate the piston is very much lower than the force applied by the piston to the idler roller.
- the practitioner of this invention may interpose valve means to accomplish this, shown in FIGS. 7, 8, and 9, in which air flow is indicated similarly.
- FIG. 7 shows, in side sectional elevation, modified housing 54' terminating pipe 60 and having a pair of spiders with openings 86 therein supporting valve member 81 slidably therein.
- Tapered end 82 of the valve member is shown spaced from the pipe terminus against which it is adapted to seat.
- Opposite end 84 of the valve member extends snugly through aperture 53, which is somewhat larger in diameter than remaining pair of apertures 53 in the wall of chamber 17 adjacent flexible leaf 55.
- Collar 83 about the valve member nearer the latter end abuts the surface of the chamber Wall inside the housing in the indicated open position of the valve member. It will be apparent that as the strand accumulation presses leaf 55 against the adjacent end of the valve member the opposite tapered end will seat as mentioned, thereby cutting off the indicated air flow and actuating the windup.
- FIG. 8 shows a modification of the apparatus much as in FIG. 7 but with further modified housing 54" having a tapered seat portion 88 to receive the tapered end of valve member 81, which provides a more graduated control of the windup action.
- FIG. 9 is also similar but shows housing 54", which is further modified from that of FIG. 7 by addition of outlet pipe 89 in the housing sidewall; former pair of apertures 53 in the chamber wall behind leaf 55 are omitted in this modification, in which no air from the windup control system enters the chamber, although the leaf continues to act as the control element by moving valve member 81 from the open to the closed position against the biasing effect of the air pressure.
- leaf 55 may be omitted, of course, to permit the actuating fluid to impinge directly upon the strand accumulation itself rather than being directed in a co-current flow along the strand being wound up therefrom.
- Other modification in the number, shape, or size of parts or other structural changes may be made without departing from the invention as claimed.
- st-randcrimping apparatus including a stuffercrimper having a passage for strand therethrough and at least partially intercepted by strand-impeding means, whereupon a compact mass of crimped strand accumulates temporarily therein
- the improvement comprising strandsensing means located along the passage and downstream from the strand-impeding means, with respect to the direction of movement of strand through the passage, the strand-sensing means being separate from the strand-impeding means and, independently thereof, responsive to presence of a compact mass of crimped strand there adjacent, the stuifer-crimper being essentially free of strandimpeding means at and downstream from the strand-sensing means.
- the apparatus of claim 1 including fluid-controlled variable speed strand-withdrawing means operatively interconnected to the strand-sensing means and operative to withdrawn crimped strand from the compact accumulated mass thereof and out of the passage.
- Crimping apparatus comprising feed means arranged to feed a textile strand into means defining a confined region wherein it is subjected to substantial back pressure to form a compact accumulation of crimped strand, means for withdrawing crimped strand from the leading end of the compact accumulation at a regulated rate, and means responsive to the position of the end of the compact accumulation for regulating the rate of withdrawal of the crimped strand relative to the position of the compact accumulation thereof, whereby the extent of movement of the leading end of the compact accumulation is held within predetermined limits, the position-responsive means being arranged and constructed to sense the leading end of the compact accumulation then subject to at most insubstantial back pressure.
- Crimping apparatus comprising feed means arranged to feed a textile strand at a given speed into temporarily confining means, the latter means defining a passage including and extending beyond a confined region in which the strand is compressed to form a compact accumulation of crimped strand, means for withdrawing crimped strand from the leading end of the compact accumulation in the portion of the passage beyond the confined region, and means in the passage beyond the confined region responsive to the position of the leading end of the compact accumulation for varying the rate of withdrawal of the crimped strand relative thereto, whereby the extent of movement of the leading end of the compact accumulation relative to the end of the passage is held within predetermined limits.
- sensing means supported by the wall of the chamber at a desired level of strand accumulation therein, and adapted to be displaced transversely thereof by the strand accumulation and adapted to return to its original position when the strand accumulation falls below the desired level, fluid-containing means juxtaposed to the sensing means outside the chamber, the pressure of the fluid therein being higher when the sensing means is displaced than when it is in the original position, and windup means operatively connected to the pressure-responsive means and adapted to withdraw the strand from the chamber at a rate varying in accordance with the fluid pressure.
- strand-crimping apparatus of the type having a stuffing chamber, means for feeding a textile strand into the stutfing chamber to accumulate temporarily in compacted form and be crimped therein, and strand-Withdrawing means including a rotatable strand-winding element operative to remove crimped strand from the stufling chamber, improved means for regulating the rate of Withdrawal of the strand therefrom so as to maintain substantially constant the quantity of strand therein, comprising a source of fluid under pressure, a conduit interconnecting the fluid source to the interior of the stufiing chamber to dissipate fluid thereinto at a venting location adapted to be impeded upon over-accumulation of crimped strand therein, a displaceable element in fluid communication with the'conduit and adapted to be displaced by pressure of the fluid upon impedance of the fluid venting location in the stufling chamber, and drive means for the winding element including actuating apparatus interconnected to the displaceable element and effective to vary the rotation
- the apparatus of claim 6 including means adjacent the venting location in the stuffing chamber and moveable with regard thereto to impede fluid flow from the conduit into the chamber interior upon over-accumulation of crimped strand therein.
- the moveable means comprises a flexible leaf supported in the chamber and adapted when flexed to cover the venting location.
- the drive means for the Winding element includes a drive roll and means for interconnecting the drive roll in variable driving relationship to the winding roll at the instance of the actuating and thereby vary the rotation of the winding element.
- interconnecting means for the drive and winding rolls comprises a frictional device.
- a pressure-actuated sensing and regulating means comprising a source of fluid under pressure, a conduit interconnecting the fluid source With the interior of the stuffing chamber for dissipation therein except as impeded by over-accumulation of crimped strand therein, pressuresensitive means interconnecting the conduit and the withdrawing means, the pressure-sensitive means comprising a spring-biased piston in fluid communication with the conduit, drive means for drivingly engaging the withdrawing means and being disengageable therefrom, means interconnecting the piston with the engageable and disengageable drive means whereby, upon an increase in the accumulation of crimped strand within the stuffing chamber so as to impede dissipation of fluid thereinto from the conduit, the fluid pressure within the conduit increases to cause the piston to move counter to the spring bias and to move the interconnecting
- the withdrawing 3,174,206 3/1965 Mattmgly et a1 means includes a rotatable strand-winding roll and the 3200466 8/1965 Duga et 28" 1 drive means includes a rotatable drive roll and a belt pass- FOREIGN PATENTS ing about both rolls and wherein the interconnecting means includes a roller attached to the piston and moveable 10 594084 5/1959 Italy therewith to tighten the belt about the rolls.
- LOUIS K. RIMRODT Primary Examiner.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Description
June 18, 1968 R. K. STANLEY STRAND WINDUP TREATMENT APPARATUS 2 Sheets-Sheet 1 Original Filed Oct. 22, 1965 INVENTOR.
ml MFE [IIIIIIIIIIIIIIIIIII Pail-WI If. SUM/1f) k t; A van/5);;
June 18, 1968 R. K. STANLEY STRAND WINDUP TREATMENT APPARATUS 2 Sheets-Sheet 2 Original Filed Oct. 22, 1965 llll uvmvron. 19055797 sm/uzr av Waiv r United States Patent ()flice 3,388,440 Patented June 18, 1968 15 Claims. (Cl. 28-1) This application is a division of my co-pending application Ser. No. 501,897, filed Oct. 22, 1965, now U.S. Patent 3,280,444, granted Oct. 25, 1966, which is a continuation-in-part of my c-opending application Ser. No. 294,035, filed July 10, 1963, now abandoned, which in turn was a continuation-impart of my prior application Ser. No. 790,658, filed Feb. 2, 1959, now U.S. Patent 3,111,740, granted Nov. 26, 1963.
This invention relates to stutter-crimping of textile strands, concerning particularly improved windup of the strands after being stutter-crimped.
Well known methods, primarily mechanical, of modifying the regularity of surface or rectilinearity of configuration of textile strands include gear-crimping, jetcrimping, twist-crimping, and stutter-crimping. Synchronization of the windup of the crimped strand with the infeed of the strand to be crimped is an accepted procedure in stutter-crimping, as well as in the other mentioned crimping methods. In stutter-crimping the strand to be crimped is fed by and between a pair of counterrotating nip rolls into a confined region or passage from which its escape is impeded by a suitable back-pressure means sufiiciently to cause the strand entering the region to assume a crimped configuration upon coming into forcible contact with the accumulation of strand already present therein. stutter-crimping is dependent upon accumulation and temporary confinement of the strand under crimping pressure. It will be apparent that while the crimped strand preferably is wound up preparatory to further use, rather than being collected in the form of an accumulated mass, an excessive windup rate might impair the crimping process to tend to uncrimp or even break the strand.
A primary object of the present invention is improved crimping of textile strands.
Another object is fluid treatment of stutter-crimped strands at or after emergence from compact accumulation thereof.
A further object is provision of fluid-actuated windup synchronizing means for stutfer-crimpers.
Other objects of the present invention, together with means and methods for attaining the various objects, will be apparent from the following description and the accompanying diagrams.
FIG. 1 is a schematic representation of a stuffer-crimper and related apparatus suited to practice of the present invention;
FIG. 2 is a front elevation, partly broken away, of the stutfer-crimper of FIG. 1; and
FIG. 3 is a plan of the same apparatus taken at IIL-HI of FIG. 2.
FIG. 4 is a side sectional elevation of a portion of the apparatus previously shown, with yarn in place and including winding apparatus;
FIG. 5 is a view corresponding to that of FIG. 4 but with the winding apparatus activated; and
FIG. 6 is a schematic representation of interconnections for the apparatus shown in FIGS. 4 and 5;
FIG. 7 is a sectional elevation of a modified form of a portion of the apparatus of the preceding views;
FIG. 8 is a sectional elevation of another modified form of such portion of the previous apparatus; and
FIG. 9 is a sectional elevation of yet another modified form thereof.
In general, the objects of the present invention are accomplished, in strand-crimping apparatus including a stuffer-crimper having a strand passage therethrough and including windup means for removing the crimped strand from the exit of the passage, by fluid-supply means located adjacent the passage intermediate the entrance and the exit, the pressure or throughput of fluid being dependent upon the presence of crimped strand accumulated in the passage, and fluid-actuated means adapted to control the action of the windup means so as to regulate the rate of removal of crimped strand from the passage, preferably through a cocurrent flow of the fluid injected into the passage.
FIG. 1 represents in rather schematic form apparatus useful in practicing the present invention. Strand 10 is withdrawn from bobbin or similar package 11 through pigtail or similar guide 13 by forwarding rolls 14, 14 between which it passes. After the forwarding rolls, which themselves may be heated, the strand passes over heating block 5 to stutter rolls 16, 16' at hidden entrance to stufling-chamber 17. Passage of the strand through the chamber is impeded by a suitable back-pressure element (45, concealed in this view but shown in subsequent views). It is to be understood that the stuffing-chamber extends in close-fitting manner well over the ends of the adjacent rolls and to their nip so as to receive the strand therefrom. From the open top of the chamber the crimped strand (denoted at 10' to distinguish it from uncrimped portion 10) passes over recessed front edge 19 and then about idler roll 20 and is wound onto bobbin or cone 12 by contacting winding roll 22.
FIG. 2 shows in front elevation (partly cut away), and FIG. 3 in sectional plan (taken at IIIIII of FIG. 2), a stuifer-crimper useful according to the present invention. Besides rolls 16, 16' and chamber 17, already shown schematically in FIG. 1, additional elements are shown in some detail in this View. Base 1 carries upstanding supports 26, 26' for the rolls and infeed guide 23, which conforms closely to the bight of those rolls, immediately underneath them. Bore 24 (shown in broken lines) of the guide is aligned with the nip of the rolls, and an arrow indicates the direction of passage of the strand to be crimped. Aligned with the nip and extending into the bight of the rolls from the rear is back-pressure gear 45, which intercepts bore 25 of the chamber from the rear. Depending front flange 29 of chamber 17 is largely cut away in this view, along with part of the chamber itself, to reveal various interior elements of the apparatus. A corresponding flange 29' at the rear is slotted, as is the rear wall of chamber 17, to receive the back-pressure gear.
The base also supports motor 30, which has drive pulley 32 afi'ixed to motor shaft 31. Belt 33 passes about the drive pulley and about a driven pulley 36 mounted on shaft 21' of roll 16. Drive gear 35 and driven gear 35' are keyed onto the respective shafts between rear and front walls 37 and 38, in which the shafts are journaled. Rolls 16, 16' are retained on their respective shafts 21, 21 by hex nuts 34, 34 visible at the front.
. The back-pressure gear is carried on shaft 47 mounted in upstanding supports 46, 46' carried on the base. The other end of the gear shaft carries pulley 48, about which passes belt 49. This belt loops over coupling 40, which attaches to one end of extension spring 42 and is secured non-rotatively by means of rivet 41. The other end of the expansion spring is retained against the base by eyebolt 43 secured by nut 44'.
Somewhat more than halfway up bore 25 of chamber 17, leaf 55 is visible against the inside wall. Near the top of the chamber bail 50 is pivoted at the sides and extends to the front and rests on the top of recessed front edge 19. These portions of the apparatus appear in further detail in subsequent views.
Operation of the strand-crimping portion of this apparatus is conventional and readily understandable. The illustrated motor drives the belt aflixed to the pulley on the left-hand roll axle. Rotation of that axle ensues, as does counter-rotation of the axle of the right-hand roll, inasmuch as the two axles are geared directly to one another. The relative sizes of the gears and of the rolls themselves (all shown equal here) are selected so that the peripheral surfaces of the respective rolls turn at identical linear speeds. Uncrimped strand 10, which may have been preheated, is fed through the bore of the infeed guide and injected into the nip of the countenrotating rolls, which stuff the strand into the confined region provided at the entrance of the stufiing chamber, thereby compressing the strand longitudinally, buckling it into a crimped configuration, and normally heating it. Upon sufiicient accumulation of the strand to rotate the back-pressure gear against the frictional retardation imparted to it by slippage of the attached pulley against the belt in contact with it, the strand accumulation proceeds upward into the chamber proper, where it cools either immediately or subsequent to any further heating therein. The operation of the novel windup features of this invention will be as readily understood by reference to the subsequent views and the accompanying description.
FIGS. 4 and 5 show in front and side elevation, respectively, partly in section, a portion of the apparatus previously shown, together with a more or less diagrammatic representation of associated variable-speed winding apparatus. Crimped strand (shown somewhat stylized) accumulates inside chamber 17, rising therein as more uncrimped strand is fed into the chamber from below. At about the level of the strand accumulation in the chamber bore, flexible leaf 55 is fastened at its lower end in a slot provided in the back portion of the chamber wall. Immediately behind the leaf, the wall is pierced by apertures 53, which communicate with housing 54 terminating supply pipe 60 for the actuating fluid (flow thereof being indicated by arrows). In the following description the fluid is referred to for convenience as air, although it will be understood that other gas or vapor (e.g., steam) may be employed, as may water or other liquid, or mixtures of fiuids, such as sprays, for example.
A single strand rising from the strand accumulation exists over recessed edge 19 at the top, underneath bail 50, which is pivoted at opposite ends in recesses 51, 51' in opposite sides of the outside wall of the chamber. The strand proceeds to cone or bobbin 12, which is in contact with winding roll 22 and is rotated thereby. Attached to winding roll 22 is pulley 62, which carries belt 63; the
belt also surrounds second pulley 64, which may be mounted on shaft 31 of the drive motor or on other suitable driving means for this variable-speed winding means for withdrawing crimped strand from the chamber. The belt appears slack in FIG. 4, corresponding to relative inaction of the windup. Immediately to the right of the slack belt is roller 71 carried on shaft 72 of piston 73. Located about the piston shaft is helical compression spring 74, while the portion of surrounding cylinder 75 on the other side of the piston from the spring receives pipe 77 through which air can be forced. The mechanical linkage interconnecting the spring-biased piston with the winding means is shown, largely diagrammatically, in these views in only two extreme positions; it will be understood that a continuous range of intermediate positions occurs in practice.
It will be apparent that injection of air into the cylinder to the right of piston 73, as occurs when flow into bore of the chamber through apertures 53 is diminished or cut off entirely, will move it toward the left, thereby compressing the spring and forcing the roller against the belt between the pulleys. Ensuing tightening of the :belt actuatcs the windup by transmitting the driveing force from pulley 64 to pulley 62 and attached winding roll 22. When the windup is actuated, crimped strand 10' is withdrawn from the top of the chamber, out of the underlying strand accumulation in the lower portion of the chamber, and through the flow of air or other fluid, thereby cooling the strand and fixing or setting the crimp therein unless the fluid itself is hotter than the strand, in which event exposure thereto will heat-relax the strand (preferably already cooled).
FIG. 5 shows the changed position of the various elements when the strand accumulation has become sufficient to actuate the windup fully. At the illustrated higher level of strand accumulation in the chamber, leaf 55 is forced against the chamber wall by compaction of the strand accumulation thereagainst, closing off the apertures that previously acted as air inlets. By suitable pipe connections (shown in the next view) the air is diverted into the cylinder carrying the piston and the belt-tightening idler roller, forcing the roller as shown against belt 63 to tauten it. Once this occurs, the strand will wind onto the package until the level in the chamber drops sufiiciently to permit the air pressure to be dissipated past the leaf into the chamber instead of being forced into the pressure cylinder. When the pressure drops sufliciently the piston is forced back to the right by the helical spring, retracting the roller and allowing slippage of the belt interconnecting the pulleys. It can be seen that at intervening positions, when the flow is merely diminished, rather than entirely out off, intermediate windup speeds are provided by partial slippage of the belt; also, inertia of winding roll 22 and pulley 62 ensures gradual variation in the windup speed, as will be apparent. The net effect will be to regulate or maintain essentially constant the quantity of crimped strand accumulated in the chamber, within the indicated extreme or limits.
FIG. 6 shows a suitable T-connection for the air lines or pipes of the previous views. Pump P in base 80 of the T supplies air or other suitable fluid at essentially constant pressure and forces it therethrough and into branches 60 and 77, the former terminating at the stufiing chamber and the latter at the pressure cylinder. The respective areas of the inlet apertures in the chamber Wall and the piston in the cylinder will be selected so that the force that must be applied to the leaf in order to actuate the piston is very much lower than the force applied by the piston to the idler roller. Rather than relying upon covering of apertures 53 by the leaf itself to impede or cut off the escape of air and thereby actuate the piston, the practitioner of this invention may interpose valve means to accomplish this, shown in FIGS. 7, 8, and 9, in which air flow is indicated similarly.
Thus, FIG. 7 shows, in side sectional elevation, modified housing 54' terminating pipe 60 and having a pair of spiders with openings 86 therein supporting valve member 81 slidably therein. Tapered end 82 of the valve member is shown spaced from the pipe terminus against which it is adapted to seat. Opposite end 84 of the valve member extends snugly through aperture 53, which is somewhat larger in diameter than remaining pair of apertures 53 in the wall of chamber 17 adjacent flexible leaf 55. Collar 83 about the valve member nearer the latter end abuts the surface of the chamber Wall inside the housing in the indicated open position of the valve member. It will be apparent that as the strand accumulation presses leaf 55 against the adjacent end of the valve member the opposite tapered end will seat as mentioned, thereby cutting off the indicated air flow and actuating the windup.
FIG. 8 shows a modification of the apparatus much as in FIG. 7 but with further modified housing 54" having a tapered seat portion 88 to receive the tapered end of valve member 81, which provides a more graduated control of the windup action. FIG. 9 is also similar but shows housing 54", which is further modified from that of FIG. 7 by addition of outlet pipe 89 in the housing sidewall; former pair of apertures 53 in the chamber wall behind leaf 55 are omitted in this modification, in which no air from the windup control system enters the chamber, although the leaf continues to act as the control element by moving valve member 81 from the open to the closed position against the biasing effect of the air pressure.
If the benefits and advantages of using leaf 55 are not desired it may be omitted, of course, to permit the actuating fluid to impinge directly upon the strand accumulation itself rather than being directed in a co-current flow along the strand being wound up therefrom. Other modification in the number, shape, or size of parts or other structural changes may be made without departing from the invention as claimed.
I claim:
1. In st-randcrimping apparatus including a stuffercrimper having a passage for strand therethrough and at least partially intercepted by strand-impeding means, whereupon a compact mass of crimped strand accumulates temporarily therein, the improvement comprising strandsensing means located along the passage and downstream from the strand-impeding means, with respect to the direction of movement of strand through the passage, the strand-sensing means being separate from the strand-impeding means and, independently thereof, responsive to presence of a compact mass of crimped strand there adjacent, the stuifer-crimper being essentially free of strandimpeding means at and downstream from the strand-sensing means.
2. The apparatus of claim 1 including fluid-controlled variable speed strand-withdrawing means operatively interconnected to the strand-sensing means and operative to withdrawn crimped strand from the compact accumulated mass thereof and out of the passage.
3. Crimping apparatus comprising feed means arranged to feed a textile strand into means defining a confined region wherein it is subjected to substantial back pressure to form a compact accumulation of crimped strand, means for withdrawing crimped strand from the leading end of the compact accumulation at a regulated rate, and means responsive to the position of the end of the compact accumulation for regulating the rate of withdrawal of the crimped strand relative to the position of the compact accumulation thereof, whereby the extent of movement of the leading end of the compact accumulation is held within predetermined limits, the position-responsive means being arranged and constructed to sense the leading end of the compact accumulation then subject to at most insubstantial back pressure.
4. Crimping apparatus comprising feed means arranged to feed a textile strand at a given speed into temporarily confining means, the latter means defining a passage including and extending beyond a confined region in which the strand is compressed to form a compact accumulation of crimped strand, means for withdrawing crimped strand from the leading end of the compact accumulation in the portion of the passage beyond the confined region, and means in the passage beyond the confined region responsive to the position of the leading end of the compact accumulation for varying the rate of withdrawal of the crimped strand relative thereto, whereby the extent of movement of the leading end of the compact accumulation relative to the end of the passage is held within predetermined limits.
5. In winding apparatus for withdrawing a strand from a chamber into which the strand is fed so as to accumulate therein, the improvement comprising sensing means supported by the wall of the chamber at a desired level of strand accumulation therein, and adapted to be displaced transversely thereof by the strand accumulation and adapted to return to its original position when the strand accumulation falls below the desired level, fluid-containing means juxtaposed to the sensing means outside the chamber, the pressure of the fluid therein being higher when the sensing means is displaced than when it is in the original position, and windup means operatively connected to the pressure-responsive means and adapted to withdraw the strand from the chamber at a rate varying in accordance with the fluid pressure.
6. In strand-crimping apparatus of the type having a stuffing chamber, means for feeding a textile strand into the stutfing chamber to accumulate temporarily in compacted form and be crimped therein, and strand-Withdrawing means including a rotatable strand-winding element operative to remove crimped strand from the stufling chamber, improved means for regulating the rate of Withdrawal of the strand therefrom so as to maintain substantially constant the quantity of strand therein, comprising a source of fluid under pressure, a conduit interconnecting the fluid source to the interior of the stufiing chamber to dissipate fluid thereinto at a venting location adapted to be impeded upon over-accumulation of crimped strand therein, a displaceable element in fluid communication with the'conduit and adapted to be displaced by pressure of the fluid upon impedance of the fluid venting location in the stufling chamber, and drive means for the winding element including actuating apparatus interconnected to the displaceable element and effective to vary the rotation of the winding element upon displacement of the displaceable element and thereby vary the rate of withdrawal of the strand from the stuffing chamber.
7. The apparatus of claim 6 including means adjacent the venting location in the stuffing chamber and moveable with regard thereto to impede fluid flow from the conduit into the chamber interior upon over-accumulation of crimped strand therein.
8. The apparatus of claim 7 wherein the moveable means comprises a valve adapted to seat at the venting location.
9. The apparatus of claim 7 wherein the moveable means comprises a flexible leaf supported in the chamber and adapted when flexed to cover the venting location.
10. The apparatus of claim 6 wherein the drive means for the Winding element includes a drive roll and means for interconnecting the drive roll in variable driving relationship to the winding roll at the instance of the actuating and thereby vary the rotation of the winding element.
11. The apparatus of claim 10 wherein the interconnecting means for the drive and winding rolls comprises a frictional device.
12. The apparatus of claim 11 wherein the frictional device comprises a normally slack belt tightenable at the instance of the actuating apparatus.
13. In combination with strand-crimping apparatus havin g a stuffing chamber and means to feed thereinto a textile strand to accumulate temporarily and be crimped therein and to withdraw the strand in crimped configuration therefrom, a pressure-actuated sensing and regulating means comprising a source of fluid under pressure, a conduit interconnecting the fluid source With the interior of the stuffing chamber for dissipation therein except as impeded by over-accumulation of crimped strand therein, pressuresensitive means interconnecting the conduit and the withdrawing means, the pressure-sensitive means comprising a spring-biased piston in fluid communication with the conduit, drive means for drivingly engaging the withdrawing means and being disengageable therefrom, means interconnecting the piston with the engageable and disengageable drive means whereby, upon an increase in the accumulation of crimped strand within the stuffing chamber so as to impede dissipation of fluid thereinto from the conduit, the fluid pressure within the conduit increases to cause the piston to move counter to the spring bias and to move the interconnecting means to engage the withdrawing means by the drive means and thereby increase the rate of withdrawal of crimped strand from the accumulation in the chamber to maintain substantially constant the References Cited quantity of strand accumulated therein.
14. The apparatus of claim 13 wherein the fluid source UNITED STATES PATENTS is the atmosphere and including a pump interposed there- 2760'252 9/1956 Shattuck 28'1 between to compress air from the atmosphere and force 5 2960'730 11/1960 Sk 1attuck 19-66 it into the conduit under pressure. 3,027,619 4/1962 Llst i al 28 1 15. The apparatus of claim 13 wherein the withdrawing 3,174,206 3/1965 Mattmgly et a1 means includes a rotatable strand-winding roll and the 3200466 8/1965 Duga et 28" 1 drive means includes a rotatable drive roll and a belt pass- FOREIGN PATENTS ing about both rolls and wherein the interconnecting means includes a roller attached to the piston and moveable 10 594084 5/1959 Italy therewith to tighten the belt about the rolls. LOUIS K. RIMRODT, Primary Examiner.
UNITED STATES PATENT OFFICE CERTIFICATE-40F CORRECTION Patent No. 3,388,440 June 18, 1968 Robert K. Stanley It is certified that error appears in the above identified patent and that said Letters Patent are hereby corrected as shown below: Column 1, line 42, "to", first occurrence, should read Column 2, line 16, urrent" should read..- co-current olumn 3 line 51, "exis "7 should read exits Colu'inn e 4 "drive." should re? drivline 38 "extreme" read extremes =lumn 5 line 34 "variable speed" should read variable-speed line 36, "withdrawn" should read withdraw Column 6, line 46, after "ing" insert apparatus Signed and sealed this 24th day of February 1970.
(S EAL) Attest:
E 'd M. Fletcher, Jr. 1 WILLIAM E. scHUYnEn, JR.
Attesting Officer Commissioner of Patents
Claims (1)
1. IN STRAND-CRIMPING APPARATUS INCLUDING A STUFFERCRIMPER HAVING A PASSAGE FOR STRAND THERETHROUGH AND AT LEAST PARTIALLY INTERCEPTED BY STRAND-IMPEDING MEANS, WHEREUPON A COMPACT MASS OF CRIMPED STRAND ACCUMULATES TEMPORARILY THEREIN, THE IMPROVEMENT COMPRISING STRANDSENSING MEANS LOCATED ALONG THE PASSAGE AND DOWNSTREAM FROM THE STRAND-IMPEDING MEANS, WITH RESPECT TO THE DIRECTION OF MOVEMENT OF STRAND THROUGH THE PASSAGE, THE STRAND-SENSING MEANS BEING SEPARATE FROM THE STRAND-IMPEDING MEANS AND, INDEPENDENTLY THEREOF, RESPONSIVE TO PRESENCE OF A COMPACT MASS OF CRIMPED STRAND THERE ADJACENT, THE STUFFER-CRIMPER BEING ESSENTIALLY FREE OF STRANDIMPEDING MEANS AT AND DOWNSTREAM FROM THE STRAND-SENSING MEANS.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US543129A US3388440A (en) | 1963-07-10 | 1966-04-18 | Strand windup treatment apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29403563A | 1963-07-10 | 1963-07-10 | |
US543129A US3388440A (en) | 1963-07-10 | 1966-04-18 | Strand windup treatment apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US3388440A true US3388440A (en) | 1968-06-18 |
Family
ID=26968312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US543129A Expired - Lifetime US3388440A (en) | 1963-07-10 | 1966-04-18 | Strand windup treatment apparatus |
Country Status (1)
Country | Link |
---|---|
US (1) | US3388440A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3675286A (en) * | 1970-11-12 | 1972-07-11 | Bancroft & Sons Co J | Synchronizing yarn winding to stuffer crimper output |
US3688356A (en) * | 1969-03-13 | 1972-09-05 | Tmm Research Ltd | Wad or plug control for stuffer-box crimping apparatus |
US3777338A (en) * | 1972-09-18 | 1973-12-11 | Allied Chem | Electronic-pneumatic yarn plug control system for yarn texturing device |
US3840951A (en) * | 1971-08-23 | 1974-10-15 | Barber Colman Co | Double thread detector |
US3859695A (en) * | 1973-01-05 | 1975-01-14 | Phillips Petroleum Co | Stuffer box control |
US4067092A (en) * | 1976-06-16 | 1978-01-10 | Roberts John S | Compression crimping apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2760252A (en) * | 1953-08-06 | 1956-08-28 | Alexander Smith Inc | Filament crimping apparatus |
US2960730A (en) * | 1957-06-13 | 1960-11-22 | Bancroft & Sons Co J | Crimping apparatus |
US3027619A (en) * | 1956-11-27 | 1962-04-03 | Ralph W List | Crimping textile strands |
US3174206A (en) * | 1961-11-29 | 1965-03-23 | Klinger Mfg Co Ltd | Apparatus for crimping yarn by bunching |
US3200466A (en) * | 1963-07-01 | 1965-08-17 | Bancroft & Sons Co J | Apparatus for crimping filaments |
-
1966
- 1966-04-18 US US543129A patent/US3388440A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2760252A (en) * | 1953-08-06 | 1956-08-28 | Alexander Smith Inc | Filament crimping apparatus |
US3027619A (en) * | 1956-11-27 | 1962-04-03 | Ralph W List | Crimping textile strands |
US2960730A (en) * | 1957-06-13 | 1960-11-22 | Bancroft & Sons Co J | Crimping apparatus |
US3174206A (en) * | 1961-11-29 | 1965-03-23 | Klinger Mfg Co Ltd | Apparatus for crimping yarn by bunching |
US3200466A (en) * | 1963-07-01 | 1965-08-17 | Bancroft & Sons Co J | Apparatus for crimping filaments |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3688356A (en) * | 1969-03-13 | 1972-09-05 | Tmm Research Ltd | Wad or plug control for stuffer-box crimping apparatus |
US3675286A (en) * | 1970-11-12 | 1972-07-11 | Bancroft & Sons Co J | Synchronizing yarn winding to stuffer crimper output |
US3840951A (en) * | 1971-08-23 | 1974-10-15 | Barber Colman Co | Double thread detector |
US3777338A (en) * | 1972-09-18 | 1973-12-11 | Allied Chem | Electronic-pneumatic yarn plug control system for yarn texturing device |
FR2200387A1 (en) * | 1972-09-18 | 1974-04-19 | Allied Chem | |
US3859695A (en) * | 1973-01-05 | 1975-01-14 | Phillips Petroleum Co | Stuffer box control |
US4067092A (en) * | 1976-06-16 | 1978-01-10 | Roberts John S | Compression crimping apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5025538A (en) | Apparatus for crimping tow including stuffer box, crimping rollers and molding rollers | |
US3273220A (en) | Apparatus for the crimping of natural and synthetic textile materials | |
US3160923A (en) | Crimping apparatus | |
US3388440A (en) | Strand windup treatment apparatus | |
US3095632A (en) | Method for continuously opening crimped tow | |
US3501819A (en) | Yarn processing method and apparatus | |
US3438101A (en) | Process and apparatus for texturizing yarn | |
US3280444A (en) | Strand windup treatment | |
US3166821A (en) | Crimping apparatus | |
US3000060A (en) | Crimping apparatus | |
US2673546A (en) | Apparatus for treating impregnated yarn | |
US5054173A (en) | Method and apparatus for the enhanced crimping of multifilament yarn | |
US3413697A (en) | Apparatus for production of high-shrink yarn | |
US3023481A (en) | Yarn crimping apparatus | |
GB835486A (en) | Improvements in or relating to method and apparatus for crimping textile strands | |
US3334532A (en) | Method and apparatus for cutting fiber tow into staple | |
US2978752A (en) | Processing tow | |
GB924998A (en) | Improvements in or relating to stuffer crimpers | |
US3570084A (en) | Strand treatment | |
GB1377657A (en) | Process for producing crimped fibres by continuous wet heat setting and apparatus therefor | |
CA1276768C (en) | Method of and apparatus for continuously stretching a thermoplastic band, strip or web | |
US3300830A (en) | Apparatus for uniformly crimping filaments | |
US3499953A (en) | Strand treatment | |
US3491420A (en) | Strand crimping | |
US4315355A (en) | Strand crimping treatment |