US3380333A - System for mixing and pumping slurry explosives - Google Patents

System for mixing and pumping slurry explosives Download PDF

Info

Publication number
US3380333A
US3380333A US569993A US56999366A US3380333A US 3380333 A US3380333 A US 3380333A US 569993 A US569993 A US 569993A US 56999366 A US56999366 A US 56999366A US 3380333 A US3380333 A US 3380333A
Authority
US
United States
Prior art keywords
slurry
pump
mixing
liquid
explosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US569993A
Inventor
Robert B Clay
Melvin A Cook
Lex L Udy
Douglas H Pack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ireco Inc
Intermountain Research and Engineering Co Inc
Original Assignee
Intermountain Research and Engineering Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US460792A external-priority patent/US3303738A/en
Application filed by Intermountain Research and Engineering Co Inc filed Critical Intermountain Research and Engineering Co Inc
Priority to US569993A priority Critical patent/US3380333A/en
Priority to GB55968/66A priority patent/GB1178970A/en
Priority to DE19661571267 priority patent/DE1571267A1/en
Application granted granted Critical
Publication of US3380333A publication Critical patent/US3380333A/en
Assigned to IRECO INCORPORATED reassignment IRECO INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: IRECO CHEMICALS
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/56Mixing liquids with solids by introducing solids in liquids, e.g. dispersing or dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/50Movable or transportable mixing devices or plants
    • B01F33/502Vehicle-mounted mixing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2211Amount of delivered fluid during a period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/08Tamping methods; Methods for loading boreholes with explosives; Apparatus therefor
    • F42D1/10Feeding explosives in granular or slurry form; Feeding explosives by pneumatic or hydraulic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/34Mixing fuel and prill, i.e. water or other fluids mixed with solid explosives, to obtain liquid explosive fuel emulsions or slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation

Definitions

  • FIGS. 4 MELVIN A.CO0K LEX' L. UDY
  • a self-contained automatically controllable apparatus for hauling, mixing and delivering thickened explosive slur-ry compositions to a borehole includes a truck, a liquid, i.e. oxidizer solution tank mounted on the truck, bins for particulate solid ingredients also mounted on the truck, a mixing station in the form of funnel or analogous container, power-operated means for feeding the solution and other solid particulate ingredients to the mixing station at independently variable and controllable rates, cycle timing and control means, a power-operated mixer, and pumps and hose delivery means for moving the mixed slurry to the borehole before it sets up or thickens sufiiciently to interfere substantially with such delivery.
  • Slurry blasting agents such as those described in Cook and Farnam U.S. Patent No. 2,930,695 and U.S. Reissue Patent No. 25,695, have enjoyed wide acceptance because of their low cost, low hazard sensitivity, high bulk strength and high dependability.
  • This invention provides both a safer and a more economical method and apparatus for the safe preparation and delivery of such blasting agents at and to the blasting site.
  • blasting agents of a type which can be pumped for large operations could be delivered effectively to the boreholes by a pumping method.
  • Known methods of pumping such explosives generally have involved (1) manufacture of the slurry explosive in a plant, (2) transporting the explosive to the site of use, (3) pumping the slurry explosive by mechanical or pneumatic means to the point of application. In some cases dry ingredients and liquids have been combined and dumped together into the blasting hole.
  • Many different types of units have been proposed for pumping a fluid o-r flowable explosive into boreholes, including holes containing ground water. Generally speaking, all of these units that have encountered water conditions in the boreholes have not have not met with real success. The use of such pumping units in small diameter boreholes and in underground mines wherein water was not encountered, has been accomplished, but such operations generally have not been economical.
  • the principal object of the present invention to provide apparatus for the effective on-site mixing and delivery of a slurry blasting agent.
  • a liquid e.g. cold or hot water, or aqueous solution of an oxidizer
  • absolute continuity of operation may not be essential. Uniformity or completeness of mixing, of course, is highly desirable.
  • a still further and important object is to make it possible to change or vary the mix, either continuously or stepwise, while it is being pumped.
  • a characteristic feature of the invention resides in mixing up the explosive composition at or close to the site of the borehole. This has the advantages of eliminating: (1) any need for a special mixing plant; (2) the expense and danger of transporting the completed explosive to a desired location; (3) need of packaging the explosive mixture for handling, although packaging may be done if desired; (4) much of the manpower otherwise necessary to load the explosive into the bottom of the borehole.
  • the hazards of handling the finished explosive compositions are substantially completely eliminated since the raw ingredients, generally speaking, are not explosive by themselves. Only after the various ingredients are mixed and combined together does the composition become detonable. Since this mixing takes place at or close to the location where the explosive will be used, and in relatively small quantities in the mixing unit (in many cases the largest mass of finished explosive may still be below the critical diameter or mass at which the composition will detonate), there is virtually no explosive hazard. In fact, the compositions may be prepared and handled in such a way that they cannot ordinarily to be set off until they are actually in the borehole.
  • certain sensitizers such as aluminum or other nonexplosive metals and fuels
  • One form of apparatus for carrying out the aforementioned method consists of a self-contained mixing and pumping vehicle.
  • This vehicle comprises a frame having mounted thereon one or more tanks for liquids, preferably a plurality of storage bins for dry ingredients. Underneath the discharge openings of the storage bin or bins are provided suitable feeders, such as angers, vibrators, or other types of feeders for uniformly and controllably delivering the dry ingredients to means for blending.
  • the ingredients are delivered to a mixing station.
  • This station may be of any suitable form, such as a funnel which is connected with a flow lie to the oxidizer solution tank.
  • a solution pump is provided which is preferably a constant rate pump, e.g. of the positive displacement type.
  • the wet and dry ingredients are blended into a slurry and the re sulting slurry, formed preferably right in the mixing funnel or station; is then further conveyed to a suitable delivery pump.
  • a suitable delivery pump is preferably but not always necessarily a positive displacement slurry pump. It pumps the slurry through a delivery hose directly to the boreholes.
  • the apparatus in preferred form is controlled by a completely automatic control system which enables presetting of the mixing ratios and control over the whole pumping process to insure that predetermined quantities of the slurry are properly mixed in the right proportions and pumped immediately to the boreholes.
  • the mobile mixing and pumping unit described in this particular embodiment of the invention makes it possible to transport the separate and individually non-hazardous ingredients of an explosive composition from one or more supply sources to the point of use and then facilitates the combining of these ingredients in the field in a unique and efficient manner. Because some of the ingredients dissolve best at elevated temperature, the equipment is so arranged that the explosive may safely be mixed and dispensed at a fairly high temperature. The necessary heat is applied to the heated oxidizer solution.
  • the latter is preferably an aqueous ammonium nitrate solution but may comprise other materials.
  • the resulting slurry explosive is sufiicient- 1y fluid that it may be easily pumped through the delivery device, e.g. a hose to the borehole. There, the material may thicken appreciably, egg. to form a gel, even a thick or substantially solid gel. Under some circumstances the slurry actually solidifies quite quickly in the borehole as it comes in contact with the cold rock.
  • the several feeding and dispensing devices permit efficient bulk handling of the dry ingredients as well as the oxidizer solution and/ or other liquid.
  • the slurry normally has some resistance of its own to dilution by extraneous waters but if it is desired to obtain complete water resistance for a long period of time, a thin-walled flexible plastic tube or sock can he slipped over the end of the hose. This may be pushed to the bottom of the borehole and then pumped full of the slurry explosive to fill the borehole to the height desired.
  • FIGURE 1 is an overall small scale perspective view of the mixer-pumper vehicle looking at the front thereof;
  • FIGURE 2 is a rear elevational view on a larger scale, of the vehicle of FIGURE 1, showing the control panel;
  • FIGURE 3 is a rear view of the vehicle with the control panel removed to show the bins, vibrator feeders and mixing funnel;
  • FIGURE 4 is a top plan of the Vehicle showing only a portion of the solution tank and layout of the components;
  • FIGURE 5 is an overall perspective view, showing somewhat schematically, the arrangement of the various components for mixing of the ingredients into the slurry and then delivering the slurry;
  • FIGURE 6 shows diagammatically the electrical control circuit for the components illustrated in FIGURE 5;
  • FIGURE 7 shows an alternative system diagrammatically by wiring diagram and schematic apparatus element.
  • the mobile mixer-pumper unit of this particular form of the invention comprises more or less conventional automotive truck 1 with a frame 2 upon which are mounted a conventional cab 3 and engine hood 4.
  • the rear ends of the truck frame 2 are closed by a rear channel piece 6.
  • an electrical generator 9 suitably a 7-10 kilowatt single or multi-phase electrical generator which is driven by an engine 10, such as a diesel engine, so that the engine and generator form a complete power unit.
  • an engine 10 such as a diesel engine
  • such a generator may be driven by power takeoff from the truck engine.
  • the energy for heating, dispensing, mixing and pumping may be supplied from other outside sources such as electric power means. Suitable electric or fuel-fed heaters or steam sources may be used to supply heat. Separate prime movers, etc., may be provided for the mixing and pumping functions. Pneumatic or hydraulic systems may be used if desired for operating moving parts where desired. Such frequently have the advantage of increased safety around explosive and combustible materials.
  • a liquid tank 11 of large capacity is a tank suitable for holding an aqueous oxidizer solution.
  • a tank suitable for holding an aqueous oxidizer solution.
  • the tank is constructed of stainless steel or other corrosion resistant material suitable for hot solutions of nitrate salts.
  • the tank as shown, is essentially cylindrical in shape and comprises an outer wall 12, and an inner wall 120 of fiber glass or stainless steel, for example. The latter may have a thickness of about Mt" or less and there is insulation material 13 between the inner and outer walls of the tank.
  • the top 14 of the tank is provided with a manhole opening 15, a fill pipe 16, and an air vent 17.
  • the tank preferably is adapted to be heated and it may contain a mixer for preparation of oxidizer solution such as saturated aqueous ammonium nitrate. In some cases heat may not be necessary.
  • oxidizer solution such as saturated aqueous ammonium nitrate. In some cases heat may not be necessary.
  • the arrangement is such that a fairly large supply of hot liquid may be kept available for extended operations.
  • the bottom of the solution tank 11, indicated at 18, is shown as provided with a sump 19 from which extends an outlet pipe 2%
  • the pipe has a suitable valve, here shown as a ball valve 21, which is controllable by appropriate means.
  • a control handle 22 is provided on the upper end of an extension 23.
  • a Water pipe 24 which can be used for flushing passes vertically downwardly through the tank and connects to the outlet pipe 20.
  • thermometer 25 Located in the side wall of the solution tank in the vicinity of the outlet pipe, is a thermometer 25 and an electric resistance heater unit 26 which is controlled by a thermostat switch.
  • bins 27 and 28 Positioned behind the solution tank in side-by-side relationship in the form shown in the drawings, are two bins 27 and 28. Each is adapted for holding one or more dry ingredients to be used in the slurry explosive.
  • the tops 29 and 29a of the bins each have openings 30 and 30a therein.
  • Each bin has a sloping bottom 31 and 31a with a discharge opening 32 and 32a at the lower extremity of the respective sloping bottom.
  • the bins are firmly mounted on the frame in a suitable manner, being suitably reinforced or braced as by vertical braces 33.
  • Bin 27 has a separate compartment 34 built therein for containing a further or separate dry ingredient, such as a gel forming component or thickener.
  • Compartment 34 has a discharge opening 35 at the bottom.
  • the top 36 of compartment 34 preferably has a suitable lid or door, not shown, which can be opened to permit filling of the compartment,
  • ⁇ devices for feeding and dispensing dry material at a predetermined and controlled rate Positioned beneath the bin discharge openings 32 and 32a are devices for feeding and dispensing dry material at a predetermined and controlled rate. As shown, some of these devices are vibrator feeders 37 and 37a which can be adjusted to vary their flow rates. Each of them has a tray 38 or 38a provided with a removable gate. These gates are located immediately beneath the bin discharge openings to receive the dry ingredients therefrom. The discharge ends of the vibrator feeder trays 38 and 38a are directed toward each other to uniformly deliver the dry ingredients to receiving means 39 located between them and substantially at the center of the vehicle frame, as can be seen in the drawings.
  • the receiving means just mentioned comprise a mixing funnel 39 which includes a conical upper funnel portion 40 nesting into the upper end of another conical lower funnel portion 41.
  • the top edge of the lower funnel portion 41 is bent over inwardly to form an annular chamber 42 with the extreme end of the top being bent downwardly and parallel with the inner surface of the lower funnel portion.
  • the lower funnel is spaced outwardly from the upper, as shown at 43.
  • the space 43 (usually on the order of a fraction of an inch) is designed to keep the wet and dry ingredients from mixing prematurely and then adhering to the surface of the upper funnel. Accordingly, the arrangement prevents any accumulation of semiwet ingredients on the funnel walls, The arrangement largely eliminates blocking of the funnel which might otherwise occur.
  • a pump is provided for dispensing the oxidizer liquid from the tank at a precisely controllable rate.
  • the pump preferably is a positive displacement solution pump 44 having a built-in relief valve. Since the pump is also a metering device, it must be so designed that its feed rate can be controlled accurately, independent of the height of liquid and consequent static liquid pressure in tank 11.
  • the pump has its inlet 45 connected to the outlet pipe 20 of the solution tank.
  • the pump also is provided with an outlet 46 which is connected to a tubular conduit 47 bent downwardly and connected to a cross or modified T 48. To the latter is connected a pressure actuated switch 49, FIG. 5, of a known commercial type for actuating the vibrator feeders to control the flow of the dry ingredients. See also FIG. 6.
  • This may be a diaphragm operated switch which does not close a circuit until a desired pressure is imposed on the diaphragm.
  • a pipe then connects the cross or T 48 to the annular chamber of space 42 between the upper and lower mixing funnels.
  • the function of switch 49 is to make sure that the dry materials normally are not fed to the upper funnel until the solution is being pumped into the lower section of the funnel. This prevents building up deposits of wet solids on the walls of the equipment.
  • the solution pump 44 is driven preferably by an explosion proof motor 51.
  • the latter is drivingly connected to the pump by a static proof V-belt drive enclosed within a belt guard 52, FIG. 5.
  • the liquid is forcibly injected into the lower funnel for rapid and complete mixing with solids falling from the upper funnel.
  • a final and main dispensing slurry pump 53 Mounted near the rear pump of the truck frame 2 and between the frame members is a final and main dispensing slurry pump 53. It is shown here as a positive displacement pump. This is the pump that delivers the slurry to the point of use or to a point of packaging if the material is to be packaged. It also has a built-in relief valve not shown.
  • the slurry pump 53 has its inlet 54 connected to the discharge outlet 55 of the mixing funnel.
  • the slurry pump is further provided with an outlet 56 which leads to a quick detachable coupling 57 for rapid and convenient hose connection.
  • the latter may be mounted in the rear channel piece 6 of the truck frame.
  • a high pressure delivery hose is preferred and which is Iwire countered and kink-proof. Such hose is connected to the quick detachable coupling 57 and serves to deliver the slurry explosive to the point of use. The hose can be removed readily when the system is not dispensing explosive.
  • the slurry pump 53 is powered by a suitable drive, preferably a variable speed drive unit.
  • This drive is indicated at 58 and includes preferably, an explosion-proof motor.
  • a water tank 59 is provided for a supply of hot water.
  • the Water tank may be supported separately on the body platform 5, as shown herein, or it may be incorporated within or otherwise closely associated with the larger tank 11.
  • the hot water tank is provided with a filler cap on the top thereof.
  • a control valve is connected to the outlet line 61.
  • a water circulating pump 63 powered by an explosionproof motor, is connected with the outlet hose or line 61 to pump the water from the tank.
  • a valve 63a is provided also and the arrangement is such that the pump can run without delivering water when valve 63a is closed.
  • the water supply is normally used for rinsing and cleaning the equipment before or after regular mixing operations. However, water may be added during mixing if desired, or other liquids such as liquid fuels, e. g. glycol, formamide, etc. may be supplied from tank 59. Where the tank arrangement permits feed can be accomplished by gravity flow, and such a pump is not always necessaryy.
  • a pump has the advantage, however, of providing a more accurate control of flow rate. This is important for controlled proportioning of ingredients used in the mix.
  • an auger feed device 64 Connected to a dry ingredient compartment discharge opening or outlet 35 is an auger feed device 64 enclosed in a tubular housing.
  • the auger and its housing may be of either a suitable plastic or a metal construction.
  • the auger takes material from the discharge 35 to the upper funnel 40 directly or via vibrator tray 38 if desired.
  • a longitudinal discharge slot 66 At the delivery end of the auger housing, on the undersurface thereof, is located a longitudinal discharge slot 66, FIG. 4.
  • the slot 66 opens just above the vibrator feed tray 38 which functions to uniformly distribute the material fed thereby.
  • Material such as guar gum, which is a galacto mannan material or any other suitable solid particulate ingredient, may be delivered into the tray.
  • the auger feed preferably is powered by a variable speed drive 67. This also is driven by an explosion-proof motor 68. By varying the drive speed, the proportions of this particular dry ingredient may be varied as desired.
  • the vehicle is desirably provided with leveling means.
  • the engine of the truck is provided with a power take-d for driving a conventional hydraulic pump, not shown.
  • the pump supplies fluid to a hydraulic system which communicates with two hydraulic leveling cylinders. One of these is shown at 70.
  • the leveling devices are located immediately behind the rear wheels of the truck and are suspended from the rear channel member 6.
  • the lower ends of the leveling cylinders are provided with swivel end members or feet 72 to provide a firm footing on uneven ground. In some cases, the leveling means may not be essential.
  • Suitable controls are provided for the various pumps and feeding devices so that the feed rate for each ingredient may be closely regulated.
  • An electric control panel is indicated at '73, which is secured against the vertical braces 33.
  • Most of the primary controls for the whole feeding system described herein are located on this panel.
  • the preferred arrangement is such that the solution pump cuts off at the same time as the dry material feeders but the re sidual liquid in the line continues to flow very briefly after the dry ingredients stop. This is sufficient to flush them down.
  • the electrical control system is illustrated in FIGURE 6 and contains conventional units interconnected to obtain the proper relationship between the operations of the several components of a truck. All of the wiring for the control system is in explosion-proof conduits. Explosionproof junction boxes are also used.
  • a slurry pump magnetic starter 74 located near the slurry pump motor, an ingredient control magnetic starter 75 located near the solution pump motor i, and the pressure actuated switch 49 on the conduit leading from the solution pump to the mixing funnel
  • most of the components of the control system are located on the electrical control panel 73, in the form shown in FIGURES 1 to 6.
  • These other components include a main circuit breaker 76 in line with the generator 9 and a double pole double throw switch 77 to connect the heater 26 (in the tank 11) across the generator.
  • a switch 79 is connected between the pressure actuated switch 49, controlled by liquid pressure, and the auger motor 68.
  • the auger 64 cannot start delivering dry materials until liquid has started flowing into the lower funnel 41.
  • Calibration by-passes 80 and 81 are connected across the pressure actuated switch 49. These make it possible to dispense dry material without solution, e.g., for calibration purposes. Ordinarily, the dry ingredients do not start feeding until liquid is flowing and they are stopped before liquid ceases to flow. This prevents building up pasty deposits on the walls of the funnels and other parts.
  • a control switch 82 is provided for the solution pump motor 51.
  • the vibrator feeders which supply other dry materials such as metal particles, granular fuels, etc., are energized at appropriate times by switches 83 and 84.
  • the rates of vibration of the vibrator feeds can be adjusted by suitable means, shown herein as Variacs or rheostats $5 and 86. By these means, the feed rates of the various solids can be closely controlled.
  • auger feeds and the like can be used with or in lieu of the vibrators if desired, to dispense the dry, solid materials. In some cases, augcrs have been successfully substituted for all the vibrator elements. They are more positive in operation.
  • Chargi1tg.-Tl1e mix-pump unit is prepared for charging by first turning off the truck engine and by assuring that at least one grounding chain is in contact with the ground. After checking to assure that the solution tank valve 21 is closed, that the hot water valve is closed, and that gates, where used, are closed on the vibrator feeder trays, the hatches and filling pipes are opened, taking care not to admit any foreign matter. Appropriate quantities of oxidizer solution, sensitizer material, thickener material and hot water for flushing are then brought into the respective tanks and bins. For a typical slurry blasting agent, typical charges would be- Ingredients Charge Weights, ⁇ l'cights percent (1b.)
  • ammonium llll tit liquid should be 64.0% strength ammonium For hot slurry ation it may he at a temperature 01 about 170 5 i Actual weig of ammonium nitrate and water in the sptciiir t. above are ammonium nitrate 15,750 lbs. and ⁇ tattn': 3,000 1
  • finely divided aluminum may be used in lieu of or in addition to TNT and other materials such as pulverized coal or gilsonite, nitrocellulose, etc. may be used.
  • Sugar is a useful fuel for some situations.
  • the filling pipes and hatches are then closed, and the generator 9 is started.
  • the solution tank heater 26 may be turned on, if needed to maintain temperature when hot slurry is to be used, and the hot water circulation pump, where one is employed, is also energized. This pump can run idly without delivering water until valve 63a is opened.
  • the mix-pump truck preferably should be leveled by use of the hydraulic leveling cylinders 70, particularly if the truck is on a slope.
  • fiow rates in a typical case may be about as shown below:
  • FLOW RATES As indicated previously, the formulas may be varied widely. For example, a solution of ammonium nitrate, plus dry particulate ammonium nitrate, particulate aluminum, gelling agent, inhibitor for preventing premature reaction between aluminum and hot water, and solid or liquid fuel may be used. Sodium nitrate may be substituted in part or even fully for the solids, ammonium nitrate or for that in solution, or for some in both places. Other ingredients such as inorganic chlorates and perchlorates may be employed.
  • the guar flour and other solid ingredient fiow rates may be adjusted to compensate or the pump 44 itself may be adjusted, proportionately, to obtain proper relative rates.
  • the generator is checked to assure that a proper voltage is being delivered and that a standard desired frequency, c.g. cycles 5% is being obtained.
  • the ammonium nitrate liquid pump (solution pump 44) is preferably calibrated by running hot water through it and determining accurately, e.g. by weighing, the amount of water delivered in a measured period of time.
  • the vibrator feeders 37' and 37a are then independently calibrated by weighing their respective outputs per unit of time.
  • the auger feed 64 is similarly calibrated by catching its output in a tared bag and then weighing it. As noted above, all these units are designed for adjustment of feed rates.
  • the apparatus is then prepared for normal working operation. This is done by turning off the calibration by-pass switches 80, 81, FIGURE 6, and then turning on the switches 82 to the solution pump, 83, 84 to the vibrator feeders and 79 to the auger feed, etc. and by turning on the heaters.
  • the solution will actuate the pressure switch 49. This will start the flow of the dry ingredients. Dry ingredients of course may be mixed into one or more of the bins 27, 28, and additional bins with either vibratory or auger feeders may be used. With some solids, simply gravity flow can be used. If aluminum is used, one dispenser may be used for it, otherwise both vibrators may be used to dispense TNT or TNT-ammonium nitrate mixtures. This operation will See switch 90. This calibration may be carried out at either 10 continue until the timer 78 has turned off the dry matea mixing plant or at the site where the explosives are to be rial feeds and the solution pump.
  • slurry blasting agents WhlCh may be mixed and At least one grounding chain hould be touching the loaded with the apparatus of the invention include those o d; based on ammonium nitrate plus sodium nitrate, and/or The generator, the heater (if used), and the water circuchlorates, perchlorates and other oxidizers. These ingrediltftlting 1pgump (when used, i.e.
  • entil may bf supplied eitillier or in solution; solid fuels s on d eturned on; suc as gi sonite, starc su ur, urea, sugar, coal dust
  • the truck engine should be running, only if hydraulic may be used.
  • Thickeners such as guar gum and/or starch mechanilsm or power take-off is neeeded. Otherwise, it is and heat or energy producing metals such as aluminum, shut off. magnesium and/ or ferrophosphorous may be added.
  • the callbratlon by-pass switches are turned olf; plosrve sensitizers such as the various types of smokeless
  • the solution pump switch and the vibrator and/or powders, TNT, and othe requivalent materials may be auger feeder switches are turned on; employed.
  • Liquid fuels such as ethylene glycol p,ropylene I
  • the slurry or delivery pump switch and the main solid 0 glycol and the like may be added, either in the solution ingredlent feed switch W111 be 03; tank or separately. Typical slurries which have been used The valve in the hot water flush line should be closed; include the following (all parts by weight):
  • the vibrator Typical charges per b h l may b i h range f feeeder tray gates are next removed or opened so that the 100 t 1500 pounds f bl i t, Th i i prefy ingredients can flow during operation-
  • the dispensing hose is pref- P y 15 13 one to Warm P 6 System all It erably lon enou h that a number of boreholes can be y P desirfble also for rinsing;
  • the delivery hose is filled from one loiation Without moving the truck. then inserted 1n the borehole.
  • the tlmer 78 can be set for advantage of the present invention not stressed y deslredpperatlonal tlme, P to Say three mmutes; above resides in the provision for heating the liquid solumore If fieslred- The amEmnt of slurry to be PQmPed tion.
  • Detonation of and d f retrlilcted a ig g 7 Is the slurry in any case is preferably accomplished by i i i i P g 5 52 p081 suitable explosive boosters, since aqueous slurries based or man f ea mg 15 con mus unng opera or on ammonium nitrate as primary oxidizer are not usually long continued operation, however, the heater can be kept ca fiv P d on by appropriate and obvious modification of switch 77.
  • the dry ingredient feed is then started immeor 3 um ad t F; i large lzump diately after solution begins to flow into the lower funnel, lar b Y I a i i l y g so that the slurry explosive will be mixed and pumped up 5 my a ea 0 18 m 1S ter ⁇ 8 i directly into the borehole until the set time has elapsed. re exploslon hazards a also aYOIdS dlflicultles The dry ingredient feed System will then automatically handling the slurry.
  • the slurry pump should not be capable of cavitating, i.e., it should not have such excessive capacity as to pull substantial amounts of air into the slurry as it is delivered. Large air masses cause discontinuities in the explosive in the borehole. Should there be water in the hole, large quantities of air cause foaming or turbulence which may leach out and destroy the desired gel structure of the explosive. This gel structure gives protection against excessive dilution by ground waters.
  • FIGURES 1 to 6, inclusive The system described in FIGURES 1 to 6, inclusive, has hen found in practice to be highly successful. A particular feature in the process involves the formation of a relatively quick setting gel, which will now be discussed.
  • a thickening agent which sets up fairly rapidly is usually included in the composition. It may be predissolved, if desired, or added dry. In the procedure described above, it is usually added dry. The reasons for thickening the slurry to a gel are several. A gel resists Water penetration and leaching of soluble components, such as ammonium nitrate, etc., out of the slurry in the borehole. In addition, by thickening the slurry, segregation of undissolved particles of sensitizers and/or fuels is prevented or greatly reduced. Particles of metallic aluminum, of TNT, smokeles powder, coal, gilsonite and the like tend to separate by gravity.
  • the thickening agent preferably is one which sets up at least to some extent by the time the slurry reaches the borehole, but does not set up so rapidly as to interfere with pumping the slurry through the delivery hose.
  • Guar gum preferably ground rather finely, or so-called guar flour
  • guar flour is a particularly suitable thickener for purposes just described.
  • other thickener such as starches and flours and relate materials may be used. Some of these have fuel value as well as thickening power.
  • the thickening eflect should be delayed sufiiciently that the slurry or gel can be delivered by pumping through a delivery hose without undue difficulty.
  • FIGURE 7 there is shown a modification wherein the bins or hoppers (not shown) for dry ingredients are each provided with motor driven angers. These are each equipped with explosion-proof motors shown respectively at 165, 166 and 167. While three are shown, the number of feeding angers, like the number of supply bins for dry ingredients, may be varied as desired. When there are more dry ingredients to be used than there are hoppers and feeding devices, some of them can be combined by premixing. Soluble solids, where used, can be predissolved into the main liquid solution.
  • the latter is usually a concentrated solution of ammonium nitrate or ammonium nitrate combined with sodium nitrate in water, or in water containing a compatible liquid fuel such as an alcohol, glycol, amine o-r amide, etc.
  • a mechanical mixing device of conventional type is used at the mixing station.
  • the mixer is not shown but is driven by an appropriate motor 168 which is indicated.
  • a solution pump, indicated diagrammatically at 190 is also I2 driven by an explosion-proof motor 180.
  • a suitable pressure responsive unit 1&1 is provided for operating a switch closing mechanism 115 when liquid pressure builds up to a desired level.
  • a slurry deliver pump not shown, but analogous in all respects to the pump 53, FIGURE 5, is given by a motor 195, shown at the top of FIGURE 7.
  • the slurry pump is also a mixer and mixing continues through the delivery hose, due to shear and wall friction.
  • a plurality of timer units 166 and 103 are provided in the system of FIGURE 7.
  • a timer operating for three minutes allows the pump truck to charge about 1200 to 1500 pounds of slurry explosive into a borehole without interruption. For many operations this is sufficient.
  • the plural timers can be set to operate sequentially so that a continuous mixing and pumping cycle of up to six minutes duration may be obtained.
  • the arrangement is such also that the individual rates of feed for the liquid solution pump and for each of the dry ingredient feeders 165, 166 and 167 can be varied. They may be operated also so that one or more of the dry ingredient feeders will operate during only part of the cycle.
  • a more powerful explosive in the bottom of the borehole and a less powerful or less expensive composition in the top portion is desirable.
  • the apparatus of this invention makes this possible.
  • the operator can vary at will any of the component feeders.
  • a composition may include more aluminum or more granular TNT, etc., at the bottom of the hole, and less at the top.
  • the slurry mix may be a stiffer slurry, to compensate for water in the borehole at the bottom and be more dilute, i.e. include more water at or towards the top.
  • the desired mixes may be stopped and started so as to change compositions at any point in the borehole filling operation.
  • the apparatus of FIGURE 7 also includes an air compressor 2M and a receiver 202.
  • Compressed air is thus available for various purposes and, if desired, a supply of the slurry may be stored in a tank (not shown) and expelled therefrom through an outlet line by using compressed air as the propellant.
  • a three phase generator 140 is driven by a suitable prime mover, not shown. It may be driven by power take-off from the truck motor, or it may have its own separate motor, as in the case of the apparatus of FIGURE 1.
  • Power from the generator 140 passes through a main circuit breaker 141 to distributor lines D D and D From the latter it is distributed through control devices to the various motors that drive the feeders, mixer, and pumps, as already described.
  • a start-stop switch station 101 controls the slurry pump.
  • a timing start-stop station 102 supplies power to the timers 166 and 10S.
  • Timer 18-6 ordinarily operates first and if the batch is not a large one, it will start and stop the whole batch mixing operation. Only if a batch is so large that mixing and delivery time exceeds the time capacity of timer 1% in the production of one mixture will timer 1% come into operation. In this case, feeding, mixing and slurry pumping will continue until the full batch is mixed and timer 103 will stop the operation that timer Ill-:5 initiated.
  • Electromagnetic coils 106aand M30 respectively, operate switches 1536b and 10812 for this purpose.
  • Unit 109 can be energized by closing switch The]: through a line L and the motor starter unit 120.
  • a bin vibrator unit 122 is included in FIGURE 7 and can be energized by the same means and employed with the auger #1 driven by motor 165.
  • auger reversing switch 116 which reverses the auger-timer relationship
  • auger #2 driven by motor 166
  • Motor 166 is controlled by motor starter 123. Power for these controls comes through pressure switch unit 113 under control of liquid pressure supplied by pump 190.
  • the solids feeders cannot operate until the pressure switch unit is activated. This prevents feeding dry solids into the mixer before there is liquid present.
  • the pressure switch unit can be by-passed by means of a manually operated by-pass switch 114. Relays 111 and 112 supply power to the timers 106 and 108, respectively.
  • a switch 117 controls power to the motor starter 118 for the solution pump motor 180.
  • Bin vibrator units 124, 128 and 130 are operated in the same manner as similar unit 122.
  • Motor 167 which operates auger #3 is under control of magnetic starter 129.
  • Manual switches 119, 121, and 127 are provided respectively for bringing the respective auger motors 165, 166, and 167 into or out of operation.
  • a switch 115 is directly operated by the liquid pressure when pump 190 starts to operate. The closing of switch 115 activates the relay unit 113, bringing the latter under timer control, i.e. under timer 106 or 108.
  • a time totalizer 132 under control of a switch 131, is provided for auger #2 and a similar totalizer 134, under control of switch 133, for auger #1.
  • the arrangement of the auger controls is such that they can be operated together or independently.
  • timers 106 and 108 either of them can be cut in or cut out at a predetermined point in the cycle.
  • the composition of the mix being pumped into a borehole can be changed at any point in the batch cycle, by a presetting of the timers 106 and 108.
  • the third unit, or auger #3, driven by motor 167, is not provided with a time totalizer although it may be if desired. Control of augers #1 and #2 gives adequate flexibility for most situations.
  • a manually operable mixer switch is shown at 105 by means of which the mixer can be turned on or off as needed. In many cases the turbulence of the liquid and of the dry solids as they come together, plus the mixing at the pump and through the delivery hose is quite adequate.
  • the slurry delivery pump and hose are not indicated in FIGURE 7 but these are essentially the same as the parts shown in the previous figures.
  • the whole arrangement is such that the feed rates of liquid and of solids by the several angers or other feeders for solid materials can be predetermined, preset and controlled with precision.
  • Either auger #1 or #2, or both can be cut in or cut out at any point in the batch cycle, to change the composition and get a different mix with precision control.
  • the time, in the batch cycle, at which the change is made also can be predetermined and controlled precisely.
  • the composition can be changed more than once in each borehole, if desired.
  • the bottom half, or some other fraction can be filled with composition containing more of ingredient A than the upper part or parts or an ingredient B may be cut off entirely at a predetermined point and/or another ingredient C started or stopped.
  • Similar controls not shown, also can be applied to the liquid supply so that a wetter slurry can be brought in on top or vice versa.
  • An important aspect of this invention is its control over the degree or rate of thickening of the gel or slurry in the blasting site. Thickening should occur at such a rate and to such a degree as to prevent gravitational separation of suspended solids after mixing ceases.
  • the suspended solids may be insoluble by nature, as is the case with aluminum, TNT, nitrocellulose (smokeless powder), etc. in aqueous slurries, or they may be only insoluble at the moment because the solution is oversaturated, e.g. when a saturated solution mixed at elevated temperature is cooled substantially.
  • the solids coming out of solution and crystallizing will necessarily add to the undissolved particulate solids present and thus will thicken the gel or slurry suspension.
  • a delayed action thickener i.e. one which does not instantly or immediately cause substantial or frrll thickening but is eifective a few seconds or moments later, the gel or slurry may be pumped into the borehole or other blasting site while quite fluid or non-viscous.
  • the gel or slurry can be pumped thin and still set up or thicken enough to substantially inhibit separation of the solid particles when the material becomes quiescent in the site or borehole.
  • the delivery conduit usually a tubular hose, although a pipe may be used if desired, is preferably of such diameter or capacity relative to the capacity of the slurrry pump (delivery pump) that effective mixing of liquid and suspended solids continues throughout the full length of the conduit and all during the pumping operation. There is thus essentially no Stratification or separation, segregation, aggregation, agglomeration, etc. of solids possible until the slurry is in the blasting site. By insuring that the viscosity or thickness of the slurry will increase sufli'ciently by the time of actual delivery to the borehole (or very soon thereafter) it is not difficult to hold the solids quite effectively in proper suspension. Further cooling or setting which may continue to occur, e.g. in a borehole, will only enhance stability of the biasing agent against gravitational separation or segregation.
  • the gel or slurry composition be reasonably homogenous in the macro-sense, although of course it is quite heterogeneous in the true physical and chemical sense.
  • Some heterogeneity, even in the course or macrosense, is unavoidable in many cases, especially where the solid particles are large or vary considerably in size but a reasonable uniformity throughout the charge is needed. This does not preclude the possibility, and strong desirability in some instances, of changing proportions or ingredients or both while a borehole is being filled. Such may be very desirable, as previously pointed out. However, a grossly uneven distribution of solids within a given section of the borehole is to be avoided.
  • the pumpcr-mixer apparatus is employed to mix ingredients at the site and deliver them directly into boreholes.
  • a delivery hose long enough to reach several holes (and reach to the bottom of each hole) preferably being employed.
  • it is customary and desirable to have a hose several hundred feet long so that the apparatus can be used where mining regulations require substantial distances between explosive loading vehicle and mine equipment.
  • Apparatus for mixing and delivering a gel or slurry type explosive composition to a receiver which comprises, in combination, a container for a liquid, a container for particulate solids which are suspendable in said liquid, a mixing station having a gravity flow outlet, adjustable continuous flow means for feeding said liquid to said station at a predeterminable controlled rate, at least one adjustable means for continuously feeding said solids to said station also at a predeterminable controlled rate for mixing and suspension in said liquid to form a gel or slurry, pump means connected between said outlet and the conduit named hereinafter, said pump means being capable of removing the mixture from the mixing station substantially as fast as it is formed but not so rapidly as to draw large air masses and cause discontinuities in the gel or slurry, and a conduit leading from said pump means to the receiver for transporting the gel or slurry, said conduit being of such flow capacity with respect to the capacity of the pump means as to essentially prevent stratification and solids separation in the gel or slurry during flow therethrough.
  • Apparatus according to claim 1 which includes means for controlling the temperature of the liquid and thereby controlling the temperature of the mixture.
  • Apparatus according to claim 1 which includes means for heating the liquid.
  • Combination according to claim 1 which includes a mechanical mixer at the mixing station for mixing the liquid and the suspendable solids.
  • Combination according to claim 1 including automatic control means for continuing operation of the delivery pump for complete emptying of the mixing station despite termination of the feeding of liquid and solids.
  • Combination according to claim 1 which includes an automatic means and control means therefor actuated by the liquid feeding means for initiating operation of the solids feeding means in predetermined, timed relationship to operation of the liquid feeding means.
  • Combination according to claim 1 which includes adjustable cyclical means for selectively predetermining and controlling the batch quantity of mixture to be delivered in a single batch operation.
  • the adjustable means for selectively predetermining the batch quantity comprises a plurality of timer devices operable in sequence, whereby a single batch greater than the capacity of a single timer may be delivered without interruption.
  • Apparatus according to claim 1 which includes means for selectively changing the relative proportions of liquid and solid ingredients during mixing and delivery of a single batch.
  • a mixing and pumper truck apparatus for preparing and delivering to a receiver a batch of predetermined quantity of slurry or gel type flowable explosive composition, comprising, in combination, a mobile vehicle, a power source, a mixing station having a gravity flow outlet, a liquid metering means driven from said source and adapted to deliver liquid continuously at a selectively controllable rate to said station, solid particulate material feeder means also driven by said source and adapted to deliver solid particles continuously at a selectively controllable rate to said mixing station, a delivery conduit of restricted cross section for removing a mixture of liquid and solids from said mixing station and delivering them into a blasting site, said restricted cross-section and the consequent gel or slurry rate of flow therethrough being so proportioned with respect to the desired delivery rate as to essentially prevent stratification and separation of suspended solids in the gel or slurry, during flow of the gel or slurry therethrough and a non-cavitating slurry or gel delivery means connecting said outlet to said dolivery conduit, said delivery means being
  • Apparatus according to claim 11 which includes a mixing device ahead of the pump.
  • Apparatus according to claim 11 which includes timer control means driven by the power source and arranged to control the duration of time of feeding said liquid and said solids, thereby to control the batch size of mixture delivered in a single operation cycle.
  • Apparatus for preparing and delivering to a delivery point in homogeneous condition a batch of a gel or slurry explosive made up of liquid and suspended particulate solids which have a tendency to gravitational separation from the suspending liquid comprising, in combination:
  • a delivery pump connecting said mixing station to said delivery conduit, said pump being of capacity sufficient to prevent large buildup of slurry in the mixing station but not such as to draw air into the slurry and cause discontinuities therein for taking mixed solids and liquid from said station and forcing the mixture through said conduit at a rate to maintain substantially homogeneous distribution of the solids throughout the volume of said liquid.
  • Apparatus according to claim 15 which includes an automatic presettable timing and batch volume control device related to the capacity of said pump, whereby a batch of predetermined volume of said explosive gel or slurry may be mixed and delivered to the site automatically.
  • Apparatus according to claim 15 which includes means selectively operable during a single batch mixing and delivery cycle for changing the composition of said batch during said mixing and delivery.
  • the combination which includes a mixing vessel comprising a lower funnel and an upper funnel above and spaced from said lower funnel, liquid supply and flow control means including an outlet below the upper funnel, for introducing a liquid into the lower funnel below the upper funnel while essentially avoiding wetting the interior of the upper funnel with said liquid, means for feeding at a predetermined rate dry particulate solids into said upper funnel, the arrangement of said solids feeding means and said funnels being such as to cause the solids to fall by gravity into said lower funnel, a delivery hose connected to the lower part of said mixing vessel, means including a slurry delivery pump for mixing said liquid and said solids together to form a slurry, said delivery pump being effective to force the slurry through said hose at a flow rate which is adequate to assure continuing elfective mixing of said slurry ingredients in the hose, and control means for selectively changing the respective feed rates of said solids and said liquid during a pumping and delivery operation.
  • Combination according to claim 18 which includes a delivery pump for the liquid ingredient and a pressure actuated switch under control of said pump for initiating 18 a batch timing operation of the mixing and delivery apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

April 30, 1968 B, CLAY ETAL SYSTEM FOR MIXING AND PUMPING SLURRY EXPLOSIVES 4 Sheets-Sheet 1 Original Filed June 2, 1965 INVENTORS ROBERT B. CLAY MELVIN A. COOK LEX L. UDY
DOUGLAS H. PACK FIGZ April 30, 1968 R. B. CLAY ET AL 3,380,333
SYSTEM FOR MIXING AND PUMPING SLURRY EXPLOSIVES FIGS FIG 4 MELVIN A.CO0K LEX' L. UDY
DOUGLAS H. PACK 5a 56 INVENTORS I ROBERT B. CLAY April 30, 1968 R. B. CLAY ET AL 3,380,333
SYSTEM FOR MIXING AND PUMPING'SLURRY EXPLOSIVES Original Filed June 2, 1965 4 Sheets-Sheet 3 INVENTORfi ROBERT B. CLAY MELVIN A. COOK LEX L. UDY DOUGLAS H. PACK April 30, 1968 R. B. CLAY ET AL 3,380,333
SYSTEM FOR MIXING AND PUMPING SLURRY EXPLOSIVES Original Filed June 2, 1965 4 Sheets-Sheet 4 INVE Tom ROBERT B CLAY MELVIN A. COOK LE'X LAIDY voueuas H. PACK United States Patent 3,380,333 SYSTEM FOR MIXING AND PUMPING SLURRY EXPLOSIVES Robert B. Clay, Bountiful, and Melvin A. Cook, Lex L.
Udy, and Douglas H. Pack, Salt Lake City, Utah, assignors to Intermountain Research and Engineering Company lnc., a corporation of Utah Original application June 2, 1965, Ser. No. 460,792, now Patent No. 3,303,738, dated Feb. 14, 1967. Divided and this application Aug. 3, 1966, Ser. No. 569,993
21 Claims. (Cl. 86-20) ABSTRACT OF THE DISCLOSURE A self-contained automatically controllable apparatus for hauling, mixing and delivering thickened explosive slur-ry compositions to a borehole, includes a truck, a liquid, i.e. oxidizer solution tank mounted on the truck, bins for particulate solid ingredients also mounted on the truck, a mixing station in the form of funnel or analogous container, power-operated means for feeding the solution and other solid particulate ingredients to the mixing station at independently variable and controllable rates, cycle timing and control means, a power-operated mixer, and pumps and hose delivery means for moving the mixed slurry to the borehole before it sets up or thickens sufiiciently to interfere substantially with such delivery.
This application is division of application Serial No. 460,792, filed June 2, 1965, now U.S. Patent No. 3,303,738, which, in turn is a continuation-in-part of application Serial No. 315,908 filed Oct. 14, 1963, now abandoned.
Slurry blasting agents, such as those described in Cook and Farnam U.S. Patent No. 2,930,695 and U.S. Reissue Patent No. 25,695, have enjoyed wide acceptance because of their low cost, low hazard sensitivity, high bulk strength and high dependability. This invention provides both a safer and a more economical method and apparatus for the safe preparation and delivery of such blasting agents at and to the blasting site.
It has been proposed hitherto that blasting agents of a type which can be pumped for large operations could be delivered effectively to the boreholes by a pumping method. Known methods of pumping such explosives, however, generally have involved (1) manufacture of the slurry explosive in a plant, (2) transporting the explosive to the site of use, (3) pumping the slurry explosive by mechanical or pneumatic means to the point of application. In some cases dry ingredients and liquids have been combined and dumped together into the blasting hole. Many different types of units have been proposed for pumping a fluid o-r flowable explosive into boreholes, including holes containing ground water. Generally speaking, all of these units that have encountered water conditions in the boreholes have not have not met with real success. The use of such pumping units in small diameter boreholes and in underground mines wherein water was not encountered, has been accomplished, but such operations generally have not been economical.
It is recognized that a successful pumping application for pumpable explosives must satisfy several conditi0ns 1) the slurry explosive must be readily pumpable Without ingredient separation or Stratification; (2) once in the borehole a slurry explosive must be relatively unaffected, i.e. not leached out or washed away, by running water. These two conditions are somewhat mutually contradictory and often diameterically opposed to each other. If the slurry is mixed or manufactured in a plant so as to have a sufiiciently thin consistency to be easily pumped,
3,380,333 Patented Apr. 30, 1968 the slurry is so thin that it has very poor resistance to water and undisolved components will readily separate. With high liquid content the mix may not be sensitive enough to be economically detonable. On the other hand, if the slurry is manufactured so as to have good resistance to water in the blasting hole, the mixture becomes extremely difiicult to pump.
It has been suggested further that the above two conditions might be easily resolved by maintaining a plantmanufactured slurry at sufliciently high temperature that it could be pumped into the borehole where it would thereafter partially solidfy. However, there are several objections to this proposal. For example, 1) the high temperatures necessary for fluidity may be above the melting point of certain ingredients which should remain solid. The sensitizer used may be one of these. Moreover, heating to a fairly high temperature may also render the composition unduly sensitive. (2) The low viscosity of plant manufactured explosive slurry held at high temperatures allows the solid particulate sensitizers to become quickly segregated, e.g. by gravity, from the solution. This not only yields non-uniform mixes, but frequently will result in misfires or partially detonated explosive masses, leaving unexploded materials in boreholes as a hazard for future operations.
While various attempts have been made to pump a plant manufactured slurry that would meet these conditions and still be economically feasible, as far as it is known at the present time, no proposed method other than that described in the parent application mentioned above, has been commercially successful or received widespread acceptance.
It is, therefore, the principal object of the present invention to provide apparatus for the effective on-site mixing and delivery of a slurry blasting agent.
It is another object of the present invention to provide apparatus for the mixing of a liquid, e.g. cold or hot water, or aqueous solution of an oxidizer, with a sensitizer which is not dissolved and with other modifying components, and pumping the resulting slurry to the bottom of a borehole in a few seconds before there is time for segregation of the several components by settling.
It is a further object of the present invention to provide an apparatus or system for continuously and uniformly mixing on-site the ingredients of a slurry explosive and then quickly pumping the slurry into the boreholes. In some cases, absolute continuity of operation may not be essential. Uniformity or completeness of mixing, of course, is highly desirable.
A still further and important object, is to make it possible to change or vary the mix, either continuously or stepwise, while it is being pumped.
It is a further object of the present invention to provide a novel and improved mix-pump vehicle or vehicle system, for on-site mixing and pumping of slurry explosives.
A characteristic feature of the invention resides in mixing up the explosive composition at or close to the site of the borehole. This has the advantages of eliminating: (1) any need for a special mixing plant; (2) the expense and danger of transporting the completed explosive to a desired location; (3) need of packaging the explosive mixture for handling, although packaging may be done if desired; (4) much of the manpower otherwise necessary to load the explosive into the bottom of the borehole.
By using certain sensitizers, such as aluminum or other nonexplosive metals and fuels, the hazards of handling the finished explosive compositions are substantially completely eliminated since the raw ingredients, generally speaking, are not explosive by themselves. Only after the various ingredients are mixed and combined together does the composition become detonable. Since this mixing takes place at or close to the location where the explosive will be used, and in relatively small quantities in the mixing unit (in many cases the largest mass of finished explosive may still be below the critical diameter or mass at which the composition will detonate), there is virtually no explosive hazard. In fact, the compositions may be prepared and handled in such a way that they cannot ordinarily to be set off until they are actually in the borehole.
One form of apparatus for carrying out the aforementioned method consists of a self-contained mixing and pumping vehicle. This vehicle comprises a frame having mounted thereon one or more tanks for liquids, preferably a plurality of storage bins for dry ingredients. Underneath the discharge openings of the storage bin or bins are provided suitable feeders, such as angers, vibrators, or other types of feeders for uniformly and controllably delivering the dry ingredients to means for blending. The ingredients are delivered to a mixing station. This station may be of any suitable form, such as a funnel which is connected with a flow lie to the oxidizer solution tank. A solution pump is provided which is preferably a constant rate pump, e.g. of the positive displacement type. The wet and dry ingredients are blended into a slurry and the re sulting slurry, formed preferably right in the mixing funnel or station; is then further conveyed to a suitable delivery pump. The latter is preferably but not always necessarily a positive displacement slurry pump. It pumps the slurry through a delivery hose directly to the boreholes.
The apparatus in preferred form is controlled by a completely automatic control system which enables presetting of the mixing ratios and control over the whole pumping process to insure that predetermined quantities of the slurry are properly mixed in the right proportions and pumped immediately to the boreholes.
The mobile mixing and pumping unit described in this particular embodiment of the invention makes it possible to transport the separate and individually non-hazardous ingredients of an explosive composition from one or more supply sources to the point of use and then facilitates the combining of these ingredients in the field in a unique and efficient manner. Because some of the ingredients dissolve best at elevated temperature, the equipment is so arranged that the explosive may safely be mixed and dispensed at a fairly high temperature. The necessary heat is applied to the heated oxidizer solution. The latter is preferably an aqueous ammonium nitrate solution but may comprise other materials. The resulting slurry explosive is sufiicient- 1y fluid that it may be easily pumped through the delivery device, e.g. a hose to the borehole. There, the material may thicken appreciably, egg. to form a gel, even a thick or substantially solid gel. Under some circumstances the slurry actually solidifies quite quickly in the borehole as it comes in contact with the cold rock.
Some of the advantages of this invention can be summarized as follows:
(1) The several feeding and dispensing devices permit efficient bulk handling of the dry ingredients as well as the oxidizer solution and/ or other liquid.
(2) Separate operations of slurry packaging, storing and/or transporting and loading into boreholes are thereby eliminated.
(3) The low viscosity of the slurry as freshly mixed permits the pumping directly into the borehole to be conducted through a small diameter delivery hose. This enables small diameter boreholes to be easily filled to substantially 100% of borehole volume.
(4) The slurry normally has some resistance of its own to dilution by extraneous waters but if it is desired to obtain complete water resistance for a long period of time, a thin-walled flexible plastic tube or sock can he slipped over the end of the hose. This may be pushed to the bottom of the borehole and then pumped full of the slurry explosive to fill the borehole to the height desired.
Other objects and advantages of the present invention will be apparent upon reference to the accompanying description when taken in conjunction with the following drawings, wherein- FIGURE 1 is an overall small scale perspective view of the mixer-pumper vehicle looking at the front thereof;
FIGURE 2 is a rear elevational view on a larger scale, of the vehicle of FIGURE 1, showing the control panel;
FIGURE 3 is a rear view of the vehicle with the control panel removed to show the bins, vibrator feeders and mixing funnel;
FIGURE 4 is a top plan of the Vehicle showing only a portion of the solution tank and layout of the components;
FIGURE 5 is an overall perspective view, showing somewhat schematically, the arrangement of the various components for mixing of the ingredients into the slurry and then delivering the slurry;
FIGURE 6 shows diagammatically the electrical control circuit for the components illustrated in FIGURE 5;
FIGURE 7 shows an alternative system diagrammatically by wiring diagram and schematic apparatus element.
With reference to the drawings wherein like reference symbols indicate the same parts throughout the various views, specific embodiments of this invention will be described in detail. As can best be seen in FIGURE 1, the mobile mixer-pumper unit of this particular form of the invention comprises more or less conventional automotive truck 1 with a frame 2 upon which are mounted a conventional cab 3 and engine hood 4. Rearwardly of the cab is a body frame 50 supporting a platform 5. The rear ends of the truck frame 2 are closed by a rear channel piece 6. On the front of the truck between a bumper 7 and the hood 4, is mounted a front platform 8. Upon the latter is secured an electrical generator 9, suitably a 7-10 kilowatt single or multi-phase electrical generator which is driven by an engine 10, such as a diesel engine, so that the engine and generator form a complete power unit. Alternatively, such a generator may be driven by power takeoff from the truck engine.
If desired, the energy for heating, dispensing, mixing and pumping may be supplied from other outside sources such as electric power means. Suitable electric or fuel-fed heaters or steam sources may be used to supply heat. Separate prime movers, etc., may be provided for the mixing and pumping functions. Pneumatic or hydraulic systems may be used if desired for operating moving parts where desired. Such frequently have the advantage of increased safety around explosive and combustible materials.
Immediately behind the cab there is mounted on the platform 5 a liquid tank 11 of large capacity. This is a tank suitable for holding an aqueous oxidizer solution. Preferably it is constructed of stainless steel or other corrosion resistant material suitable for hot solutions of nitrate salts. The tank, as shown, is essentially cylindrical in shape and comprises an outer wall 12, and an inner wall 120 of fiber glass or stainless steel, for example. The latter may have a thickness of about Mt" or less and there is insulation material 13 between the inner and outer walls of the tank. The top 14 of the tank is provided with a manhole opening 15, a fill pipe 16, and an air vent 17. The tank preferably is adapted to be heated and it may contain a mixer for preparation of oxidizer solution such as saturated aqueous ammonium nitrate. In some cases heat may not be necessary. The arrangement is such that a fairly large supply of hot liquid may be kept available for extended operations.
The bottom of the solution tank 11, indicated at 18, is shown as provided with a sump 19 from which extends an outlet pipe 2% The pipe has a suitable valve, here shown as a ball valve 21, which is controllable by appropriate means. As shown, a control handle 22 is provided on the upper end of an extension 23. A Water pipe 24 which can be used for flushing passes vertically downwardly through the tank and connects to the outlet pipe 20.
Located in the side wall of the solution tank in the vicinity of the outlet pipe, is a thermometer 25 and an electric resistance heater unit 26 which is controlled by a thermostat switch.
Positioned behind the solution tank in side-by-side relationship in the form shown in the drawings, are two bins 27 and 28. Each is adapted for holding one or more dry ingredients to be used in the slurry explosive. The tops 29 and 29a of the bins each have openings 30 and 30a therein. Each bin has a sloping bottom 31 and 31a with a discharge opening 32 and 32a at the lower extremity of the respective sloping bottom. The bins are firmly mounted on the frame in a suitable manner, being suitably reinforced or braced as by vertical braces 33.
Bin 27, as shown, has a separate compartment 34 built therein for containing a further or separate dry ingredient, such as a gel forming component or thickener. Compartment 34 has a discharge opening 35 at the bottom. The top 36 of compartment 34 preferably has a suitable lid or door, not shown, which can be opened to permit filling of the compartment,
Positioned beneath the bin discharge openings 32 and 32a are devices for feeding and dispensing dry material at a predetermined and controlled rate. As shown, some of these devices are vibrator feeders 37 and 37a which can be adjusted to vary their flow rates. Each of them has a tray 38 or 38a provided with a removable gate. These gates are located immediately beneath the bin discharge openings to receive the dry ingredients therefrom. The discharge ends of the vibrator feeder trays 38 and 38a are directed toward each other to uniformly deliver the dry ingredients to receiving means 39 located between them and substantially at the center of the vehicle frame, as can be seen in the drawings.
The receiving means just mentioned comprise a mixing funnel 39 which includes a conical upper funnel portion 40 nesting into the upper end of another conical lower funnel portion 41. The top edge of the lower funnel portion 41 is bent over inwardly to form an annular chamber 42 with the extreme end of the top being bent downwardly and parallel with the inner surface of the lower funnel portion. The lower funnel is spaced outwardly from the upper, as shown at 43. The space 43 (usually on the order of a fraction of an inch) is designed to keep the wet and dry ingredients from mixing prematurely and then adhering to the surface of the upper funnel. Accordingly, the arrangement prevents any accumulation of semiwet ingredients on the funnel walls, The arrangement largely eliminates blocking of the funnel which might otherwise occur.
A pump is provided for dispensing the oxidizer liquid from the tank at a precisely controllable rate. The pump preferably is a positive displacement solution pump 44 having a built-in relief valve. Since the pump is also a metering device, it must be so designed that its feed rate can be controlled accurately, independent of the height of liquid and consequent static liquid pressure in tank 11. The pump has its inlet 45 connected to the outlet pipe 20 of the solution tank. The pump also is provided with an outlet 46 which is connected to a tubular conduit 47 bent downwardly and connected to a cross or modified T 48. To the latter is connected a pressure actuated switch 49, FIG. 5, of a known commercial type for actuating the vibrator feeders to control the flow of the dry ingredients. See also FIG. 6. This may be a diaphragm operated switch which does not close a circuit until a desired pressure is imposed on the diaphragm. A pipe then connects the cross or T 48 to the annular chamber of space 42 between the upper and lower mixing funnels. The function of switch 49 is to make sure that the dry materials normally are not fed to the upper funnel until the solution is being pumped into the lower section of the funnel. This prevents building up deposits of wet solids on the walls of the equipment.
The solution pump 44 is driven preferably by an explosion proof motor 51. The latter is drivingly connected to the pump by a static proof V-belt drive enclosed within a belt guard 52, FIG. 5. The liquid is forcibly injected into the lower funnel for rapid and complete mixing with solids falling from the upper funnel.
Mounted near the rear pump of the truck frame 2 and between the frame members is a final and main dispensing slurry pump 53. It is shown here as a positive displacement pump. This is the pump that delivers the slurry to the point of use or to a point of packaging if the material is to be packaged. It also has a built-in relief valve not shown. The slurry pump 53 has its inlet 54 connected to the discharge outlet 55 of the mixing funnel. The slurry pump is further provided with an outlet 56 which leads to a quick detachable coupling 57 for rapid and convenient hose connection. The latter may be mounted in the rear channel piece 6 of the truck frame. A high pressure delivery hose is preferred and which is Iwire countered and kink-proof. Such hose is connected to the quick detachable coupling 57 and serves to deliver the slurry explosive to the point of use. The hose can be removed readily when the system is not dispensing explosive.
The slurry pump 53, as shown herein, is powered by a suitable drive, preferably a variable speed drive unit. This drive is indicated at 58 and includes preferably, an explosion-proof motor.
In addition to the main tank for oxidizer solution, a water tank 59 is provided for a supply of hot water. The Water tank may be supported separately on the body platform 5, as shown herein, or it may be incorporated within or otherwise closely associated with the larger tank 11. The hot water tank is provided with a filler cap on the top thereof. At the bottom there is an outlet 61 connected through hose 62 to the T or cross 48 previously mentioned. A control valve is connected to the outlet line 61. When the hot water tank is located within the solution tank 11, as is desirable sometimes for convenient heating, the connections will be appropriately modified. An access a to the top of the water tank of conventional type is shown.
A water circulating pump 63, powered by an explosionproof motor, is connected with the outlet hose or line 61 to pump the water from the tank. A valve 63a is provided also and the arrangement is such that the pump can run without delivering water when valve 63a is closed. The water supply is normally used for rinsing and cleaning the equipment before or after regular mixing operations. However, water may be added during mixing if desired, or other liquids such as liquid fuels, e. g. glycol, formamide, etc. may be supplied from tank 59. Where the tank arrangement permits feed can be accomplished by gravity flow, and such a pump is not always necesary. A pump has the advantage, however, of providing a more accurate control of flow rate. This is important for controlled proportioning of ingredients used in the mix.
Connected to a dry ingredient compartment discharge opening or outlet 35 is an auger feed device 64 enclosed in a tubular housing. The auger and its housing may be of either a suitable plastic or a metal construction. The auger takes material from the discharge 35 to the upper funnel 40 directly or via vibrator tray 38 if desired. At the delivery end of the auger housing, on the undersurface thereof, is located a longitudinal discharge slot 66, FIG. 4. The slot 66 opens just above the vibrator feed tray 38 which functions to uniformly distribute the material fed thereby. Material such as guar gum, which is a galacto mannan material or any other suitable solid particulate ingredient, may be delivered into the tray. The auger feed preferably is powered by a variable speed drive 67. This also is driven by an explosion-proof motor 68. By varying the drive speed, the proportions of this particular dry ingredient may be varied as desired.
In order to insure accurate predetermined flow rates for all the vibratory and auger feeds and the pumps, the vehicle is desirably provided with leveling means. For this purpose the engine of the truck is provided with a power take-d for driving a conventional hydraulic pump, not shown. The pump supplies fluid to a hydraulic system which communicates with two hydraulic leveling cylinders. One of these is shown at 70. The leveling devices are located immediately behind the rear wheels of the truck and are suspended from the rear channel member 6. The lower ends of the leveling cylinders are provided with swivel end members or feet 72 to provide a firm footing on uneven ground. In some cases, the leveling means may not be essential.
Suitable controls are provided for the various pumps and feeding devices so that the feed rate for each ingredient may be closely regulated. As shown in FIG- URE 2, the primary controls 'are located at the rear of the truck, between the sloping bottoms of the bins 27 and 28 and the truck frame 2. An electric control panel is indicated at '73, which is secured against the vertical braces 33. Most of the primary controls for the whole feeding system described herein are located on this panel. The preferred arrangement is such that the solution pump cuts off at the same time as the dry material feeders but the re sidual liquid in the line continues to flow very briefly after the dry ingredients stop. This is sufficient to flush them down.
The electrical control system is illustrated in FIGURE 6 and contains conventional units interconnected to obtain the proper relationship between the operations of the several components of a truck. All of the wiring for the control system is in explosion-proof conduits. Explosionproof junction boxes are also used.
With the exception of the generator 9, a slurry pump magnetic starter 74 located near the slurry pump motor, an ingredient control magnetic starter 75 located near the solution pump motor i, and the pressure actuated switch 49 on the conduit leading from the solution pump to the mixing funnel, most of the components of the control system are located on the electrical control panel 73, in the form shown in FIGURES 1 to 6. These other components include a main circuit breaker 76 in line with the generator 9 and a double pole double throw switch 77 to connect the heater 26 (in the tank 11) across the generator. There is a first timer unit 78, including a synchronous motor 78a, connected to the ingredient control magnetic starter unit 75. A switch 79 is connected between the pressure actuated switch 49, controlled by liquid pressure, and the auger motor 68. In normal operation, the auger 64 cannot start delivering dry materials until liquid has started flowing into the lower funnel 41. Calibration by- passes 80 and 81 are connected across the pressure actuated switch 49. These make it possible to dispense dry material without solution, e.g., for calibration purposes. Ordinarily, the dry ingredients do not start feeding until liquid is flowing and they are stopped before liquid ceases to flow. This prevents building up pasty deposits on the walls of the funnels and other parts.
A control switch 82 is provided for the solution pump motor 51. The vibrator feeders which supply other dry materials such as metal particles, granular fuels, etc., are energized at appropriate times by switches 83 and 84. The rates of vibration of the vibrator feeds can be adjusted by suitable means, shown herein as Variacs or rheostats $5 and 86. By these means, the feed rates of the various solids can be closely controlled. As noted above. auger feeds and the like can be used with or in lieu of the vibrators if desired, to dispense the dry, solid materials. In some cases, augcrs have been successfully substituted for all the vibrator elements. They are more positive in operation.
OPERATION The operation of this miacr-pumpcr system essentially comprises three phases, each of which will be described in detail:
(a) Charging,
(b) Calibration,
(c) On-site operation.
(a) Chargi1tg.-Tl1e mix-pump unit is prepared for charging by first turning off the truck engine and by assuring that at least one grounding chain is in contact with the ground. After checking to assure that the solution tank valve 21 is closed, that the hot water valve is closed, and that gates, where used, are closed on the vibrator feeder trays, the hatches and filling pipes are opened, taking care not to admit any foreign matter. Appropriate quantities of oxidizer solution, sensitizer material, thickener material and hot water for flushing are then brought into the respective tanks and bins. For a typical slurry blasting agent, typical charges would be- Ingredients Charge Weights, \l'cights percent (1b.)
Ammonium Nitrate Liquor 75.0 18,750 TNT Pellets l 24. 0 0, (J00 Uuar Flour 1.0 .250
Total 100.0 25, 000
l In a typic use, ammonium llll tit liquid should be 64.0% strength ammonium For hot slurry ation it may he at a temperature 01 about 170 5 i Actual weig of ammonium nitrate and water in the sptciiir t. above are ammonium nitrate 15,750 lbs. and \tattn': 3,000 1|). Tutin lsjfitl u).
Alternatively, finely divided aluminum may be used in lieu of or in addition to TNT and other materials such as pulverized coal or gilsonite, nitrocellulose, etc. may be used. Sugar is a useful fuel for some situations.
The filling pipes and hatches are then closed, and the generator 9 is started. The solution tank heater 26 may be turned on, if needed to maintain temperature when hot slurry is to be used, and the hot water circulation pump, where one is employed, is also energized. This pump can run idly without delivering water until valve 63a is opened.
(b) Calib-rati0n.Prior to commencing calibration, the mix-pump truck preferably should be leveled by use of the hydraulic leveling cylinders 70, particularly if the truck is on a slope. For a first operating formula fiow rates in a typical case may be about as shown below:
FLOW RATES As indicated previously, the formulas may be varied widely. For example, a solution of ammonium nitrate, plus dry particulate ammonium nitrate, particulate aluminum, gelling agent, inhibitor for preventing premature reaction between aluminum and hot water, and solid or liquid fuel may be used. Sodium nitrate may be substituted in part or even fully for the solids, ammonium nitrate or for that in solution, or for some in both places. Other ingredients such as inorganic chlorates and perchlorates may be employed.
If the solution pump 44 varies from the desired flow rate, the guar flour and other solid ingredient fiow rates may be adjusted to compensate or the pump 44 itself may be adjusted, proportionately, to obtain proper relative rates.
The generator is checked to assure that a proper voltage is being delivered and that a standard desired frequency, c.g. cycles 5% is being obtained.
The ammonium nitrate liquid pump (solution pump 44) is preferably calibrated by running hot water through it and determining accurately, e.g. by weighing, the amount of water delivered in a measured period of time. The vibrator feeders 37' and 37a are then independently calibrated by weighing their respective outputs per unit of time. The auger feed 64 is similarly calibrated by catching its output in a tared bag and then weighing it. As noted above, all these units are designed for adjustment of feed rates.
After completion of the foregoing calibration steps, the apparatus is then prepared for normal working operation. This is done by turning off the calibration by-pass switches 80, 81, FIGURE 6, and then turning on the switches 82 to the solution pump, 83, 84 to the vibrator feeders and 79 to the auger feed, etc. and by turning on the heaters.
As the ammonium nitrate solution is pumped by the positive displacement solution pump 44, the solution will actuate the pressure switch 49. This will start the flow of the dry ingredients. Dry ingredients of course may be mixed into one or more of the bins 27, 28, and additional bins with either vibratory or auger feeders may be used. With some solids, simply gravity flow can be used. If aluminum is used, one dispenser may be used for it, otherwise both vibrators may be used to dispense TNT or TNT-ammonium nitrate mixtures. This operation will See switch 90. This calibration may be carried out at either 10 continue until the timer 78 has turned off the dry matea mixing plant or at the site where the explosives are to be rial feeds and the solution pump. After the dlspensmg mixed and pumped into boreholes. If carried out at a hose is emptied of slurry and removed from the column mixing plant the hydraulic leveling cylinders normally of explosive, hot water may be admitted into the mixing will not be used and in any case they should be inactivated funnel to flush the system. After flushing, the slurry pump or raised before driving the truck to the blasting site. is turned off. Sever-a1 boreholes may be loaded in turn (c) On-site operation.--At the site, the following con- Without interium flushing if the interruption is short. ditions should exist before commencing operation: Other slurry blasting agents WhlCh may be mixed and At least one grounding chain hould be touching the loaded with the apparatus of the invention include those o d; based on ammonium nitrate plus sodium nitrate, and/or The generator, the heater (if used), and the water circuchlorates, perchlorates and other oxidizers. These ingrediltftlting 1pgump (when used, i.e. to keep lines hot, etc.), entil may bf supplied eitillier or in solution; solid fuels s on d eturned on; suc as gi sonite, starc su ur, urea, sugar, coal dust The truck engine should be running, only if hydraulic may be used. Thickeners such as guar gum and/or starch mechanilsm or power take-off is neeeded. Otherwise, it is and heat or energy producing metals such as aluminum, shut off. magnesium and/ or ferrophosphorous may be added. Ex- The callbratlon by-pass switches are turned olf; plosrve sensitizers such as the various types of smokeless The solution pump switch and the vibrator and/or powders, TNT, and othe requivalent materials may be auger feeder switches are turned on; employed. Liquid fuels, such as ethylene glycol p,ropylene I The slurry or delivery pump switch and the main solid 0 glycol and the like may be added, either in the solution ingredlent feed switch W111 be 03; tank or separately. Typical slurries which have been used The valve in the hot water flush line should be closed; include the following (all parts by weight):
Solution TNT Guar Al Potato Gilsonite S Inorganic lstifilari H O NaNO Gum Starch Nitrate 0 46 13 0 1 20 0 0 0 2n 0 so 15 10 1 9 1 2 2 The ammonium nitrate liquor valve 21 inside the solu- In aluminized slurry explosive it is often desirable to from tank will be closed until ready for operation. r use a suitable stabilizer to prevent premature aluminum- The mlx-pump truck 1s first leveled, 1f necessary, by water reaction. Such is known in the art. use of the hydraulic leveling cylinders 70, etc. The vibrator Typical charges per b h l may b i h range f feeeder tray gates are next removed or opened so that the 100 t 1500 pounds f bl i t, Th i i prefy ingredients can flow during operation- The water flush erably designed to mix and deliver slurry at the rate of Valve 15 then P to P PP a 8 9 of hot Water r0 about 300 to 600 pounds per minute though lower or through the 12}? allmonlum filtrate 651 and 3"? a higher rates may be used. The dispensing hose is pref- P y 15 13 one to Warm P 6 System all It erably lon enou h that a number of boreholes can be y P desirfble also for rinsing; The delivery hose is filled from one loiation Without moving the truck. then inserted 1n the borehole. The tlmer 78 can be set for advantage of the present invention not stressed y deslredpperatlonal tlme, P to Say three mmutes; above resides in the provision for heating the liquid solumore If fieslred- The amEmnt of slurry to be PQmPed tion. By this means slurries which are too insensitive to the Partlculaf bofehole 1S pl:ecarlculated tuner 78 18 be detonated when cold often can be used effectively. In 5611 to run the Summer length of tlfne to Pump large boreholes the hot slurry requires some time to reach that 1 8 g g fi the 1 gi g ambient temperature. Accordingly it can be fired while hose; ou pus g L e p still at a somewhat elevated temperature. Detonation of and d f retrlilcted a ig g 7 Is the slurry in any case is preferably accomplished by i i i i P g 5 52 p081 suitable explosive boosters, since aqueous slurries based or man f ea mg 15 con mus unng opera or on ammonium nitrate as primary oxidizer are not usually long continued operation, however, the heater can be kept ca fiv P d on by appropriate and obvious modification of switch 77. p 51 e or nm'acor e A special advantage of this invention which requires After the calculated pumpmg time for the desired 60 emphasis 1s the fact that the IIllXl-I'lg station, such as funweight of exploslve 1S preset into the timer 78, the slurry nel assembly 319, 41 can and should 'be kept substantially delivery pump 53 is started and then the solution pump 44 em t at all times I other Word th h is turned on. The dry ingredient feed is then started immeor 3 um ad t F; i large lzump diately after solution begins to flow into the lower funnel, lar b Y I a i i l y g so that the slurry explosive will be mixed and pumped up 5 my a ea 0 18 m 1S ter} 8 i directly into the borehole until the set time has elapsed. re exploslon hazards a also aYOIdS dlflicultles The dry ingredient feed System will then automatically handling the slurry. Otherwise slurry 1n the funnel would stop and the solution pump will stop at the end of the tend to Set PP PYe 1T1ature1Y or its components t0 timed cycle, but the slurry pump will continue to operate s p 18 possible, however, to operate wi s me to empty the funnel 41 and clear the delivery line 56. mventory in the funnel, or to make the funnel larger,
purposely, so as to form a reserve of prepared slurry, by so operating the slurry delivery pump as to permit accumulation of an inventory. This can be done when the consistency of the slurry in the funnel is such that particulate materials will not settle out by gravity. At the same time, the slurry pump should not be capable of cavitating, i.e., it should not have such excessive capacity as to pull substantial amounts of air into the slurry as it is delivered. Large air masses cause discontinuities in the explosive in the borehole. Should there be water in the hole, large quantities of air cause foaming or turbulence which may leach out and destroy the desired gel structure of the explosive. This gel structure gives protection against excessive dilution by ground waters.
The above mentioned difficulties due to pumping air are avoided by equipping the pump 53 with an air by-pass valve of conventional type. However, it is desirable to keep slurry above the inlet to the pump at all times and this can be done by adjusting the delivery rate so that it does not substantially exceed the slurry manufacture rate.
The system described in FIGURES 1 to 6, inclusive, has hen found in practice to be highly successful. A particular feature in the process involves the formation of a relatively quick setting gel, which will now be discussed.
A thickening agent which sets up fairly rapidly is usually included in the composition. It may be predissolved, if desired, or added dry. In the procedure described above, it is usually added dry. The reasons for thickening the slurry to a gel are several. A gel resists Water penetration and leaching of soluble components, such as ammonium nitrate, etc., out of the slurry in the borehole. In addition, by thickening the slurry, segregation of undissolved particles of sensitizers and/or fuels is prevented or greatly reduced. Particles of metallic aluminum, of TNT, smokeles powder, coal, gilsonite and the like tend to separate by gravity. The thickening agent preferably is one which sets up at least to some extent by the time the slurry reaches the borehole, but does not set up so rapidly as to interfere with pumping the slurry through the delivery hose.
Guar gum, preferably ground rather finely, or so-called guar flour, is a particularly suitable thickener for purposes just described. However, other thickener such as starches and flours and relate materials may be used. Some of these have fuel value as well as thickening power. For the purposes of the present invention, the important point is that the slurry be thickened in time and sufficiently to prevent substantial water leaching in wet boreholes and to prevent substantial separation or st'ratification of undissolved constituents. The thickening eflect should be delayed sufiiciently that the slurry or gel can be delivered by pumping through a delivery hose without undue difficulty.
Referring now to FIGURE 7, there is shown a modification wherein the bins or hoppers (not shown) for dry ingredients are each provided with motor driven angers. These are each equipped with explosion-proof motors shown respectively at 165, 166 and 167. While three are shown, the number of feeding angers, like the number of supply bins for dry ingredients, may be varied as desired. When there are more dry ingredients to be used than there are hoppers and feeding devices, some of them can be combined by premixing. Soluble solids, where used, can be predissolved into the main liquid solution. The latter is usually a concentrated solution of ammonium nitrate or ammonium nitrate combined with sodium nitrate in water, or in water containing a compatible liquid fuel such as an alcohol, glycol, amine o-r amide, etc. In the modification of FIGURE 7 a mechanical mixing device of conventional type is used at the mixing station. The mixer is not shown but is driven by an appropriate motor 168 which is indicated. A solution pump, indicated diagrammatically at 190 is also I2 driven by an explosion-proof motor 180. A suitable pressure responsive unit 1&1 is provided for operating a switch closing mechanism 115 when liquid pressure builds up to a desired level.
A slurry deliver pump, not shown, but analogous in all respects to the pump 53, FIGURE 5, is given by a motor 195, shown at the top of FIGURE 7. The slurry pump is also a mixer and mixing continues through the delivery hose, due to shear and wall friction.
A plurality of timer units 166 and 103 are provided in the system of FIGURE 7. A timer operating for three minutes allows the pump truck to charge about 1200 to 1500 pounds of slurry explosive into a borehole without interruption. For many operations this is sufficient. For very deep or large boreholes, or wherever a larger batch is needed, the plural timers can be set to operate sequentially so that a continuous mixing and pumping cycle of up to six minutes duration may be obtained.
The arrangement is such also that the individual rates of feed for the liquid solution pump and for each of the dry ingredient feeders 165, 166 and 167 can be varied. They may be operated also so that one or more of the dry ingredient feeders will operate during only part of the cycle.
Frequently, in blasting operations, particularly where the boreholes are deep and where massive quantities of rock are to be broken up, it is desirable to use a more powerful explosive in the bottom of the borehole and a less powerful or less expensive composition in the top portion. The apparatus of this invention makes this possible. The operator can vary at will any of the component feeders. Thus a composition may include more aluminum or more granular TNT, etc., at the bottom of the hole, and less at the top. Or the slurry mix may be a stiffer slurry, to compensate for water in the borehole at the bottom and be more dilute, i.e. include more water at or towards the top. By manipulating the controls and the timers, the desired mixes may be stopped and started so as to change compositions at any point in the borehole filling operation.
The apparatus of FIGURE 7 also includes an air compressor 2M and a receiver 202. Compressed air is thus available for various purposes and, if desired, a supply of the slurry may be stored in a tank (not shown) and expelled therefrom through an outlet line by using compressed air as the propellant.
In the system shown in FIGURE 7, a three phase generator 140 is driven by a suitable prime mover, not shown. It may be driven by power take-off from the truck motor, or it may have its own separate motor, as in the case of the apparatus of FIGURE 1.
Power from the generator 140 passes through a main circuit breaker 141 to distributor lines D D and D From the latter it is distributed through control devices to the various motors that drive the feeders, mixer, and pumps, as already described.
A start-stop switch station 101 controls the slurry pump. A timing start-stop station 102 supplies power to the timers 166 and 10S. Timer 18-6 ordinarily operates first and if the batch is not a large one, it will start and stop the whole batch mixing operation. Only if a batch is so large that mixing and delivery time exceeds the time capacity of timer 1% in the production of one mixture will timer 1% come into operation. In this case, feeding, mixing and slurry pumping will continue until the full batch is mixed and timer 103 will stop the operation that timer Ill-:5 initiated. Electromagnetic coils 106aand M30, respectively, operate switches 1536b and 10812 for this purpose.
Operation of the augers by motors 165, 166, I67, respectively, is controlled by auger sequence and timer control by means of m9 and Ill). Unit 109 can be energized by closing switch The]: through a line L and the motor starter unit 120. A bin vibrator unit 122 is included in FIGURE 7 and can be energized by the same means and employed with the auger #1 driven by motor 165. By means of auger reversing switch 116, which reverses the auger-timer relationship, auger #2, driven by motor 166, can be reversed in time relationship with auger #1. Motor 166 is controlled by motor starter 123. Power for these controls comes through pressure switch unit 113 under control of liquid pressure supplied by pump 190. Ordinarily, the solids feeders cannot operate until the pressure switch unit is activated. This prevents feeding dry solids into the mixer before there is liquid present. For calibration purposes, however, the pressure switch unit can be by-passed by means of a manually operated by-pass switch 114. Relays 111 and 112 supply power to the timers 106 and 108, respectively.
A switch 117 controls power to the motor starter 118 for the solution pump motor 180. Bin vibrator units 124, 128 and 130 are operated in the same manner as similar unit 122. Motor 167 which operates auger #3 is under control of magnetic starter 129. Manual switches 119, 121, and 127 are provided respectively for bringing the respective auger motors 165, 166, and 167 into or out of operation.
A switch 115 is directly operated by the liquid pressure when pump 190 starts to operate. The closing of switch 115 activates the relay unit 113, bringing the latter under timer control, i.e. under timer 106 or 108.
A time totalizer 132, under control of a switch 131, is provided for auger #2 and a similar totalizer 134, under control of switch 133, for auger #1. The arrangement of the auger controls is such that they can be operated together or independently. By appropriate setting of timers 106 and 108, either of them can be cut in or cut out at a predetermined point in the cycle. Thus, the composition of the mix being pumped into a borehole can be changed at any point in the batch cycle, by a presetting of the timers 106 and 108.
The third unit, or auger #3, driven by motor 167, is not provided with a time totalizer although it may be if desired. Control of augers #1 and #2 gives adequate flexibility for most situations.
Other controls which need not be explained in detail include a plug outlet 135 for auxiliaries, if needed, a spare motor starter unit 136, which can be used for mixer motor 168 if desired, a main circuit breaker 141, a signal light 142 to indicate availability of power, and air compressor controls including the compressor contactor 144, on-off switch 145, and pressure cut-off switch 146 associated with the receiver 202.
A manually operable mixer switch is shown at 105 by means of which the mixer can be turned on or off as needed. In many cases the turbulence of the liquid and of the dry solids as they come together, plus the mixing at the pump and through the delivery hose is quite adequate. The slurry delivery pump and hose are not indicated in FIGURE 7 but these are essentially the same as the parts shown in the previous figures.
The whole arrangement is such that the feed rates of liquid and of solids by the several angers or other feeders for solid materials can be predetermined, preset and controlled with precision. Either auger #1 or #2, or both, can be cut in or cut out at any point in the batch cycle, to change the composition and get a different mix with precision control. The time, in the batch cycle, at which the change is made, also can be predetermined and controlled precisely. The composition can be changed more than once in each borehole, if desired. Thus, in filling a borehole, the bottom half, or some other fraction, can be filled with composition containing more of ingredient A than the upper part or parts or an ingredient B may be cut off entirely at a predetermined point and/or another ingredient C started or stopped. Similar controls, not shown, also can be applied to the liquid supply so that a wetter slurry can be brought in on top or vice versa.
An important aspect of this invention is its control over the degree or rate of thickening of the gel or slurry in the blasting site. Thickening should occur at such a rate and to such a degree as to prevent gravitational separation of suspended solids after mixing ceases. The suspended solids, of various types as previously mentioned, may be insoluble by nature, as is the case with aluminum, TNT, nitrocellulose (smokeless powder), etc. in aqueous slurries, or they may be only insoluble at the moment because the solution is oversaturated, e.g. when a saturated solution mixed at elevated temperature is cooled substantially. In the latter case, the solids coming out of solution and crystallizing will necessarily add to the undissolved particulate solids present and thus will thicken the gel or slurry suspension. By using a delayed action thickener, i.e. one which does not instantly or immediately cause substantial or frrll thickening but is eifective a few seconds or moments later, the gel or slurry may be pumped into the borehole or other blasting site while quite fluid or non-viscous. By appropriate choice of solution temperature, as compared with site temperature, and by use of the appropriate solvent(s) and solute, and/or by choice of appropriate type and quantity of thickener, the gel or slurry can be pumped thin and still set up or thicken enough to substantially inhibit separation of the solid particles when the material becomes quiescent in the site or borehole.
The delivery conduit, usually a tubular hose, although a pipe may be used if desired, is preferably of such diameter or capacity relative to the capacity of the slurrry pump (delivery pump) that effective mixing of liquid and suspended solids continues throughout the full length of the conduit and all during the pumping operation. There is thus essentially no Stratification or separation, segregation, aggregation, agglomeration, etc. of solids possible until the slurry is in the blasting site. By insuring that the viscosity or thickness of the slurry will increase sufli'ciently by the time of actual delivery to the borehole (or very soon thereafter) it is not difficult to hold the solids quite effectively in proper suspension. Further cooling or setting which may continue to occur, e.g. in a borehole, will only enhance stability of the biasing agent against gravitational separation or segregation.
It will be understood, of course, that it is highly desirable that the gel or slurry composition be reasonably homogenous in the macro-sense, although of course it is quite heterogeneous in the true physical and chemical sense. Some heterogeneity, even in the course or macrosense, is unavoidable in many cases, especially where the solid particles are large or vary considerably in size but a reasonable uniformity throughout the charge is needed. This does not preclude the possibility, and strong desirability in some instances, of changing proportions or ingredients or both while a borehole is being filled. Such may be very desirable, as previously pointed out. However, a grossly uneven distribution of solids within a given section of the borehole is to be avoided.
In normal and preferred use, the pumpcr-mixer apparatus is employed to mix ingredients at the site and deliver them directly into boreholes. One borehole after another is filled, a delivery hose long enough to reach several holes (and reach to the bottom of each hole) preferably being employed. In fact it is customary and desirable to have a hose several hundred feet long so that the apparatus can be used where mining regulations require substantial distances between explosive loading vehicle and mine equipment.
It is possible, however, to use the equipment to fill tubes or packages and various kinds of containers for further transport when conditions require it. Experience has shown that the method is so much more efiicient than prior methods and so susceptible of good control that it is highly desirable to mix and fill at the blasting operation. The cost of transporting materials that are not ex- 15 plosive per se is less than that for explosives. Special and expensive transportation of the latter is largely eliminated by the present procedure.
It will be obvious to those skilled in the art that the invention is capable of numerous variations, modifications, embodiments and applications without departing from the spirit thereof. It is intended by the claims that follow to cover all such as broadly as the prior art properly permits.
We claim:
1. Apparatus for mixing and delivering a gel or slurry type explosive composition to a receiver which comprises, in combination, a container for a liquid, a container for particulate solids which are suspendable in said liquid, a mixing station having a gravity flow outlet, adjustable continuous flow means for feeding said liquid to said station at a predeterminable controlled rate, at least one adjustable means for continuously feeding said solids to said station also at a predeterminable controlled rate for mixing and suspension in said liquid to form a gel or slurry, pump means connected between said outlet and the conduit named hereinafter, said pump means being capable of removing the mixture from the mixing station substantially as fast as it is formed but not so rapidly as to draw large air masses and cause discontinuities in the gel or slurry, and a conduit leading from said pump means to the receiver for transporting the gel or slurry, said conduit being of such flow capacity with respect to the capacity of the pump means as to essentially prevent stratification and solids separation in the gel or slurry during flow therethrough.
2. Apparatus according to claim 1 which includes means for controlling the temperature of the liquid and thereby controlling the temperature of the mixture.
3. Apparatus according to claim 1 which includes means for heating the liquid.
4. Combination according to claim 1 which includes a mechanical mixer at the mixing station for mixing the liquid and the suspendable solids.
5. Combination according to claim 1 including automatic control means for continuing operation of the delivery pump for complete emptying of the mixing station despite termination of the feeding of liquid and solids.
6. Combination according to claim 1 which includes an automatic means and control means therefor actuated by the liquid feeding means for initiating operation of the solids feeding means in predetermined, timed relationship to operation of the liquid feeding means.
7. Combination according to claim 1 which includes adjustable cyclical means for selectively predetermining and controlling the batch quantity of mixture to be delivered in a single batch operation.
8. Combination according to claim 7 wherein the adjustable means for predetermining batch quantity comprises a timer device.
9. Combination according to claim 7 wherein the adjustable means for selectively predetermining the batch quantity comprises a plurality of timer devices operable in sequence, whereby a single batch greater than the capacity of a single timer may be delivered without interruption.
10. Apparatus according to claim 1 which includes means for selectively changing the relative proportions of liquid and solid ingredients during mixing and delivery of a single batch.
11. A mixing and pumper truck apparatus for preparing and delivering to a receiver a batch of predetermined quantity of slurry or gel type flowable explosive composition, comprising, in combination, a mobile vehicle, a power source, a mixing station having a gravity flow outlet, a liquid metering means driven from said source and adapted to deliver liquid continuously at a selectively controllable rate to said station, solid particulate material feeder means also driven by said source and adapted to deliver solid particles continuously at a selectively controllable rate to said mixing station, a delivery conduit of restricted cross section for removing a mixture of liquid and solids from said mixing station and delivering them into a blasting site, said restricted cross-section and the consequent gel or slurry rate of flow therethrough being so proportioned with respect to the desired delivery rate as to essentially prevent stratification and separation of suspended solids in the gel or slurry, during flow of the gel or slurry therethrough and a non-cavitating slurry or gel delivery means connecting said outlet to said dolivery conduit, said delivery means being adapted to force the mixture through the conduit.
12. Apparatus according to claim 11 wherein totalizer means for determining addition of at least one ingredient are included.
13. Apparatus according to claim 11 which includes a mixing device ahead of the pump.
14. Apparatus according to claim 11 which includes timer control means driven by the power source and arranged to control the duration of time of feeding said liquid and said solids, thereby to control the batch size of mixture delivered in a single operation cycle.
15. Apparatus for preparing and delivering to a delivery point in homogeneous condition a batch of a gel or slurry explosive made up of liquid and suspended particulate solids which have a tendency to gravitational separation from the suspending liquid, comprising, in combination:
(a) A mixing station having a gravity flow outlet,
(b) Means capable of a variable adjustment in feed rate for continuously supplying a liquid suspending medium to said mixing station,
(c) Means capable of variable adjustment in feed rate for continuously supplying suspendable solid particles to said mixing station,
(d) A delivery conduit of restricted cross-section to cause frictional drag on said gel or slurry flowing therethrough, and
(e) A delivery pump connecting said mixing station to said delivery conduit, said pump being of capacity sufficient to prevent large buildup of slurry in the mixing station but not such as to draw air into the slurry and cause discontinuities therein for taking mixed solids and liquid from said station and forcing the mixture through said conduit at a rate to maintain substantially homogeneous distribution of the solids throughout the volume of said liquid.
16. Apparatus according to claim 15 which includes an automatic presettable timing and batch volume control device related to the capacity of said pump, whereby a batch of predetermined volume of said explosive gel or slurry may be mixed and delivered to the site automatically.
17. Apparatus according to claim 15 which includes means selectively operable during a single batch mixing and delivery cycle for changing the composition of said batch during said mixing and delivery.
18. In apparatus of the character described for mixing and delivering an explosive slurry, the combination which includes a mixing vessel comprising a lower funnel and an upper funnel above and spaced from said lower funnel, liquid supply and flow control means including an outlet below the upper funnel, for introducing a liquid into the lower funnel below the upper funnel while essentially avoiding wetting the interior of the upper funnel with said liquid, means for feeding at a predetermined rate dry particulate solids into said upper funnel, the arrangement of said solids feeding means and said funnels being such as to cause the solids to fall by gravity into said lower funnel, a delivery hose connected to the lower part of said mixing vessel, means including a slurry delivery pump for mixing said liquid and said solids together to form a slurry, said delivery pump being effective to force the slurry through said hose at a flow rate which is adequate to assure continuing elfective mixing of said slurry ingredients in the hose, and control means for selectively changing the respective feed rates of said solids and said liquid during a pumping and delivery operation.
19. Combination according to claim 18 wherein the delivery hose is kink-proofed to facilitate delivery of said slurry directly into a borehole without obstruction.
20. Combination according to claim 18 wherein initiation of the flow of solids is under control of the liquid control means.
21. Combination according to claim 18 which includes a delivery pump for the liquid ingredient and a pressure actuated switch under control of said pump for initiating 18 a batch timing operation of the mixing and delivery apparatus.
References Cited UNITED STATES PATENTS 2,596,843 5/1952 Farris l6622 2,622,277 12/1952 Bonell et al. 1847.5 3,005,373 10/1961 Ransom 8620 3,233,973 2/1966 Veo et a1. 23---230 2,903,969 9/1959 Kolbe 8620 BENJAMIN A. BORCHELT, Hrimmy Examiner.
P. A. SHANLEY, G. H. GLANZMAN,
Assistant Examiners.
Dgglaimer 3,380,333.R0bert B. C'lay, Bountiful, and Melvin A. @0070, Less L. Udy, and Douglas H. Pack, Suit Lake City, Utah. SYSTEM FOR MIXING AND PUMPING SLURRY EXPLOSIVES. Patent; dated Apr. 30, 1968 Disclaimer filed Sept. 11, 1970, by the inventors; the assignee, Intemwuntain Research and Engineering Company, lmz, consenting.
Hereb enter this disclaimer to claim 9 of said patent.
[ fficial Gazette January 26, 1971] 1 1 i f
US569993A 1963-10-14 1966-08-03 System for mixing and pumping slurry explosives Expired - Lifetime US3380333A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US569993A US3380333A (en) 1963-10-14 1966-08-03 System for mixing and pumping slurry explosives
GB55968/66A GB1178970A (en) 1963-10-14 1966-12-14 Method of Blasting and apparatus for preparing and Delivering Blasting Gel or Slurry for use in the said method of Blasting
DE19661571267 DE1571267A1 (en) 1963-10-14 1966-12-24 Method and device for firing explosives in the form of a pourable moist mass in a borehole

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US31590863A 1963-10-14 1963-10-14
US460792A US3303738A (en) 1963-10-14 1965-06-02 Method for mixing and pumping of slurry explosive
US569993A US3380333A (en) 1963-10-14 1966-08-03 System for mixing and pumping slurry explosives

Publications (1)

Publication Number Publication Date
US3380333A true US3380333A (en) 1968-04-30

Family

ID=27405830

Family Applications (1)

Application Number Title Priority Date Filing Date
US569993A Expired - Lifetime US3380333A (en) 1963-10-14 1966-08-03 System for mixing and pumping slurry explosives

Country Status (3)

Country Link
US (1) US3380333A (en)
DE (1) DE1571267A1 (en)
GB (1) GB1178970A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3523048A (en) * 1967-11-16 1970-08-04 Hercules Inc Bulk delivery of crosslinkable aqueous slurry explosive with crosslinking agent in a separate feed
US3690213A (en) * 1969-09-29 1972-09-12 Dow Chemical Co Method and apparatus for delivering thickened blasting agents
US3769874A (en) * 1971-08-16 1973-11-06 Ici Australia Ltd Method of pumping explosive slurry
US3774496A (en) * 1972-01-18 1973-11-27 Canadian Ind Ltd Montreal Borehole charging apparatus
US3783735A (en) * 1972-03-02 1974-01-08 Ireco Chemicals Apparatus for preparing and packaging stick slurry explosives
US4253889A (en) * 1978-11-29 1981-03-03 Maes Michel E Two-component explosive composition
US4572075A (en) * 1984-03-21 1986-02-25 Mining Services International Corporation Methods and apparatus for loading a borehole with explosives
US5672839A (en) * 1994-10-27 1997-09-30 Eti Explosives Technologies (Canada) Ltd. Method and apparatus for controlled refining of explosive compositions
US5811711A (en) * 1995-05-30 1998-09-22 Ici Canada Inc. Metered delivery of explosives
US5841055A (en) * 1995-10-26 1998-11-24 Eti Explosives Technologies International (Canada) Ltd. Method for controlled refining of explosive compositions
US20070062406A1 (en) * 2005-09-19 2007-03-22 Waldock Kevin H Mobile Platform for the Delivery of Bulk Explosive
WO2009092137A1 (en) * 2008-01-23 2009-07-30 Orica Explosives Technology Pty Ltd Mobile delivery platform for flowable explosive
US8261664B2 (en) 2007-05-14 2012-09-11 Ael Mining Services Limited Loading of explosives
US9296124B2 (en) 2010-12-30 2016-03-29 United States Gypsum Company Slurry distributor with a wiping mechanism, system, and method for using same
US9579822B2 (en) 2010-12-30 2017-02-28 United States Gypsum Company Slurry distribution system and method
US9616591B2 (en) 2010-12-30 2017-04-11 United States Gypsum Company Slurry distributor, system and method for using same
US9909718B2 (en) 2011-10-24 2018-03-06 United States Gypsum Company Multiple-leg discharge boot for slurry distribution
US9999989B2 (en) 2010-12-30 2018-06-19 United States Gypsum Company Slurry distributor with a profiling mechanism, system, and method for using same
US10052793B2 (en) 2011-10-24 2018-08-21 United States Gypsum Company Slurry distributor, system, and method for using same
US10059033B2 (en) 2014-02-18 2018-08-28 United States Gypsum Company Cementitious slurry mixing and dispensing system with pulser assembly and method for using same
US10076853B2 (en) 2010-12-30 2018-09-18 United States Gypsum Company Slurry distributor, system, and method for using same
US10293522B2 (en) 2011-10-24 2019-05-21 United States Gypsum Company Multi-piece mold and method of making slurry distributor
CN110260738A (en) * 2019-06-17 2019-09-20 深圳市金奥博科技股份有限公司 Explosives mix-load truck
US11186431B2 (en) 2016-07-28 2021-11-30 Halliburton Energy Services, Inc. Modular bulk material container
US11186454B2 (en) 2016-08-24 2021-11-30 Halliburton Energy Services, Inc. Dust control systems for discharge of bulk material
US11186318B2 (en) 2016-12-02 2021-11-30 Halliburton Energy Services, Inc. Transportation trailer with space frame
US11186452B2 (en) 2015-11-25 2021-11-30 Halliburton Energy Services, Inc. Sequencing bulk material containers for continuous material usage
US11192712B2 (en) 2016-07-21 2021-12-07 Halliburton Energy Services, Inc. Bulk material handling system for reduced dust, noise, and emissions
US11192731B2 (en) 2015-05-07 2021-12-07 Halliburton Energy Services, Inc. Container bulk material delivery system
US11192074B2 (en) 2016-03-15 2021-12-07 Halliburton Energy Services, Inc. Mulling device and method for treating bulk material released from portable containers
US11192077B2 (en) 2015-07-22 2021-12-07 Halliburton Energy Services, Inc. Blender unit with integrated container support frame
CN113856545A (en) * 2021-10-25 2021-12-31 江苏振华新云电子有限公司 Alkali liquor mixing configuration device and configuration method special for tantalum capacitor
US11273421B2 (en) * 2016-03-24 2022-03-15 Halliburton Energy Services, Inc. Fluid management system for producing treatment fluid using containerized fluid additives
US11311849B2 (en) 2016-03-31 2022-04-26 Halliburton Energy Services, Inc. Loading and unloading of bulk material containers for on site blending
US11338260B2 (en) 2016-08-15 2022-05-24 Halliburton Energy Services, Inc. Vacuum particulate recovery systems for bulk material containers
US11498037B2 (en) 2016-05-24 2022-11-15 Halliburton Energy Services, Inc. Containerized system for mixing dry additives with bulk material
US12024997B2 (en) 2020-11-10 2024-07-02 Dyno Nobel Asia Pacific Pty Limited Systems and methods for determining water depth and explosive depth in blastholes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6401588B1 (en) * 2000-02-17 2002-06-11 Dyno Nobel Inc. Delivery of emulsion explosive compositions through an oversized diaphragm pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2596843A (en) * 1949-12-31 1952-05-13 Stanolind Oil & Gas Co Fracturing formations in wells
US2622277A (en) * 1947-09-29 1952-12-23 Bonell Frans Tore Baltzar Method for producing rocket powder
US2903969A (en) * 1953-05-28 1959-09-15 Maumee Collieries Co Method of blasting
US3005373A (en) * 1958-02-06 1961-10-24 United States Steel Corp Vehicle mounted dispenser for charging explosive mixtures in blast holes
US3233973A (en) * 1962-03-29 1966-02-08 Fuller Co Apparatus and method for processing material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2622277A (en) * 1947-09-29 1952-12-23 Bonell Frans Tore Baltzar Method for producing rocket powder
US2596843A (en) * 1949-12-31 1952-05-13 Stanolind Oil & Gas Co Fracturing formations in wells
US2903969A (en) * 1953-05-28 1959-09-15 Maumee Collieries Co Method of blasting
US3005373A (en) * 1958-02-06 1961-10-24 United States Steel Corp Vehicle mounted dispenser for charging explosive mixtures in blast holes
US3233973A (en) * 1962-03-29 1966-02-08 Fuller Co Apparatus and method for processing material

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3523048A (en) * 1967-11-16 1970-08-04 Hercules Inc Bulk delivery of crosslinkable aqueous slurry explosive with crosslinking agent in a separate feed
US3690213A (en) * 1969-09-29 1972-09-12 Dow Chemical Co Method and apparatus for delivering thickened blasting agents
US3769874A (en) * 1971-08-16 1973-11-06 Ici Australia Ltd Method of pumping explosive slurry
US3774496A (en) * 1972-01-18 1973-11-27 Canadian Ind Ltd Montreal Borehole charging apparatus
US3783735A (en) * 1972-03-02 1974-01-08 Ireco Chemicals Apparatus for preparing and packaging stick slurry explosives
US4253889A (en) * 1978-11-29 1981-03-03 Maes Michel E Two-component explosive composition
US4572075A (en) * 1984-03-21 1986-02-25 Mining Services International Corporation Methods and apparatus for loading a borehole with explosives
US5672839A (en) * 1994-10-27 1997-09-30 Eti Explosives Technologies (Canada) Ltd. Method and apparatus for controlled refining of explosive compositions
US5811711A (en) * 1995-05-30 1998-09-22 Ici Canada Inc. Metered delivery of explosives
US5841055A (en) * 1995-10-26 1998-11-24 Eti Explosives Technologies International (Canada) Ltd. Method for controlled refining of explosive compositions
US20070062406A1 (en) * 2005-09-19 2007-03-22 Waldock Kevin H Mobile Platform for the Delivery of Bulk Explosive
US8950330B2 (en) 2005-09-19 2015-02-10 Kevin H. Waldock Mobile platform for the delivery of bulk explosive
US9267777B2 (en) * 2005-09-19 2016-02-23 Lde Corporation Mobile platform for the delivery of bulk explosive
US7971534B2 (en) * 2005-09-19 2011-07-05 Waldock Kevin H Mobile platform for the delivery of bulk explosive
US10184770B2 (en) 2005-09-19 2019-01-22 Lde Corporation Mobile platform for the delivery of bulk explosive
US20150168117A1 (en) * 2005-09-19 2015-06-18 Kevin H. Waldock Mobile Platform for the Delivery of Bulk Explosive
US8261664B2 (en) 2007-05-14 2012-09-11 Ael Mining Services Limited Loading of explosives
US8512489B2 (en) 2008-01-23 2013-08-20 Orica Explosives Technology Pty Ltd Mobile delivery platform for flowable explosive
US8282752B2 (en) 2008-01-23 2012-10-09 Orica Explosives Technology Pty Ltd Mobile delivery platform for flowable explosive
AU2009208008B2 (en) * 2008-01-23 2012-10-04 Orica Explosives Technology Pty Ltd Mobile delivery platform for flowable explosive
US20100327011A1 (en) * 2008-01-23 2010-12-30 Orica Explosives Technology Pty Ltd Mobile delivery platform for flowable explosive
WO2009092137A1 (en) * 2008-01-23 2009-07-30 Orica Explosives Technology Pty Ltd Mobile delivery platform for flowable explosive
US9296124B2 (en) 2010-12-30 2016-03-29 United States Gypsum Company Slurry distributor with a wiping mechanism, system, and method for using same
US9579822B2 (en) 2010-12-30 2017-02-28 United States Gypsum Company Slurry distribution system and method
US9616591B2 (en) 2010-12-30 2017-04-11 United States Gypsum Company Slurry distributor, system and method for using same
US10245611B2 (en) 2010-12-30 2019-04-02 United States Gypsum Company Slurry distribution system and method
US9999989B2 (en) 2010-12-30 2018-06-19 United States Gypsum Company Slurry distributor with a profiling mechanism, system, and method for using same
US10239230B2 (en) 2010-12-30 2019-03-26 United States Gypsum Company Slurry distributor, system and method for using same
US10076853B2 (en) 2010-12-30 2018-09-18 United States Gypsum Company Slurry distributor, system, and method for using same
US10052793B2 (en) 2011-10-24 2018-08-21 United States Gypsum Company Slurry distributor, system, and method for using same
US9909718B2 (en) 2011-10-24 2018-03-06 United States Gypsum Company Multiple-leg discharge boot for slurry distribution
US10286572B2 (en) 2011-10-24 2019-05-14 United States Gypsum Company Flow splitter for slurry distribution system
US10293522B2 (en) 2011-10-24 2019-05-21 United States Gypsum Company Multi-piece mold and method of making slurry distributor
US10059033B2 (en) 2014-02-18 2018-08-28 United States Gypsum Company Cementitious slurry mixing and dispensing system with pulser assembly and method for using same
US11192731B2 (en) 2015-05-07 2021-12-07 Halliburton Energy Services, Inc. Container bulk material delivery system
US11905132B2 (en) 2015-05-07 2024-02-20 Halliburton Energy Services, Inc. Container bulk material delivery system
US11192077B2 (en) 2015-07-22 2021-12-07 Halliburton Energy Services, Inc. Blender unit with integrated container support frame
US11203495B2 (en) 2015-11-25 2021-12-21 Halliburton Energy Services, Inc. Sequencing bulk material containers for continuous material usage
US11186452B2 (en) 2015-11-25 2021-11-30 Halliburton Energy Services, Inc. Sequencing bulk material containers for continuous material usage
US11192074B2 (en) 2016-03-15 2021-12-07 Halliburton Energy Services, Inc. Mulling device and method for treating bulk material released from portable containers
US11273421B2 (en) * 2016-03-24 2022-03-15 Halliburton Energy Services, Inc. Fluid management system for producing treatment fluid using containerized fluid additives
US11311849B2 (en) 2016-03-31 2022-04-26 Halliburton Energy Services, Inc. Loading and unloading of bulk material containers for on site blending
US11498037B2 (en) 2016-05-24 2022-11-15 Halliburton Energy Services, Inc. Containerized system for mixing dry additives with bulk material
US11192712B2 (en) 2016-07-21 2021-12-07 Halliburton Energy Services, Inc. Bulk material handling system for reduced dust, noise, and emissions
US11186431B2 (en) 2016-07-28 2021-11-30 Halliburton Energy Services, Inc. Modular bulk material container
US11338260B2 (en) 2016-08-15 2022-05-24 Halliburton Energy Services, Inc. Vacuum particulate recovery systems for bulk material containers
US11186454B2 (en) 2016-08-24 2021-11-30 Halliburton Energy Services, Inc. Dust control systems for discharge of bulk material
US11186318B2 (en) 2016-12-02 2021-11-30 Halliburton Energy Services, Inc. Transportation trailer with space frame
CN110260738B (en) * 2019-06-17 2022-12-16 深圳市金奥博科技股份有限公司 Explosive mixed loading vehicle
CN110260738A (en) * 2019-06-17 2019-09-20 深圳市金奥博科技股份有限公司 Explosives mix-load truck
US12024997B2 (en) 2020-11-10 2024-07-02 Dyno Nobel Asia Pacific Pty Limited Systems and methods for determining water depth and explosive depth in blastholes
CN113856545A (en) * 2021-10-25 2021-12-31 江苏振华新云电子有限公司 Alkali liquor mixing configuration device and configuration method special for tantalum capacitor
CN113856545B (en) * 2021-10-25 2023-09-12 江苏振华新云电子有限公司 Alkali liquor mixing configuration device and configuration method special for tantalum capacitor

Also Published As

Publication number Publication date
GB1178970A (en) 1970-01-28
DE1571267A1 (en) 1971-02-18

Similar Documents

Publication Publication Date Title
US3380333A (en) System for mixing and pumping slurry explosives
US3303738A (en) Method for mixing and pumping of slurry explosive
US3610088A (en) Apparatus and method for mixing and pumping fluid explosive compositions
CN103193563B (en) A kind of multifunctional emulsified ammonium nitrate-fuel oil mixture field mixed loading truck
CA1312754C (en) Loading of boreholes with explosive
US3791255A (en) Method of filling boreholes with viscous slurried explosives
US6070511A (en) Apparatus and process for loading emulsion explosives
WO2016045078A1 (en) In-site explosive loading truck for intrinsic safety-type emulsion explosive
CN104692982B (en) The upward hole Pneumatic charge emulsifying ammonium nitrate fuel explosive and its continuous preparation method of high temperature resistant environment
US4199262A (en) Bulk explosive mixing and delivery apparatus
US3769874A (en) Method of pumping explosive slurry
CN108895936A (en) The device and method of the on-site mixed emulsion of filling for up-hole
US4461660A (en) Bulk manufacture of emulsion explosives
US3378235A (en) System for producing a blended fluid explosive composition
US3361023A (en) System for pumping slurry or gel explosives into boreholes
CN202390344U (en) Multifunctional heavy ammonium nitrate fuel oil (ANFO) explosive mixing and loading truck
CN103196337B (en) A kind of Multifunctional heavy ANFO mixing loading truck
CN202415397U (en) Multifunctional onsite mixing and charging truck for emulsified ammonium nitrate fuel oil explosives
CN203602524U (en) Ground and underground sticky porous grain-shaped ammonium nitrate fuel oil explosive field mixed loading vehicle
RU114953U1 (en) INSTALLATION FOR OBTAINING EMULSION EXPLOSIVES
CN110041152B (en) Granular ammonium nitrate fuel oil explosive production equipment
RU104551U1 (en) TECHNOLOGICAL LINE FOR PRODUCING EMULSION EXPLOSIVE SUBSTANCE TYPE "WATER IN OIL"
RU2362116C1 (en) Machine for preparing of emulsion, emulsion explosive material and for charging boreholes with prepared emulsion explosive material
US3690213A (en) Method and apparatus for delivering thickened blasting agents
CN206127162U (en) Porous granular viscidity safety explosion continuous production equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: IRECO INCORPORATED A CORP OF DE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:IRECO CHEMICALS;REEL/FRAME:004350/0050

Effective date: 19840525