US3387954A - Liquid hydrocarbon fuels containing a quaternary ammonium compound - Google Patents
Liquid hydrocarbon fuels containing a quaternary ammonium compound Download PDFInfo
- Publication number
- US3387954A US3387954A US393351A US39335164A US3387954A US 3387954 A US3387954 A US 3387954A US 393351 A US393351 A US 393351A US 39335164 A US39335164 A US 39335164A US 3387954 A US3387954 A US 3387954A
- Authority
- US
- United States
- Prior art keywords
- liquid hydrocarbon
- acid
- fuel
- fuels
- hydrocarbon fuels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2301/00—Handling processes for sheets or webs
- B65H2301/40—Type of handling process
- B65H2301/46—Splicing
- B65H2301/4602—Preparing splicing process
- B65H2301/46024—Preparing splicing process by collecting a loop of material of the fresh web downstream of the splicing station
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/2222—(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/2222—(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
- C10L1/2225—(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates hydroxy containing
Definitions
- This invention relates to liquid hydrocarbon fuels. More particularly, the invention relates to liquid hydrocarbon combustion fuels that are stabilized against screenclogging, filter plugging, sediment formation, icing and corrosion, and the novel additive compounds useful for such purposes.
- liquid hydrocarbon fuels particularly hydrocarbon combustion fuels, such as fuel oils, diesel fuels, jet fuels and gasolines
- hydrocarbon combustion fuels such as fuel oils, diesel fuels, jet fuels and gasolines
- icing, corrosion and sediment formation a particularly serious problem is encountered in the clogging of screens and plugging of filters.
- This tendency to clog screens and plug filters results from the caustic treatment of catalytically refined petroleum distillate fuels for the removal of sulfur-containing materials.
- this condition occurs when certain polar materials (surface-active additives and trace constituents) in the fuel contacted by the caustic agents, break down and form, as part of the product, watersoluble alkali metal compounds.
- these fuels contact water such as might be present in fuel tank bottoms, these alkali metal compounds are leached out of the hydrocarbon phase into the water phase to greater or lesser degrees.
- corresponding compounds of dissolved metals having normal valences greater than one for eg calcium, magnesium, zinc, copper, iron, aluminum, barium or lead
- Another object of the invention is to provide improved liquid hydrocarbon combustion fuels and means for protecting them, which are effective not only against sediment formation, icing and corrosion, but also against screenclogging and filter plugging.
- R R R and R are alkyl groups having from 1 to about 22 carbon atoms, and preferably, from about 8 to about 18 carbon atoms
- X is an acid radical selected from the group consisting of (a) phosphoric acids having from 2 to 8 phosphorus atoms per molecule, (b) phosphoric acid alkyl esters having from 2 to 8 phosphorus atoms per molecule and containing from 1 to 4 alkyl groups having from 1 to 22 carbon atoms per alkyl group, (c) boric acid, (d) carbonic acid, (e) aminopolycarboxy'lic acid and hydroxyethyl aminocarboxylic acids, in which the amine nitrogen atom is separated from the carboxylic carbon atom by a methylene or ethylene linkage and in which when more than one nitrogen atom is present they are separated from each other by ethylene or propylene linkages, and n is a whole number from 1 to 5, the maximum value of n being limited by the number of replaceable hydrogen atoms in the acid
- phosphoric acids of the type indicated under-(a) may include pyrophosphoric acid (diphosphoric acid), triphosphoric acid, hexaphosphoric acid and ployphosphoric acid.
- Aminopolycarboxylic acids of the type indicated under (e) may include ethylenediamine tetraacetic acid, nitrilotriacetic acid, diaminocyclohexaneN,N'- tetraacetic acid, and diethylenetriamine pentaacetic acid.
- Hydroxyethyl aminocarboxylic acids indicated under (e) may include N- hydroxyethyl ethylenediamine triacetic acid and dihydroxyethyl glycine.
- additive compositions are particularly effective not only as stabilizers against icing, corrosion and sediment formation, but also as anti-screen clogging and filter plugging agents in liquid hydrocarbon fuels.
- the alkylamine salt additives are, in general, prepared by reacting one equivalent of the selected amine with one equivalent of the selected acid, in accordance with the above-described general formula, preferably at elevated temperature, for example, from about 50 C. to about 120 C.
- the aforementioned alkylamine salt addivities may be used to improve liquid hydrocarbon fuels, generally.
- liquid hydrocarbon fuels comprising petroleum distillates, which are hydrocarbon fratcions, having an initial boiling point of at least about F. and an end boiling point not higher than about 750 F., and boiling substantially continuously throughout their distillation range.
- Such fuels are generally referred to as distillate fuel oils. It will be understood, however, that this terminology is not restricted to straight-run distillate fractions.
- the distillate fuel oils may comprise straight-run distillate fuel oils, catalytically or thermally cracked (including hydrocracked) distillate fuel oils, or mixtures of straight-run distillate fuel oils, naphthas and the like, with cracked distillate stocks.
- such fuel oils can be treated in accordance with well known commerass /p54 J cial methods, such as, acid or caustic treatment, hydrogenaiton, solvent refining, clay treatment and the like.
- distillate fuel oils are characterized by their relatively low viscosities, pour points and the like.
- the principal property which characterizes the contemplated liquid hydrocarbon fuels of the present invention is their distillation range. As previously indicated, this range will lie between about 90 F. and about 750 F. Obviously, the distillation range of each individual fuel oil will cover a narrower boiling range falling, nevertheless, within the above-specified limits. Likewise, each fuel oil will boil substantially continuously throughout its distillation range.
- liquid hydrocarbon fuel oils are gasoline, Nos. 1, 2 and 3 fuel oils used in heating, diesel fuel oils, and the jet combustion fuels.
- the gasolines generally boil within the range from about 90 F. to about 450 F.
- the domestic fuel oils generally conform to the specification set forth in ASTM Specifications D396-62T.
- Specifications for diesel fuels are defined in ASTM Specifications D975- 60T.
- Typical jet fuels are defined in Military Specifications MIL-F-5624B.
- the amount of the aforementioned alkylamine salt additive contemplated for use herein which is added to the liquid hydrocarbon fuel will depend, of course, upon the intended and the particular additives selected, inasmuch as these additives are not equivalent in their activity. Certain of these additives may necessitate being used in greater concentrations than others to be effective. In most cases, in which it is desired to obtain the aforementioned beneficial results in the liquid hydrocarbon fuels, viz. prevention of clogging of screens and plugging of filters, in addition to stabilization against sediment formation, icing and corrosion, additive concentrations varying from about 1 to about 200 pounds per thousand barrels of the fuel will be employed. Preferably, it will vary from about 5 to about 25 pounds per l00 barrels of fuel.
- liquid hydrocarbon fuel compositions of the present invention can contain other additives or the purpose of achieving other results.
- foam inhibitors for example, there may be present foam inhibitors, ignition and burning quality improvers, and others.
- additives are silicones, dinitropropane, amyl nitrate, metal sulfonates, and the like.
- Example I Preparation of dicoco dimethylammonium pyrophosphate
- a mixture comprising: 200 grams of dicoco dimethylammonium chloride and containing percent isopropanol and having a combining weight of about 475, grams of sodium pyrophosphate decahydrate having an equivalent weight of 111.5; 100 grams of water; and 200 grams of benzene, was refluxed to a temperature of about 195 C. over a period of 8 hours. The resulting reaction mixture was then filtered to remove sodium chloride and topped at 180 C. under reduced pressure to yield the desired dicoco dimethylammonium pyrophosphate additive.
- Example lI.Preparation of dicoco dimethylammonium salt of ethylenediamine tetraacetic acid A mixture comprising: 280 grams of dicoco dimethylammonium chloride and containing 25 percent isopropanol and having a combining weight of about 475; 42 grams of the tetrasodium salt of ethylenediamine tetraacetic acid having a molecular weight of 380 and an equivalent weight of 95; grams of water; and 100 grams of benzene was refluxed to a temperature of 140 C. until the evolution of water had ceased, viz. approximately 8 hours. The resulting reaction mixture was then filtered and topped to yield the dicoco dimethylammonium salt of ethylenediamine tetraacetic acid additive.
- Example lII.Preparation of disoya dimethyla-mmonium salt of tripolyphosphoric acid A mixture comprising: 220 grams of disoya dimethylammonium chloride containing 25 percent isopropanol and having a combining weight of about 580; 21 grams TABLE Dcrnulsification Test Concentration, lbs/1,000 bbls. Gasoline layer, Water layer, observations percent emulsified 1. Blank gasoline ll 40 Cloudy with heavy precipitate. 2. Blank gasoline plus a commercial alkylamine monotoo Cloudy with moderate precipitate.
- R R R and R are alkyl groups having from 1 to about 22 carbon atoms
- X is an acid radical of phosphoric acids having from 2 to 8 phosphorus atoms per molecule and in which n is a whole number from 1 to 5, the maximum value of n being limited by the number of replaceable hydrogen atoms in the acid molecule of which X is an acid radical.
- alkylamine salt is present in an amount from about 1 to about 200 pounds per 1000 barrels of fuel.
- a fuel as defined in claim 1 wherein the alkylamine salt is present in an amount from about 5 to about 25 pounds per 1000 barrels of fuel.
- R R R and R contain from about 8 to about 18 carbon atoms.
- liquid hydrocarbon fuel comprises a petroleum distillate having an initial boiling point of at least about F. and an end boiling point not higher than about 750 F.
- a fuel as defined in claim 1 wherein said al-kylamine salt is dicoco dimethylammonium pyrophosphate.
- alky1- amine salt is disoya dimethylammonium salt of tripolyphosphoric acid.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
United States Patent 3,387,954 LIQUID HYDROCARBON FUELS CONTAINING A QUATERNARY AMMONIUM COMPOUND Julius Capowski and Harry J. Andress, In, Gloucester, N.J., assignors to Mobil Oil Corporation, a corporation of New York No Drawing. Filed Aug. 31, 1964, Ser. No. 393,351 7 Claims. (Cl. 44-72) This invention relates to liquid hydrocarbon fuels. More particularly, the invention relates to liquid hydrocarbon combustion fuels that are stabilized against screenclogging, filter plugging, sediment formation, icing and corrosion, and the novel additive compounds useful for such purposes.
As is well known to those skilled in the art, liquid hydrocarbon fuels, particularly hydrocarbon combustion fuels, such as fuel oils, diesel fuels, jet fuels and gasolines, tend to exhibit certain deleterious characteristics either after long periods of storage or under the conditions of operational use. Thus, it has been found that in such fuels, apart from the fact that under storage or operational conditions they may exhibit icing, corrosion and sediment formation, a particularly serious problem is encountered in the clogging of screens and plugging of filters. This tendency to clog screens and plug filters results from the caustic treatment of catalytically refined petroleum distillate fuels for the removal of sulfur-containing materials.
More specifically, this condition occurs when certain polar materials (surface-active additives and trace constituents) in the fuel contacted by the caustic agents, break down and form, as part of the product, watersoluble alkali metal compounds. When, subsequently, these fuels contact water such as might be present in fuel tank bottoms, these alkali metal compounds are leached out of the hydrocarbon phase into the water phase to greater or lesser degrees. There, by replacement of the alkali metals, corresponding compounds of dissolved metals having normal valences greater than one (for eg calcium, magnesium, zinc, copper, iron, aluminum, barium or lead) may be formed. Because of their surface activity, and reduced water and product solubility, these compounds may cause emulsification and gel formation particularly in the hydrocarbon layer, as well as in the water layer, with consequent serious detrimental effects on the clogging of screens and the plugging of filters. Heretofore, certain organic amine monophosphates have been suggested as anti-icers, carburetor detergents and r anti-rust agents; however, these additives have, nevertheless, been found to cause serious problems with respect to the aforementioned screen clogging and filter plugging conditions. Accordingly, a means for stabilizing such fuels and protecting them against the aforementioned screen clogging, filter plugging, as well as other undesirable storage conditions normally encountered, is highly desirable.
It is, therefore, an object of the present invention to provide improved liquid hydrocarbon fuels.
Another object of the invention is to provide improved liquid hydrocarbon combustion fuels and means for protecting them, which are effective not only against sediment formation, icing and corrosion, but also against screenclogging and filter plugging.
Other objects and advantages inherent in the invention will become apparent to those skilled in the art from the following description.
In accordance with the present invention, as more fully hereinafter described, it has been found that the above 3,387,954 Patented June 11, 1968 objects can be attained by the addition of small amounts of additive compositions having the formula:
R4 where:
R R R and R are alkyl groups having from 1 to about 22 carbon atoms, and preferably, from about 8 to about 18 carbon atoms, X is an acid radical selected from the group consisting of (a) phosphoric acids having from 2 to 8 phosphorus atoms per molecule, (b) phosphoric acid alkyl esters having from 2 to 8 phosphorus atoms per molecule and containing from 1 to 4 alkyl groups having from 1 to 22 carbon atoms per alkyl group, (c) boric acid, (d) carbonic acid, (e) aminopolycarboxy'lic acid and hydroxyethyl aminocarboxylic acids, in which the amine nitrogen atom is separated from the carboxylic carbon atom by a methylene or ethylene linkage and in which when more than one nitrogen atom is present they are separated from each other by ethylene or propylene linkages, and n is a whole number from 1 to 5, the maximum value of n being limited by the number of replaceable hydrogen atoms in the acid molecule of which X is an acid radical.
More specifically, with respect to the aforementioned substituents for the acid radical X, phosphoric acids of the type indicated under-(a) may include pyrophosphoric acid (diphosphoric acid), triphosphoric acid, hexaphosphoric acid and ployphosphoric acid. Aminopolycarboxylic acids of the type indicated under (e) may include ethylenediamine tetraacetic acid, nitrilotriacetic acid, diaminocyclohexaneN,N'- tetraacetic acid, and diethylenetriamine pentaacetic acid. Hydroxyethyl aminocarboxylic acids indicated under (e) may include N- hydroxyethyl ethylenediamine triacetic acid and dihydroxyethyl glycine.
As will become herein after apparent, these additive compositions are particularly effective not only as stabilizers against icing, corrosion and sediment formation, but also as anti-screen clogging and filter plugging agents in liquid hydrocarbon fuels.
These beneficial effects result from the fact that in the previously described replacement of the alkali metals, those metals having valences greater than one are tied up and rendered unavailable. As a result of such action, the aforementioned detrimental eifects are prevented from occurring.
The alkylamine salt additives are, in general, prepared by reacting one equivalent of the selected amine with one equivalent of the selected acid, in accordance with the above-described general formula, preferably at elevated temperature, for example, from about 50 C. to about 120 C.
The aforementioned alkylamine salt addivities may be used to improve liquid hydrocarbon fuels, generally. Of particular significance is the use of these additives to im prove liquid hydrocarbon fuels comprising petroleum distillates, which are hydrocarbon fratcions, having an initial boiling point of at least about F. and an end boiling point not higher than about 750 F., and boiling substantially continuously throughout their distillation range. Such fuels are generally referred to as distillate fuel oils. It will be understood, however, that this terminology is not restricted to straight-run distillate fractions. The distillate fuel oils may comprise straight-run distillate fuel oils, catalytically or thermally cracked (including hydrocracked) distillate fuel oils, or mixtures of straight-run distillate fuel oils, naphthas and the like, with cracked distillate stocks. Moreover, such fuel oils can be treated in accordance with well known commerass /p54 J cial methods, such as, acid or caustic treatment, hydrogenaiton, solvent refining, clay treatment and the like.
The distillate fuel oils are characterized by their relatively low viscosities, pour points and the like. The principal property which characterizes the contemplated liquid hydrocarbon fuels of the present invention, however, is their distillation range. As previously indicated, this range will lie between about 90 F. and about 750 F. Obviously, the distillation range of each individual fuel oil will cover a narrower boiling range falling, nevertheless, within the above-specified limits. Likewise, each fuel oil will boil substantially continuously throughout its distillation range.
Particularly contemplated among the aforementioned liquid hydrocarbon fuel oils are gasoline, Nos. 1, 2 and 3 fuel oils used in heating, diesel fuel oils, and the jet combustion fuels. The gasolines generally boil within the range from about 90 F. to about 450 F. The domestic fuel oils generally conform to the specification set forth in ASTM Specifications D396-62T. Specifications for diesel fuels are defined in ASTM Specifications D975- 60T. Typical jet fuels are defined in Military Specifications MIL-F-5624B.
The amount of the aforementioned alkylamine salt additive contemplated for use herein which is added to the liquid hydrocarbon fuel will depend, of course, upon the intended and the particular additives selected, inasmuch as these additives are not equivalent in their activity. Certain of these additives may necessitate being used in greater concentrations than others to be effective. In most cases, in which it is desired to obtain the aforementioned beneficial results in the liquid hydrocarbon fuels, viz. prevention of clogging of screens and plugging of filters, in addition to stabilization against sediment formation, icing and corrosion, additive concentrations varying from about 1 to about 200 pounds per thousand barrels of the fuel will be employed. Preferably, it will vary from about 5 to about 25 pounds per l00 barrels of fuel. If so desired, the aforementioned liquid hydrocarbon fuel compositions of the present invention can contain other additives or the purpose of achieving other results. Thus, for example, there may be present foam inhibitors, ignition and burning quality improvers, and others. Examples of such additives are silicones, dinitropropane, amyl nitrate, metal sulfonates, and the like.
The following examples and comparative data are intended to illustrate the novel additive compositions of the present invention and also to demonstrate their effectiveness in improving the properties of liquid hydrocarbon fuels. It will be understood, of course, that it is not intended the invention be limited to the particular compositions shown or to the operations or manipulations involved. Various other additive compositions, and other fuels, can be utilized as those skilled in the art will readily appreciate.
In carrying out the comparative experimentation, pre viously referred to, laboratory bench tests were made in which 40 ml. of an average commercially available gasoline blend (comprising, by volume, 40% catalytically cracked, 40% reformate and 20% alkylate components), was treated with ml. of 0.8 N NaOH (as a sulfur compound, particularly mercaptan, removing agent), 6 ml. of distilled water and ml. of 13.6 'g./l. of ZnCl solution [a component providing zinc ions which are often present in the field in tank water bottoms as a result of chemical actions on galvanized metal surfaces) in a 100 ml. mixing graduate. This mixture was given fifteen uniform, moderate, shakings and allowed to settle for one minute. The mixture was then examined for indications of colloidal states. The following table indicates the results obtained in such examinations. With regard to this table, it should be noted that the laboratory tests simulate the most severe conditions of commercial use that would normally be expected to result in emulsion and gel formation, which would otherwise cause handling dilficulties in product distribution systems and in vehicle fuel lines, with particular emphasis residing in encountering screen clogging and filter plugging. As will be seen from the table, under such conditions the additives of the present invention reduced, to a very significant degree, the tendency of the uninhibited gasoline and the uninhibited gasoline containing an alkylamine monophosphate (as a typical anti-icer, anti-rust and carburetor detergent multifunctional additive) to form emulsions.
The additives of the following table were prepared as follows:
Example I.-Preparation of dicoco dimethylammonium pyrophosphate A mixture comprising: 200 grams of dicoco dimethylammonium chloride and containing percent isopropanol and having a combining weight of about 475, grams of sodium pyrophosphate decahydrate having an equivalent weight of 111.5; 100 grams of water; and 200 grams of benzene, was refluxed to a temperature of about 195 C. over a period of 8 hours. The resulting reaction mixture was then filtered to remove sodium chloride and topped at 180 C. under reduced pressure to yield the desired dicoco dimethylammonium pyrophosphate additive.
Example lI.Preparation of dicoco dimethylammonium salt of ethylenediamine tetraacetic acid A mixture comprising: 280 grams of dicoco dimethylammonium chloride and containing 25 percent isopropanol and having a combining weight of about 475; 42 grams of the tetrasodium salt of ethylenediamine tetraacetic acid having a molecular weight of 380 and an equivalent weight of 95; grams of water; and 100 grams of benzene was refluxed to a temperature of 140 C. until the evolution of water had ceased, viz. approximately 8 hours. The resulting reaction mixture was then filtered and topped to yield the dicoco dimethylammonium salt of ethylenediamine tetraacetic acid additive.
Example lII.Preparation of disoya dimethyla-mmonium salt of tripolyphosphoric acid A mixture comprising: 220 grams of disoya dimethylammonium chloride containing 25 percent isopropanol and having a combining weight of about 580; 21 grams TABLE Dcrnulsification Test Concentration, lbs/1,000 bbls. Gasoline layer, Water layer, observations percent emulsified 1. Blank gasoline ll 40 Cloudy with heavy precipitate. 2. Blank gasoline plus a commercial alkylamine monotoo Cloudy with moderate precipitate.
p. osp ate. 3. Blank gasoline plus dicoco dimethylamrnonium 5 Cloudy with slight precipitate.
pyrophosphate. 4. Blank gasoline plus dicoco dimethylemmonium salt 100 5 Slightly cloudy.
of ethylenediamine t-ct-raacotic acid. 5. Blank gasoline plus disoya dimethylammonium salt M10 10 Clear with slight precipitate.
of tripolyphosphoric acid.
I A commercial type catalytically cracked/r0formatelalkylate gasoline blend containing 5 lb.ll,000 barrels 2.6 ditcrtiary butyl puracresol; 1 lb./l,000 barrels N,N-disalicylidcne-1.ZZ-propancdiaminc: and 3 cc. tctructhyl lead/gal.
of sodium tripolyphosphate (Na P O having an equivalent weight of 74; 50 grams of Water; and 100 grams of benzene was refluxed to a temperature of about 150 C. over a period of 8 hours. The resulting reaction mixture Was filtered and topped to yield the desired disoya dimethylammonium salt of tripolyp-hosphoric acid additive.
While the present invention has been described with preferred embodiments, it should be understood that modifications and variations thereof may be resorted to without departing from the spirit of the invention as will be obvious to those skilled in the art.
We claim:
1. A liquid hydrocarbon fuel containing a small amount of an alkylamine salt having the formula:
R R R and R are alkyl groups having from 1 to about 22 carbon atoms, X is an acid radical of phosphoric acids having from 2 to 8 phosphorus atoms per molecule and in which n is a whole number from 1 to 5, the maximum value of n being limited by the number of replaceable hydrogen atoms in the acid molecule of which X is an acid radical.
2. A fuel as defined in claim 1 wherein the alkylamine salt is present in an amount from about 1 to about 200 pounds per 1000 barrels of fuel.
3. A fuel as defined in claim 1 wherein the alkylamine salt is present in an amount from about 5 to about 25 pounds per 1000 barrels of fuel.
4. A fuel as defined in claim 1 wherein R R R and R contain from about 8 to about 18 carbon atoms.
5. A composition as defined in claim 1 wherein said liquid hydrocarbon fuel comprises a petroleum distillate having an initial boiling point of at least about F. and an end boiling point not higher than about 750 F.
6. A fuel as defined in claim 1 wherein said al-kylamine salt is dicoco dimethylammonium pyrophosphate.
7. A fuel as defined in claim 1 wherein said alky1- amine salt is disoya dimethylammonium salt of tripolyphosphoric acid.
References Cited UNITED STATES PATENTS 2,752,221 6/1956 Wachter et al. 252392 X 3,033,665 5/1962 Gaston et al. 44-66 3,055,749 9/1962 McDermott 44-71 3,228,758 1/1966 Bauer 252392 X 2,550,982 5/1951 Eberz 4472 X 2,728,652 12/1955 Hance 252-389 X 2,786,033 3/1957 Gottshall et al. 252-389 X 2,861,874 11/1958 Okelley et al. 4472 X 3,008,813 11/1961 Siegel 4472 X 3,169,983 2/ 1965 Hunter 4472 X DANIEL E. WYMAN, Primary Examiner.
PATRICK P. GARVIN, Examiner.
W. H. CANNON Assistant Examiner.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,387,954 June 11, 1968 Julius Capowski et a1.
It is certified that error appears in the above identified patent and that said Letters Patent are hereby corrected as shown below:
Column 2, lines 4 to 7, the formula should appear as shown below:
line 39, "herein after should read hereinafter line 60, "fratcions" should read fractions Column 3, line 1 "hydrogenaiton" should read hydrogenation line 19, "specification" should read specifications Column 4,
line 31, "475," should read 47S; Columns 3 and 4, in" the TABLE, footnote 1, line 1 thereof, "2.6" should read 2,6
line 2 thereof, "1.2" should read 1,2 Column 5, lines 15 to 18, the formula should appear as shown below:
$2 R III-R X R n Signed and sealed this 18th day of November 1969.
(SEAL) Attest:
EDWARD;M.FLETCHER,JR. WILLIAM E. SCHUYLER, JR. Attesting Officer Commissioner of Patents
Claims (1)
1. A LIQUID HYDROCARBON FUEL CONTAINING A SMALL AMOUNT OF AN ALKYLAMINE SALT HAVING THE FORMULA:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US393351A US3387954A (en) | 1964-08-31 | 1964-08-31 | Liquid hydrocarbon fuels containing a quaternary ammonium compound |
US584680A US3506712A (en) | 1964-08-31 | 1966-10-06 | Quaternary amine salts useful as fuel stabilizers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US393351A US3387954A (en) | 1964-08-31 | 1964-08-31 | Liquid hydrocarbon fuels containing a quaternary ammonium compound |
Publications (1)
Publication Number | Publication Date |
---|---|
US3387954A true US3387954A (en) | 1968-06-11 |
Family
ID=23554334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US393351A Expired - Lifetime US3387954A (en) | 1964-08-31 | 1964-08-31 | Liquid hydrocarbon fuels containing a quaternary ammonium compound |
Country Status (1)
Country | Link |
---|---|
US (1) | US3387954A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3534075A (en) * | 1968-03-05 | 1970-10-13 | Mobil Oil Corp | Liquid hydrocarbon compositions containing amine salts of ethylene diamine tetra acetic acid as antistatic agents |
US3637520A (en) * | 1969-09-25 | 1972-01-25 | Kelso Co | Solvent-soluble quaternary ammonium salts of cellulose sulfate |
US3895925A (en) * | 1974-06-10 | 1975-07-22 | Texaco Inc | Motor fuel composition |
US4053329A (en) * | 1976-04-02 | 1977-10-11 | Ppg Industries, Inc. | Method of improving corrosion resistance of metal substrates by passivating with an onium salt-containing material |
US4473377A (en) * | 1982-06-30 | 1984-09-25 | Mobil Oil Corporation | Zwitterionic quaternary ammonium carboxylates, their metal salts and lubricants and fuels containing same |
US4659594A (en) * | 1981-09-01 | 1987-04-21 | Phillips Petroleum Company | Composition and method for corrosion inhibition |
US4787916A (en) * | 1986-10-31 | 1988-11-29 | Exxon Research And Engineering Company | Method and fuel composition for reducing octane requirement increase |
US4973336A (en) * | 1988-06-10 | 1990-11-27 | Gheysens Jean Louis G | Fuel additives |
US5152807A (en) * | 1989-03-16 | 1992-10-06 | Exxon Chemical Patents Inc. | Fuel oil compositions containing guanidinium salts |
US5234477A (en) * | 1992-04-28 | 1993-08-10 | Shell Oil Company | Method of reducing NOx emissions in gasoline vehicles |
US5348561A (en) * | 1990-03-01 | 1994-09-20 | Exxon Chemical Patents Inc. | Fuel oil compositions |
US20130118062A1 (en) * | 2011-11-11 | 2013-05-16 | Afton Chemical Corporation | Fuel additive for improved performance of direct fuel injected engines |
US20140238328A1 (en) * | 2012-11-02 | 2014-08-28 | Afton Chemical Corporation | Fuel additive for improved performance in direct fuel injected engines |
EP2776691B1 (en) | 2011-11-11 | 2018-10-10 | Afton Chemical Corporation | Use of a fuel composition |
US11359155B2 (en) * | 2016-05-23 | 2022-06-14 | Shell Usa, Inc. | Use of a wax anti-settling additive in automotive fuel compositions |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2550982A (en) * | 1947-07-12 | 1951-05-01 | Petrolite Corp | Fog inhibited hydrocarbon product and method |
US2728652A (en) * | 1952-11-10 | 1955-12-27 | Hawaiian Dev Company Ltd | Corrosion inhibitor composition |
US2752221A (en) * | 1950-10-20 | 1956-06-26 | Shell Dev | Corrosion inhibition |
US2786033A (en) * | 1953-11-30 | 1957-03-19 | Gulf Oil Corp | Corrosion inhibiting composition |
US2861874A (en) * | 1954-06-23 | 1958-11-25 | Alox Corp | Corrosion inhibitor for light petroleum solvents and fuels |
US3008813A (en) * | 1958-10-29 | 1961-11-14 | Exxon Research Engineering Co | Hydrocarbon oils having improved water tolerance |
US3033665A (en) * | 1958-08-01 | 1962-05-08 | Gulf Research Development Co | Nonstalling gasoline motor fuel |
US3055749A (en) * | 1959-04-16 | 1962-09-25 | Exxon Research Engineering Co | Additives for modifying the electrical properties of combustible organic liquids |
US3169983A (en) * | 1962-06-11 | 1965-02-16 | United States Borax Chem | Quaternary ammonium glycol monoborate salts |
US3228758A (en) * | 1961-10-24 | 1966-01-11 | Du Pont | Fuels containing amine salts of alkyl acid phosphates |
-
1964
- 1964-08-31 US US393351A patent/US3387954A/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2550982A (en) * | 1947-07-12 | 1951-05-01 | Petrolite Corp | Fog inhibited hydrocarbon product and method |
US2752221A (en) * | 1950-10-20 | 1956-06-26 | Shell Dev | Corrosion inhibition |
US2728652A (en) * | 1952-11-10 | 1955-12-27 | Hawaiian Dev Company Ltd | Corrosion inhibitor composition |
US2786033A (en) * | 1953-11-30 | 1957-03-19 | Gulf Oil Corp | Corrosion inhibiting composition |
US2861874A (en) * | 1954-06-23 | 1958-11-25 | Alox Corp | Corrosion inhibitor for light petroleum solvents and fuels |
US3033665A (en) * | 1958-08-01 | 1962-05-08 | Gulf Research Development Co | Nonstalling gasoline motor fuel |
US3008813A (en) * | 1958-10-29 | 1961-11-14 | Exxon Research Engineering Co | Hydrocarbon oils having improved water tolerance |
US3055749A (en) * | 1959-04-16 | 1962-09-25 | Exxon Research Engineering Co | Additives for modifying the electrical properties of combustible organic liquids |
US3228758A (en) * | 1961-10-24 | 1966-01-11 | Du Pont | Fuels containing amine salts of alkyl acid phosphates |
US3169983A (en) * | 1962-06-11 | 1965-02-16 | United States Borax Chem | Quaternary ammonium glycol monoborate salts |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3534075A (en) * | 1968-03-05 | 1970-10-13 | Mobil Oil Corp | Liquid hydrocarbon compositions containing amine salts of ethylene diamine tetra acetic acid as antistatic agents |
US3637520A (en) * | 1969-09-25 | 1972-01-25 | Kelso Co | Solvent-soluble quaternary ammonium salts of cellulose sulfate |
US3895925A (en) * | 1974-06-10 | 1975-07-22 | Texaco Inc | Motor fuel composition |
US4053329A (en) * | 1976-04-02 | 1977-10-11 | Ppg Industries, Inc. | Method of improving corrosion resistance of metal substrates by passivating with an onium salt-containing material |
US4659594A (en) * | 1981-09-01 | 1987-04-21 | Phillips Petroleum Company | Composition and method for corrosion inhibition |
US4473377A (en) * | 1982-06-30 | 1984-09-25 | Mobil Oil Corporation | Zwitterionic quaternary ammonium carboxylates, their metal salts and lubricants and fuels containing same |
US4787916A (en) * | 1986-10-31 | 1988-11-29 | Exxon Research And Engineering Company | Method and fuel composition for reducing octane requirement increase |
US4973336A (en) * | 1988-06-10 | 1990-11-27 | Gheysens Jean Louis G | Fuel additives |
US5152807A (en) * | 1989-03-16 | 1992-10-06 | Exxon Chemical Patents Inc. | Fuel oil compositions containing guanidinium salts |
US5348561A (en) * | 1990-03-01 | 1994-09-20 | Exxon Chemical Patents Inc. | Fuel oil compositions |
US5234477A (en) * | 1992-04-28 | 1993-08-10 | Shell Oil Company | Method of reducing NOx emissions in gasoline vehicles |
US20130118062A1 (en) * | 2011-11-11 | 2013-05-16 | Afton Chemical Corporation | Fuel additive for improved performance of direct fuel injected engines |
US9574149B2 (en) * | 2011-11-11 | 2017-02-21 | Afton Chemical Corporation | Fuel additive for improved performance of direct fuel injected engines |
EP2776691B1 (en) | 2011-11-11 | 2018-10-10 | Afton Chemical Corporation | Use of a fuel composition |
US20140238328A1 (en) * | 2012-11-02 | 2014-08-28 | Afton Chemical Corporation | Fuel additive for improved performance in direct fuel injected engines |
US9458400B2 (en) * | 2012-11-02 | 2016-10-04 | Afton Chemical Corporation | Fuel additive for improved performance in direct fuel injected engines |
US11359155B2 (en) * | 2016-05-23 | 2022-06-14 | Shell Usa, Inc. | Use of a wax anti-settling additive in automotive fuel compositions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3387954A (en) | Liquid hydrocarbon fuels containing a quaternary ammonium compound | |
US2863904A (en) | Amine salts of di oxo-octyl orthophosphates | |
US3652242A (en) | Liquid hydrocarbon fuels containing alkylamine salts | |
US2908711A (en) | Itaconic acid-amine reaction product | |
US3035907A (en) | Hydrocarbon composition containing an itaconic acid-amine reaction product | |
US3228758A (en) | Fuels containing amine salts of alkyl acid phosphates | |
US2904416A (en) | Petroleum distillate fuels | |
US4002558A (en) | Removing water haze from distillate fuels | |
US3506712A (en) | Quaternary amine salts useful as fuel stabilizers | |
US3504055A (en) | Neutral primary tertiaralkyl amine salts of tripolyphosphoric acid and phosphoric acid alkyl esters | |
US3485858A (en) | Metal alkyl,or alkoxy metal alkyl,ester tetrapropenylsuccinates | |
US3079339A (en) | Compounded mineral oil compositions containing amine salts of di oxo-octyl acid orthophosphates | |
US3063820A (en) | Stabilization of hydrocarbons | |
US2901335A (en) | Additive for leaded gasoline | |
US3365477A (en) | Alkoxy metal salts of succinamic acids | |
US2626208A (en) | Preparation of stable distillate fuels from cracked stocks | |
US3073854A (en) | Trimethyllead methyl thioglycolate | |
US3260745A (en) | N-t-alkyl-beta-amino propionic acids | |
US3030196A (en) | Hydrocarbon fuels containing boron esters | |
US2658823A (en) | Fuel oil composition | |
US3015547A (en) | Motor fuel containing octane improver | |
US3261674A (en) | Stabilized gasoline antiknock compositions and gasoline containing same | |
US4341529A (en) | Motor fuel | |
US3083086A (en) | N-propyl n-butyrate in leaded gasoline | |
US3264075A (en) | Metal salts of succinamic acids in distillate fuel oil |