US3378169A - Aerosol container - Google Patents

Aerosol container Download PDF

Info

Publication number
US3378169A
US3378169A US651073A US65107367A US3378169A US 3378169 A US3378169 A US 3378169A US 651073 A US651073 A US 651073A US 65107367 A US65107367 A US 65107367A US 3378169 A US3378169 A US 3378169A
Authority
US
United States
Prior art keywords
nylon
container
bag
film
valve assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US651073A
Inventor
Frank N Clark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Corp
Original Assignee
Allied Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DENDAT1251512D priority Critical patent/DE1251512B/de
Priority claimed from US365645A external-priority patent/US3323206A/en
Priority to GB17070/65A priority patent/GB1030596A/en
Priority to BE663372A priority patent/BE663372A/xx
Priority to NL6505601A priority patent/NL6505601A/xx
Priority to FR15565A priority patent/FR1434614A/en
Application filed by Allied Chemical Corp filed Critical Allied Chemical Corp
Priority to US651073A priority patent/US3378169A/en
Application granted granted Critical
Publication of US3378169A publication Critical patent/US3378169A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/60Contents and propellant separated
    • B65D83/62Contents and propellant separated by membrane, bag, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/38Making inlet or outlet arrangements of cans, tins, baths, bottles, or other vessels; Making can ends; Making closures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/38Details of the container body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4895Solvent bonding, i.e. the surfaces of the parts to be joined being treated with solvents, swelling or softening agents, without adhesives

Definitions

  • the present invention relates to a novel aerosol container.
  • it concerns an aerosol container with a nylon bag insert.
  • Nylon film has been suggested as a material for bag inserts' in aerosol containers; however, it has been found deficient in that a high number of failures occurred through contamination of the product by the propellant and the propellant by the product.
  • aerosol containers with nylon bag inserts have been prepared by inserting a preformed, e.g., vacuum formed or blow molded, nylon bag into a container and hermetically sealing the container by crimping, i.e., com pressing the edge of the nylon bag insert between two rigid edges, one edge belonging to the container and the other edge to the valve assembly. It was found that rupturing of the nylon bag in the crimping area occurs immediately or during the shelf life of the container causing contamination. In addition to rupturing, the permeability qualities of the original nylon film were not retained which resulted in further contamination during the shelf life of the aerosol container.
  • crimping i.e., com pressing the edge of the nylon bag insert between two rigid edges, one edge belonging to the container and the other edge to the valve assembly.
  • an aerosol container comprising a rigid container having an opening at one end, the edge of the opening being adapted for crimping; a valve assembly with an edge adapted for crimping in conjunction with the edge of the container; and a nylon film bag insert with an opening in one end, the edge of the opening being adapted 'for crimping between the edges of the container and valve assembly, is manufactured by a process comprising the following steps: (a) humiditying the nylon bag; (b) inserting the humidified nylon bag and valve assembly into the container; and (c) crimping the edges of the container, valve assembly, and humidified nylon bag so that the edge of the nylon bag is compressed between the edges of the container and valve assembly forming a hermetic seal, said crimping being initiated while the nylon bag is in a humidified state.
  • nylon film bag insert such as a flat nylon film bag insert
  • the nylon bag insert retains the permeability properties of the original nylon film for the shelf life of the aerosol container.
  • FIGURE 1 shows the finished aerosol container with ice flat nylon film bag insert expanded to simulate produc' inclusion.
  • FIGURE 2 is a cross section of FIGURE 1 taken a the line 2-2.
  • FIGURE '3 shows a flat nylon film bag insert.
  • FIGURE 4 is a cross section of FIGURE 3 taken at the line 4-4.
  • Rigid container 1 is preferably made of metal, but can be constructed of a variety of materials, such as plastics, e.g., nylon and phenolic resins; paper, such as heavy corrugated paper in the form of a carton; and glass. It is desirable that the materials are such that they can be subjected to low temperatures and high pressures and will not be corroded by the propellants, the product to be dispensed, or the external environment.
  • the shape of the container is immaterial, the conventional types commercially available being adequate. The typical shape used is cylindrical with the longitudinal axis of the cylinder perpendicular to the flat surface on which the container usually rests. One side of the container, usually the top, has an opening with edge 2 which is receptive to crimping.
  • Valve assembly 3 has an edge 4 which is adapted to be crimped together with edge 2 of container 1 to form a hermetic seal.
  • the valve assembly materials can be the same as those used for the contau'ner except that the valve itself is preferably a flexible material such as various plastics, rubber, plastisols, and compressible polyethylene. Flexible gaskets of similar materials can be used to insure that the valve assembly is leak-proof.
  • the valve assembly can be constructed as a top portion of the container as in FIGURE 1 of the drawing or restricted to a small area Within the upper surface of the container.
  • the nylon film bag insert can be preformed, e.g., vacuum formed or blow molded by well-known processes; however, the nature of the process is such that the preformed bag wall does not have a uniform thickness, but thins out in various areas increasing the permeability of the original nylon film.
  • a preferred embodiment of the invention is the use of an unpreformed nylon film bag insert, e.g., a flat nylon film bag insert, which has been found to retain the properties of the original nylon film throughout the shelf life of the aerosol container.
  • Nylon bag inserts such as flat nylon, film bag insert 5, which is also shown in its flat state before insertion in the container, in FIGURES 3 and 4, is prepared from nylon film which has the necessary permeability properties to provide a suificient barrier against contamination.
  • a thickness of about 1 to about 4 mils has been found to be satisfactory, but the important factor is the permeability property for the desired purpose.
  • the film as a matter of practice is tested before the nylon bag insert is prepared and if it is found to be impermeable to the product to be dispensed and the propellant, it can be used in the aerosol container with the knowledge that if it is unpreformed, the original permeability properties will be retained throughout the shelf life of the container.
  • the film can be crystalline or amorphous and, typically, a 1 mil film, has a tensile strength of 6,000 to 10,000 p.s.i., a moisture content at 50% relative humidity at 23 C. of 2 to 4% and a maximum moisture absorption (saturation) of 8 to 12%.
  • the nylon film can be made from any film forming nylon such as nylon 11, nylon 6/6, nylon 6/10 and nylon 8.
  • Nylon 6 which is obtained by the polycondensation of caprolactam, is especially suitable.
  • the term nylon as used herein includes unsupported film or nylon laminates.
  • the nylon can be laminated with foil, cellophane, polyolefins such as polyethylene, polypropylene, polycarbonate resin, polyvinyl chloride, or polymer coated paper.
  • the unpreformed nylon bag insert can be prepared from the nylon film by heat sealing tubular or flat film. Heat sealing, wherein a flat nylon bag is prepared from two flat plastic films, is preferred.
  • An impulse heat sealer such as the Sentinel Sealer made by Packaging Industries, Inc.
  • weldotrons series C impulse sealing unit which employs a /a" x .002" Nichrome wire mounted with the wire standing on its .002 edge. The wire is held in this on edge position by ceramic side supports and it can be shaped to conform to almost any configuration. As the impulse is fired, it seals and cuts the flat bag from a double web of film, one superimposed upon the other. The seal is approximately to & Wide, about as wide as the thickness of a pencil line. Ultrasonic and dielectric sealing techniques are also satisfactory sealing methods. In addition, solvents and/or adhesives can be used for sealing.
  • propellant and product are introduced before or after the crimping step is optional, although it is preferable to do so before crimping.
  • Propellant 6 can be selected from a wide variety of compositions such as dichlorodifiuoromethane, trichloromonofiuoromethane, dichlorotetrafiuoroethane, monochlorofluoroethane, trichlorotrifiuoroethane, monochlorodifluoromethane, difluoroethane, and mixtures thereof.
  • Nylon is permeated to a certain extent by nitrogen, propane, butane, and ethylene oxide; however, if the nylon is laminated with aluminum foil or other suitable lamination, the lamination can serve as a barrier for these gases. In this case, bag would be positioned so that the barrier lamination was on the outside adjacent to the propellant With the nylon on the inside adjacent to the product.
  • Cavity 7 receives the product to be dispensed by the aerosol container, which can be selected from a wide variety of materials. Examples are peanut butter, catsup, mustard,'cheese spreads, hair cream, hair colorants and sprays, cold cream, shaving creams, toothpaste, shampoos, insecticides, mineral oil, perfumes, miscellaneous oil, fats, waxes, and greases, emulsion based products, concentrated paint pigments, and paints.
  • Humidification is accomplished by the use of water vapor, steam, or water. For best results, the humidification is performed in an enclosed area so that the bag will be fully immersed in a cloud of vapor.
  • the nylon film bag insert can be humidified for an unlimited length of time before the crimping step, the minimum humidification time being suflicient to increase the moisture content of the nylon film bag insert to at least 3.5% by weight.
  • a practical maximum time limit is that required for saturation of the nylon film bag.
  • the preferred moisture content is from about 6% by weight to saturation, which is generally, about 10.5% by weight. It has been found that for thin nylon films, e.g., /2 to 3 mils, a humidification time of about 1 to about 2 minutes is sufi rcient to give a moisture content of at least 3.5% by weight. If a stack of bags is being humidified, more time will be required for the inner bags to absorb a sufficient amount of moisture.
  • the crimping step should take place as soon as possible after the completion of humidification.
  • a machine operation is used wherein the crimping step takes place so soon after the completion of the humidification step that the problem of dehumidification does not arise.
  • Nylon film will absorb limited amounts of moisture depending upon the temperature and relative humidity of the surrounding medium. These factors can be taken into consideration in the humidification step; however, immersion in water vapor or steam is most practical because temperature and relative humidity does not have to be measured.
  • the crimping step must take place while the nylon bag is in a humidified state, i.e., where the moisture content is at least 3.5% by weight.
  • Various machines can be used for crimping, bOLh hand and power operated, such as those manufactured by the Kartridge Pak Co. of Mt. Prospect, Ill.; I. 0. Machine Works, Inc. of Little Ferry, N.J.; and PMC Industries of Hackensack, NJ.
  • Crimping provides a hermetic seal with the edge of the nylon bag compressed in between the edge of the container opening and the edge of the valve assembly.
  • the crimped area of bag 5 is designated as reference character 8. Trimming the edge of the nylon bag which might protrude from the crimped area can be accomplished after the crimping step.
  • propellant 7 can be introduced into rigid container 1 in liquid form. Sufficient pressure or refrigeration must be used to maintain the propellant in its liquid state. Pressure filling may be desirable with aqueous-base formulations such as non-foaming shaving creams or shampoos. If the propellant is introduced before the insertion of the valve assembly, the opening can be plugged to assist in retaining the propellant until the proper time. If the propellant is introduced after the crimping step, an aperture must be provided in the container to permit insertion of the propellant after which the aperture must be sealed.
  • the product can be introduced into th container. This is preferably accomplished before the crimping step, but if desired, it can take place after crimping wherein the product must be forced through the valve under pressure.
  • the resulting unpreformed nylon bag insert is not affected by temperatures from up to about 250 F. and humidity from up to about 100%, and the aerosol container prepared by this process should have a shelf life of at least 2 years, which is more than satisfactory for commercial purposes. Additional advantages of the unpreformed nylon bag over the vacuum formed bag are freedom from entrapped air, lower cost, and compatibility with a wide variety of materials to form latminated film.
  • ExlaImple Film Product to be dispensed I 3 mil nylon 6 1% 02$. 0! Colgate lather shaving cream.
  • Example III Same as Example III except blue dye added to propellant rather than mineral oil.
  • the shaving cream used in Examples 1 and II was dispensed evenly without a trace of propellant; the propellant used in Examples III and IV was found to contain no traces of blue dye; and the mineral oil used in Examples V and VI was found to contain no traces of blue dye.
  • Examples I-VI were repeated without humidification. Blobs and spurts of shaving cream and propellant were dispensed and traces of blue dye appeared in the mineral oil and propellant.
  • An aerosol container comprising a rigid container having an opening at one end and having joined thereto a valve assembly at said open end of said container and having positioned in said container a nylon film bag having a said nylon film bag being hermetically sealed between the edge of said open end of said container and said valve moisture content of at least 3.5% by weight, 20

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Vacuum Packaging (AREA)

Description

April 16, 1968 F. N. CLARK AEROSOL CONTAINER Original Filed May '7, 1964 FIG. 3.
INVENTOR.
FRANK N. CLARK BY W ATTORNEY United States. Patent 3,378,169 AERGSOL CGNTAlNER Frank N. Clark, Scotch Plains, NJ, assignor to Allied Chemical Corporation, New York, N.Y., a corporation of New York Original application May 7, 1964, Ser. No. 365,645, new Patent No. 3,323,206, dated June 6, 1967. Divided and this application Apr. 6, 1967, Ser. No. 651,073
4 Claims. (Cl. ZZZ-5) This application is a divisional application of application Ser. No. 365,645, filed May 7, 1964, now Patent No. 3,323,206.
The present invention relates to a novel aerosol container. In particular, it concerns an aerosol container with a nylon bag insert.
Nylon film has been suggested as a material for bag inserts' in aerosol containers; however, it has been found deficient in that a high number of failures occurred through contamination of the product by the propellant and the propellant by the product.
In the past, aerosol containers with nylon bag inserts have been prepared by inserting a preformed, e.g., vacuum formed or blow molded, nylon bag into a container and hermetically sealing the container by crimping, i.e., com pressing the edge of the nylon bag insert between two rigid edges, one edge belonging to the container and the other edge to the valve assembly. It was found that rupturing of the nylon bag in the crimping area occurs immediately or during the shelf life of the container causing contamination. In addition to rupturing, the permeability qualities of the original nylon film were not retained which resulted in further contamination during the shelf life of the aerosol container.
It is an object of the present invention to provide aerosol containers with nylon bag inserts which will remain substantially rupture-free during their shelf life. It is another object of the invention to provide aerosol containers with nylon bag inserts which will retain the permeability properties of the original nylon film. It is still another object to provide a process for the manufacture of aerosol containers with nylon bag inserts which will remain rupture-free and retain the original permeability properties of the nylon film. Other objects and advantages will become apparent hereinafter.
In accordance with the invention, an aerosol container, comprising a rigid container having an opening at one end, the edge of the opening being adapted for crimping; a valve assembly with an edge adapted for crimping in conjunction with the edge of the container; and a nylon film bag insert with an opening in one end, the edge of the opening being adapted 'for crimping between the edges of the container and valve assembly, is manufactured by a process comprising the following steps: (a) humiditying the nylon bag; (b) inserting the humidified nylon bag and valve assembly into the container; and (c) crimping the edges of the container, valve assembly, and humidified nylon bag so that the edge of the nylon bag is compressed between the edges of the container and valve assembly forming a hermetic seal, said crimping being initiated while the nylon bag is in a humidified state.
It has been unexpectedly discovered that when a nylon bag is humidified and crimped while in the humidified state, the nylon bag insert remains rupture-free for the shelf life of the aerosol container.
It has further been discovered that when an unpreformed nylon film bag insert, such as a flat nylon film bag insert, is used the nylon bag insert retains the permeability properties of the original nylon film for the shelf life of the aerosol container.
Referring to the drawing:
FIGURE 1 shows the finished aerosol container with ice flat nylon film bag insert expanded to simulate produc' inclusion.
FIGURE 2 is a cross section of FIGURE 1 taken a the line 2-2.
FIGURE '3 shows a flat nylon film bag insert.
FIGURE 4 is a cross section of FIGURE 3 taken at the line 4-4.
A detailed account of the process with reference to the drawing is as follows:
Rigid container 1 is preferably made of metal, but can be constructed of a variety of materials, such as plastics, e.g., nylon and phenolic resins; paper, such as heavy corrugated paper in the form of a carton; and glass. It is desirable that the materials are such that they can be subjected to low temperatures and high pressures and will not be corroded by the propellants, the product to be dispensed, or the external environment. The shape of the container is immaterial, the conventional types commercially available being adequate. The typical shape used is cylindrical with the longitudinal axis of the cylinder perpendicular to the flat surface on which the container usually rests. One side of the container, usually the top, has an opening with edge 2 which is receptive to crimping.
Valve assembly 3 has an edge 4 which is adapted to be crimped together with edge 2 of container 1 to form a hermetic seal. The valve assembly materials can be the same as those used for the contau'ner except that the valve itself is preferably a flexible material such as various plastics, rubber, plastisols, and compressible polyethylene. Flexible gaskets of similar materials can be used to insure that the valve assembly is leak-proof. The valve assembly can be constructed as a top portion of the container as in FIGURE 1 of the drawing or restricted to a small area Within the upper surface of the container.
The nylon film bag insert can be preformed, e.g., vacuum formed or blow molded by well-known processes; however, the nature of the process is such that the preformed bag wall does not have a uniform thickness, but thins out in various areas increasing the permeability of the original nylon film. A preferred embodiment of the invention is the use of an unpreformed nylon film bag insert, e.g., a flat nylon film bag insert, which has been found to retain the properties of the original nylon film throughout the shelf life of the aerosol container. Nylon bag inserts such as flat nylon, film bag insert 5, which is also shown in its flat state before insertion in the container, in FIGURES 3 and 4, is prepared from nylon film which has the necessary permeability properties to provide a suificient barrier against contamination. A thickness of about 1 to about 4 mils has been found to be satisfactory, but the important factor is the permeability property for the desired purpose. The film as a matter of practice is tested before the nylon bag insert is prepared and if it is found to be impermeable to the product to be dispensed and the propellant, it can be used in the aerosol container with the knowledge that if it is unpreformed, the original permeability properties will be retained throughout the shelf life of the container. The film can be crystalline or amorphous and, typically, a 1 mil film, has a tensile strength of 6,000 to 10,000 p.s.i., a moisture content at 50% relative humidity at 23 C. of 2 to 4% and a maximum moisture absorption (saturation) of 8 to 12%. The nylon film can be made from any film forming nylon such as nylon 11, nylon 6/6, nylon 6/10 and nylon 8. Nylon 6 which is obtained by the polycondensation of caprolactam, is especially suitable. The term nylon as used herein includes unsupported film or nylon laminates. The nylon can be laminated with foil, cellophane, polyolefins such as polyethylene, polypropylene, polycarbonate resin, polyvinyl chloride, or polymer coated paper. The unpreformed nylon bag insert can be prepared from the nylon film by heat sealing tubular or flat film. Heat sealing, wherein a flat nylon bag is prepared from two flat plastic films, is preferred. An impulse heat sealer, such as the Sentinel Sealer made by Packaging Industries, Inc. of Montclair, N.J., or a flat impulse wire sealer series C made by Weldotron, Inc., of Newark, N.I., can be used. A typical example makes use of Weldotrons series C impulse sealing unit which employs a /a" x .002" Nichrome wire mounted with the wire standing on its .002 edge. The wire is held in this on edge position by ceramic side supports and it can be shaped to conform to almost any configuration. As the impulse is fired, it seals and cuts the flat bag from a double web of film, one superimposed upon the other. The seal is approximately to & Wide, about as wide as the thickness of a pencil line. Ultrasonic and dielectric sealing techniques are also satisfactory sealing methods. In addition, solvents and/or adhesives can be used for sealing.
Whether the propellant and product are introduced before or after the crimping step is optional, although it is preferable to do so before crimping.
Propellant 6 can be selected from a wide variety of compositions such as dichlorodifiuoromethane, trichloromonofiuoromethane, dichlorotetrafiuoroethane, monochlorofluoroethane, trichlorotrifiuoroethane, monochlorodifluoromethane, difluoroethane, and mixtures thereof. Nylon is permeated to a certain extent by nitrogen, propane, butane, and ethylene oxide; however, if the nylon is laminated with aluminum foil or other suitable lamination, the lamination can serve as a barrier for these gases. In this case, bag would be positioned so that the barrier lamination was on the outside adjacent to the propellant With the nylon on the inside adjacent to the product.
Cavity 7 receives the product to be dispensed by the aerosol container, which can be selected from a wide variety of materials. Examples are peanut butter, catsup, mustard,'cheese spreads, hair cream, hair colorants and sprays, cold cream, shaving creams, toothpaste, shampoos, insecticides, mineral oil, perfumes, miscellaneous oil, fats, waxes, and greases, emulsion based products, concentrated paint pigments, and paints.
Humidification is accomplished by the use of water vapor, steam, or water. For best results, the humidification is performed in an enclosed area so that the bag will be fully immersed in a cloud of vapor.
The nylon film bag insert can be humidified for an unlimited length of time before the crimping step, the minimum humidification time being suflicient to increase the moisture content of the nylon film bag insert to at least 3.5% by weight. A practical maximum time limit is that required for saturation of the nylon film bag. The preferred moisture content is from about 6% by weight to saturation, which is generally, about 10.5% by weight. It has been found that for thin nylon films, e.g., /2 to 3 mils, a humidification time of about 1 to about 2 minutes is sufi rcient to give a moisture content of at least 3.5% by weight. If a stack of bags is being humidified, more time will be required for the inner bags to absorb a sufficient amount of moisture. To avoid diminution of the moisture content, the crimping step should take place as soon as possible after the completion of humidification. In practice, a machine operation is used wherein the crimping step takes place so soon after the completion of the humidification step that the problem of dehumidification does not arise.
Nylon film will absorb limited amounts of moisture depending upon the temperature and relative humidity of the surrounding medium. These factors can be taken into consideration in the humidification step; however, immersion in water vapor or steam is most practical because temperature and relative humidity does not have to be measured.
Flat humidified nylon bag and valve assembly 3 are then placed in the rigid container. The bag is usually preattached to the valve assembly so that the edges of both are in position for the crimping step.
The crimping step must take place while the nylon bag is in a humidified state, i.e., where the moisture content is at least 3.5% by weight. Various machines can be used for crimping, bOLh hand and power operated, such as those manufactured by the Kartridge Pak Co. of Mt. Prospect, Ill.; I. 0. Machine Works, Inc. of Little Ferry, N.J.; and PMC Industries of Hackensack, NJ. Crimping provides a hermetic seal with the edge of the nylon bag compressed in between the edge of the container opening and the edge of the valve assembly. The crimped area of bag 5 is designated as reference character 8. Trimming the edge of the nylon bag which might protrude from the crimped area can be accomplished after the crimping step.
Simultaneous with, before, or after humidification or even after the crimping sep, propellant 7 can be introduced into rigid container 1 in liquid form. Sufficient pressure or refrigeration must be used to maintain the propellant in its liquid state. Pressure filling may be desirable with aqueous-base formulations such as non-foaming shaving creams or shampoos. If the propellant is introduced before the insertion of the valve assembly, the opening can be plugged to assist in retaining the propellant until the proper time. If the propellant is introduced after the crimping step, an aperture must be provided in the container to permit insertion of the propellant after which the aperture must be sealed.
After humidification, and before or after crimping, the product can be introduced into th container. This is preferably accomplished before the crimping step, but if desired, it can take place after crimping wherein the product must be forced through the valve under pressure.
The resulting unpreformed nylon bag insert is not affected by temperatures from up to about 250 F. and humidity from up to about 100%, and the aerosol container prepared by this process should have a shelf life of at least 2 years, which is more than satisfactory for commercial purposes. Additional advantages of the unpreformed nylon bag over the vacuum formed bag are freedom from entrapped air, lower cost, and compatibility with a wide variety of materials to form latminated film.
The following examples are illustrative of the invention.
EXAMPLES I-VI The same procedure was followed in the six examples. A flat nylon film bag insert (3 x 3 and open at one end), prepared using Weldotrons series C impulse sealing unit as explained supra, was humidified with steam in an enclosed area for 5 minutes. 40 cc. of a propellant comprising 65% by weight dichlorodifiuoromethane and 35% by weight vinyl chloride was introduced, under pressure, into a standard 6 oz. metal aerosol can with a 1" diameter opening. The product to be dispensed was placed in the nylon bag, which was attached to a standard aerosol valve assembly. The bag and valve assembly were inserted in the can and the edges Were crimped seconds after humidification. Four such aerosol containers were prepared for each example. Each container was structurally similar to the aerosol container shown in FIGURE 1 of the drawing.
ExlaImple Film Product to be dispensed I 3 mil nylon 6 1% 02$. 0! Colgate lather shaving cream.
II mil nylon 6 laminated 1% ozs. of Colgate lather with mil polyethylene shaving cream. on the inside of the bag.
III 2 mil nylon 6 Mineral oil and blue dye (soluble in mineral oil and propellant).
IV 1 milnylon olaminated with Mineral oil and blue dye 1 mil polyethylene on the (soluble in mineral oil and inside of the bag. propellant).
V Same as Example III except blue dye added to propellant rather than mineral oil.
VI Same as Example IV except blue dye added to propellant rather than mineral Oll.
After 16 months the shaving cream used in Examples 1 and II was dispensed evenly without a trace of propellant; the propellant used in Examples III and IV was found to contain no traces of blue dye; and the mineral oil used in Examples V and VI was found to contain no traces of blue dye.
Examples I-VI were repeated without humidification. Blobs and spurts of shaving cream and propellant were dispensed and traces of blue dye appeared in the mineral oil and propellant.
During the 16 months, all of the aerosol containers were subjected to a temperature of C. and C. and a relative humidity of 20% and to simulate two years of shelf life.
I claim:
1. An aerosol container comprising a rigid container having an opening at one end and having joined thereto a valve assembly at said open end of said container and having positioned in said container a nylon film bag having a said nylon film bag being hermetically sealed between the edge of said open end of said container and said valve moisture content of at least 3.5% by weight, 20
assembly forming a valved chamber with said valv assembly and a sealed chamber with said rigid containei 2. The aerosol container of claim 1 wherein the nylo film bag has a moisture content of from about 6 to 10.5% by weight.
3. The aerosol container of claim 1 wherein the nyloi film bag is unpreformed.
4. The aerosol container of claim 1 wherein the nyloi film bag is a flat film bag.
References Cited UNITED STATES PATENTS 2,397,455 3/ 1946 Chmielowiec 222-- 2 2,671,598 3/1954 McBean ZZZ-95 3,040,933 6/1962 Everett 2229f 3,080,094 3/1963 Modderno 222-394 X 3,169,670 2/1965 Hrebenak et: a1. 222-95 3,223,289 12/1965 Bouet 222-95 3,225,967 12/1965 Heimgartner 222-95 X CHARLIE T. MOON, Primary Examiner.

Claims (1)

1. AN AEROSOL CONTAINER COMPRISING A RIGID CONTAINER HAVING AN OPENING AT ONE END AND HAVING JOINED THERETO A VALVE ASSEMBLY AT SAID OPEN END OF SAID CONTAINER AND HAVING POSITIONED IN SAID CONTAINER A NYLON FILM BAG HAVING A MOISTURE CONTENT OF AT LEAST 3.5% BY WEIGHT, SAID NYLON FILM BAG BEING HERMETICALLY SEALED BETWEEN THE EDGE OF SAID OPEN END OF SAID CONTAINER AND SAID VALVE ASSEMBLY FORMING A VALVED CHAMBER WITH SAID VALVE ASSEMBLY AND A SEALED CHAMBER WITH SAID RIGID CONTAINER.
US651073A 1964-05-07 1967-04-06 Aerosol container Expired - Lifetime US3378169A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DENDAT1251512D DE1251512B (en) 1964-05-07
GB17070/65A GB1030596A (en) 1964-05-07 1965-04-22 Improvements in or relating to the manufacture of aerosol containers having a nylon bag insert
BE663372A BE663372A (en) 1964-05-07 1965-05-03
NL6505601A NL6505601A (en) 1964-05-07 1965-05-03
FR15565A FR1434614A (en) 1964-05-07 1965-05-03 Improvements made to the manufacture of aerosol cans containing an inner bag in
US651073A US3378169A (en) 1964-05-07 1967-04-06 Aerosol container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US365645A US3323206A (en) 1964-05-07 1964-05-07 Process for the manufacture of an aerosol container
US651073A US3378169A (en) 1964-05-07 1967-04-06 Aerosol container

Publications (1)

Publication Number Publication Date
US3378169A true US3378169A (en) 1968-04-16

Family

ID=27003032

Family Applications (1)

Application Number Title Priority Date Filing Date
US651073A Expired - Lifetime US3378169A (en) 1964-05-07 1967-04-06 Aerosol container

Country Status (5)

Country Link
US (1) US3378169A (en)
BE (1) BE663372A (en)
DE (1) DE1251512B (en)
GB (1) GB1030596A (en)
NL (1) NL6505601A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3490651A (en) * 1968-01-08 1970-01-20 Abplanalp Robert H Dispenser system for simultaneous dispensing of separately stored fluids
US3512685A (en) * 1968-04-25 1970-05-19 Seaquist Valve Co Aerosol container
US4008830A (en) * 1973-08-10 1977-02-22 Philip Meshberg Liquid dispenser using a non vented pump and a collapsible plastic bag
US4045860A (en) * 1975-05-07 1977-09-06 Cebal Method of assembling an aerosol dispenser
DE3815327A1 (en) * 1988-05-05 1989-11-16 Rathor Ag Apparatus for processing the substrate of pressure containers, in particular of polyurethane foams
US5137179A (en) * 1990-02-15 1992-08-11 Hans Stoffel Containers and methods for preparing and manufacturing the same
US5277336A (en) * 1990-12-31 1994-01-11 L'oreal Device for the pressurized dispensing of a product, especially a foaming product, and processes for filling a container for a device of this kind
EP0803539A1 (en) * 1996-04-22 1997-10-29 Elf Atochem S.A. Container comprising an external rigid envelope and an internal flexible pocket
US6343713B1 (en) 1993-06-29 2002-02-05 Robert Henry Abplanalp Flexible barrier member useful in aerosol dispensers
US6419129B1 (en) 1994-06-02 2002-07-16 Robert Henry Abplanalp Flexible barrier member useful in aerosol dispensers
US6439430B1 (en) 2000-09-22 2002-08-27 Summit Packaging Systems, Inc. Collapsible bag, aerosol container incorporating same and method of assembling aerosol container
US6440912B2 (en) * 1998-08-27 2002-08-27 Givaudan Sa Post foaming shower gel
US20030215399A1 (en) * 2002-05-15 2003-11-20 The Procter & Gamble Company Low combustion aerosol products in plastic packages having a reduced fire hazard classification that subsequently reduces storage costs
US7337925B2 (en) * 2002-05-31 2008-03-04 Yoshino Kogyosho Co., Ltd. Multi-chamber container element body
US20190261645A1 (en) * 2018-02-27 2019-08-29 James McHugh Soft serve ice cream spray canister

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0704821D0 (en) 2007-03-13 2007-04-18 Crown Packaging Technologies I Aerosol for viscous products
EP1985555A1 (en) 2007-04-23 2008-10-29 Crown Packaging Technology, Inc Aerosol container

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2397455A (en) * 1941-10-07 1946-03-26 Nellie Chalmers Spraying device
US2671598A (en) * 1950-08-23 1954-03-09 Rosen John Corrugated board box construction
US3040933A (en) * 1959-01-05 1962-06-26 Edgar A Poe Jr Pressure can having a flexible material holding bag therein
US3080094A (en) * 1958-04-29 1963-03-05 Modern Lab Inc Compartmented pressurized container valve assembly and a cutter therefor
US3169670A (en) * 1961-06-30 1965-02-16 Zuckerman Portable dispensing units
US3223289A (en) * 1961-11-24 1965-12-14 Bouet Bernard Dispensing devices
US3225967A (en) * 1962-02-19 1965-12-28 Trichema Ag Device for dispensing liquids, pastes and other flowable material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2397455A (en) * 1941-10-07 1946-03-26 Nellie Chalmers Spraying device
US2671598A (en) * 1950-08-23 1954-03-09 Rosen John Corrugated board box construction
US3080094A (en) * 1958-04-29 1963-03-05 Modern Lab Inc Compartmented pressurized container valve assembly and a cutter therefor
US3040933A (en) * 1959-01-05 1962-06-26 Edgar A Poe Jr Pressure can having a flexible material holding bag therein
US3169670A (en) * 1961-06-30 1965-02-16 Zuckerman Portable dispensing units
US3223289A (en) * 1961-11-24 1965-12-14 Bouet Bernard Dispensing devices
US3225967A (en) * 1962-02-19 1965-12-28 Trichema Ag Device for dispensing liquids, pastes and other flowable material

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3490651A (en) * 1968-01-08 1970-01-20 Abplanalp Robert H Dispenser system for simultaneous dispensing of separately stored fluids
US3512685A (en) * 1968-04-25 1970-05-19 Seaquist Valve Co Aerosol container
US4008830A (en) * 1973-08-10 1977-02-22 Philip Meshberg Liquid dispenser using a non vented pump and a collapsible plastic bag
US4045860A (en) * 1975-05-07 1977-09-06 Cebal Method of assembling an aerosol dispenser
DE3815327A1 (en) * 1988-05-05 1989-11-16 Rathor Ag Apparatus for processing the substrate of pressure containers, in particular of polyurethane foams
US5137179A (en) * 1990-02-15 1992-08-11 Hans Stoffel Containers and methods for preparing and manufacturing the same
US5277336A (en) * 1990-12-31 1994-01-11 L'oreal Device for the pressurized dispensing of a product, especially a foaming product, and processes for filling a container for a device of this kind
US6343713B1 (en) 1993-06-29 2002-02-05 Robert Henry Abplanalp Flexible barrier member useful in aerosol dispensers
US6419129B1 (en) 1994-06-02 2002-07-16 Robert Henry Abplanalp Flexible barrier member useful in aerosol dispensers
US5935666A (en) * 1996-04-22 1999-08-10 Elf Atochem S.A. Recipient comprising an outer rigid housing and an inner flexible bag
CN1069330C (en) * 1996-04-22 2001-08-08 埃勒夫阿托化学有限公司 Novel recipient comprising outer rigid housing and inner flexible bag
WO1997040101A1 (en) * 1996-04-22 1997-10-30 Elf Atochem S.A. Container comprising a rigid external envelope and a flexible internal pocket
EP0803539A1 (en) * 1996-04-22 1997-10-29 Elf Atochem S.A. Container comprising an external rigid envelope and an internal flexible pocket
US6440912B2 (en) * 1998-08-27 2002-08-27 Givaudan Sa Post foaming shower gel
US6439430B1 (en) 2000-09-22 2002-08-27 Summit Packaging Systems, Inc. Collapsible bag, aerosol container incorporating same and method of assembling aerosol container
US20030215399A1 (en) * 2002-05-15 2003-11-20 The Procter & Gamble Company Low combustion aerosol products in plastic packages having a reduced fire hazard classification that subsequently reduces storage costs
US7344707B2 (en) 2002-05-15 2008-03-18 The Procter & Gamble Company Low combustion aerosol products in plastic packages having a reduced fire hazard classification that subsequently reduces storage costs
US7337925B2 (en) * 2002-05-31 2008-03-04 Yoshino Kogyosho Co., Ltd. Multi-chamber container element body
US20190261645A1 (en) * 2018-02-27 2019-08-29 James McHugh Soft serve ice cream spray canister

Also Published As

Publication number Publication date
DE1251512B (en)
BE663372A (en) 1965-09-01
GB1030596A (en) 1966-05-25
NL6505601A (en) 1965-11-08

Similar Documents

Publication Publication Date Title
US3323206A (en) Process for the manufacture of an aerosol container
US3378169A (en) Aerosol container
US3240394A (en) Pressurized dispensing container
US4923095A (en) Apparatus and method for generating pressures for a disposable container
US4147282A (en) Vacuum actuated pressurized fluid dispenser
EP0089971B1 (en) Pressurized dispensing apparatus
US4949871A (en) Barrier pack product dispensing cans
US4326574A (en) Flexible container with valve
US3589506A (en) Plastics containers and packages
US2889078A (en) Dispensing container for pressurepropelled products
US3601252A (en) Burst pack
US2815152A (en) Dispensing package and method
US4189069A (en) Squeeze tube sack for aerosol type containers
US3274004A (en) Laminated food package
US3099370A (en) Dispensing container for viscous products
US9682791B2 (en) Compartment container including a secondary reservoir package
WO2000055069A1 (en) A process for producing a water soluble package
US3255936A (en) Pressurized dispensing container
JPH02269685A (en) Compressive discharging vessel
US2956671A (en) Composite film wrapping
US3233791A (en) Package for fluent materials with a propellant operated gel piston
US2141556A (en) Sealed container
US4045938A (en) Method of filling barrier pressure container
US3819092A (en) Pressurized dispensers
US4776499A (en) Plastic dispensing container and method of manufacture