US3377402A - Process for cracking hydrocarbons with an electric arc - Google Patents

Process for cracking hydrocarbons with an electric arc Download PDF

Info

Publication number
US3377402A
US3377402A US475938A US47593865A US3377402A US 3377402 A US3377402 A US 3377402A US 475938 A US475938 A US 475938A US 47593865 A US47593865 A US 47593865A US 3377402 A US3377402 A US 3377402A
Authority
US
United States
Prior art keywords
chamber
hydrogen
reaction
zone
feed hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US475938A
Inventor
Sennewald Kurt
Bender Ludwig
Gehrmann Klaus
Kallrath Heinrich
Peantek Gunter
Schallus Erich
Stephan Hans-Werner
Strie Lothar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Knapsack AG
Original Assignee
Knapsack AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knapsack AG filed Critical Knapsack AG
Application granted granted Critical
Publication of US3377402A publication Critical patent/US3377402A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/342Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents with the aid of electrical means, electromagnetic or mechanical vibrations, or particle radiations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G15/00Cracking of hydrocarbon oils by electric means, electromagnetic or mechanical vibrations, by particle radiation or with gases superheated in electric arcs
    • C10G15/12Cracking of hydrocarbon oils by electric means, electromagnetic or mechanical vibrations, by particle radiation or with gases superheated in electric arcs with gases superheated in an electric arc, e.g. plasma
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/909Heat considerations
    • Y10S585/911Heat considerations introducing, maintaining, or removing heat by atypical procedure
    • Y10S585/913Electric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/919Apparatus considerations
    • Y10S585/921Apparatus considerations using recited apparatus structure
    • Y10S585/922Reactor fluid manipulating device
    • Y10S585/923At reactor inlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/949Miscellaneous considerations
    • Y10S585/953Pulsed, sonic, or plasma process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/949Miscellaneous considerations
    • Y10S585/955Specified mixing procedure

Definitions

  • the present invention provides a process and apparatus for cracking hydrocarbons with the aid of hydrogen heated in an electric arc, so as to obtain acetylene, ethylene, methane and hydrogen.
  • German Patent No. 587,129 the arc is also allowed to burn in an atmosphere con sisting essentially of hydrogen, but the inside walls of the reaction chamber are rinsed with liquid feed hydrocarbon.
  • Patent No. 160,519 Reichspatentamt, Zweigstelle Oelabor, which describes an improved method of utilizing calorific energy in excess available in the reaction chamber for cracking purposes
  • Belgian Patent No. 544,124 which describes the manner of circulating the feed hydrocarbon and gaseous heat carrier in the reaction chamber.
  • a first partial stream of hydrogen is supplied at the upper rim portion of the arc zone tangentially thereinto, and further partial streams of hydrogen are introduced into that zone along the electrodes so as uniformly to envelop the electrodes.
  • the present invention also uses this method of introducing and heating the hydrogen.
  • the process of the present invention comprises introducing radially with respect to a reaction zone and into hot hydrogen flowing therethrough, near the inflow end of that zone, a first partial stream of feed hydrocarbon in vapor form and in the form of a cone-shaped shell with the apex thereof pointing in the direction of flow of the hot hydrogen, and immediately thereafter introducing tangentially with respect to the reaction zone a second partial stream of feed hydrocarbon in vapor form, and ultimately quenching in conventional manner cracked product leaving the reaction and travelling into a quenching zone.
  • the first partial stream of the feed hydrocarbon in vapor form is supplied at a velocity of flow of about 20 to 400 m./second in a direction radial with respect to the reaction zone.
  • Hydrocarbons of low molecular weight e.g. methane
  • petroleum hydrocarbons having the mean composition C H are supplied at a velocity of flow of about 50 to m./second.
  • the upper limits of these velocities approach sonic velocity in the substances concerned.
  • the second partial stream of the feed hydrocarbon in vapor form is supplied tangentially with respect to the reaction zone at a velocity of flow of about 100 to 250 m./second.
  • the velocity to be conveniently used for tangential supply depends, and this applies in similar manner to radial supply, on the molecular Weight of the feed hydrocarbon employed.
  • Radial supply of the first partial stream of the feed hydrocarbon in vapor form into the hot flowing hydrogen ensures intimate mixing therewith, whereas tangential supply of the second partial stream, which immediately follows radial supply, enables the inside walls of the reaction chamber to be efliciently rinsed and carbon deposits on the walls to be avoided.
  • Hydrocarbon vapors which could produce carbon deposits in the arc zone are prevented in accordance with this invention from penetrating thereinto by appropriately selecting the velocities of flow for hydrogen and for 3 the first partial stream of feed hydrocarbon and by appropriately selecting the angle cutting the jets of the first partial stream of hydrocarbon supplied in radial relationship with respect to the reaction chamber.
  • Two to seven, preferably two to five kilowatt/hr. are used per cubic meter (N.T.P.) hydrogen to heat the hydrogen supplied portionwise.
  • T he cracked product is quenched in the quenching zone in conventional manner by means of a quenching agent sprayed into the quenching zone in a direction radial thereto.
  • a quenching agent sprayed into the quenching zone in a direction radial thereto.
  • a parathnic oil e.g., a paraflinic fuel oil distillate.
  • An apparatus suitable for use in carryin gout the process of the present invention comprises in coaxial arrangement a conventional arc chamber, a circular cylindrical reaction chamber, and a circular cylindrical quenching chamber.
  • the arc chamber comprises a circular cylindrical, cooled chamber having an open bottom portion and a covered top portion provided with openings to receive and with means to hold electrodes. Near its upper rim portion, the arc chamber has hydrogen inlet openings, and the electrodes are passed through special sleeves which enable further partial streams of hydrogen to be introduced along the electrodes into the arc chamber.
  • annular slit running allround of which the meridian section corresponds to the base-adjacent portion of the directrix of a straight circular cone whose apex lies in the direction of flow of the reaction mixture on the center axis of the reaction chamber.
  • the annular slit serves to introduce the first partial stream of feed hydrocarbon in vapor form in radial relationship with respect to the flowing hot hydrogen, the point of intersection common to the flow jets being situated on the center axis of the reaction chamber.
  • the annular slit is arranged at an angle of O to 45
  • the reaction chamber is surrounded by an annular channel which communicates with the reaction chamber through outflow openings projecting tangentially thereinto and serving to introduce the second partial stream of evaporated feed hydrocarbon.
  • An annular slit for supplying quenching agent in radial relationship with respect to flowing hot cracked product, which lies on a plane perpendicular to the center axis of the whole apparatus is disposed in the opening portion of a quenching chamber following the reaction chamber.
  • FIGURE 1 represents diagrammatically a meridian section through the apparatus of the present invention
  • FIGURE 2 is a cross-sectional view of the apparatus taken along lines 11-11 which indicates the constructional details for tangential supply of feed hydrocarbon;
  • FIGURE 3 represents a cross-sectional view of the apparatus taken along lines III-III for radial supply of feed hydrocarbon.
  • the arc chamber 1 essentially comprises a circular cylindrical hollow space built-in in spacer 9.
  • the hollow space has an open bottom portion and is limited upwardly by cover 2 provided with openings to receive and with means to hold the electrodes 3.
  • cover 2 provided with openings to receive and with means to hold the electrodes 3.
  • An annular inflow channel 4 surrounding each electrode serves to introduce hydrogen while enveloping the electrode into "the arc chamber.
  • a distributor ring 5 having an annular channel 6 and serving to introduce further quantities 'of hydrogen is disposed between cover 2 and spacer 9.
  • Annular channel 6 communicates through feed line 7 with a hydrogen source and communicates with are chamber 1 through a plurality of outflow openings 8 uniformly distributed on a circle line and projecting tangentially into arc chamber 1.
  • Spacer 9 is provided with channels 14 ⁇ for the supply of a coolant.
  • Arc chamber 1 is followed in the direction of flow of the hot hydrogen partial streams by spacer ring 11, which is provided with annular channel 12, annular slit 13 and feed channel 1'4 for the supply of a coolant.
  • Feed line 15 serves to supply the first partial stream of feed hydrocarbon to annular channel 12.
  • Annular slit 13 is in an inclined position with respect to the direction of how of the hot hydrogen or reaction mixture, which means that feed hydrocarbon issuing therefrom forms the generated surface of a straight circular cone whose apex lies on the center axis of a reaction chamber 19.
  • a cross-sectional view of this arrangement taken along lines IIIIII is shown diagrammatically in FIGURE 3.
  • Distributor ring 16 following spacer ring 11 has a built-in channel 17 which lies in a plane perpendicular to the center axis of reaction chamber 19 and which has outflow openings 18 projecting tangentially into that chamber, the openings 18 serving to supply the second partial stream of feed hydrocarbon.
  • Feed line 26 is intended to introduce feed hydrocarbon into annular channel 17. This arrangement taken along lines IIII is shown diagrammatically in FIGURE 2.
  • the reference numerals 28 in FIGURE 2 and 29 in FIG- URE 3 represent the flow jets of the flowing starting hyrocarbon.
  • Reaction chamber 19 is installed in reactor structure 20 which may consist e.g. of graphite and is cooled from the outside.
  • a spacer ring 21 having an annular channel 22 which in the direction to the bore of the spacer ring tapers so as to form an annular slit 23 whose plane is perpendicular to the center axis of the whole apparatus. Quenching agent is introduced into that annular channel by means of feed line 24.
  • Quenching chamber 25 in which freezing of the new chemical equilibrium obtained as a result of the cracking process is completed and which is installed in block 27 is the last section of this arrangement.
  • FIG. 1 in the accompanying drawings shows two electrodes 3 of the type used for operation with direct current or monophase alternating current.
  • the apparatus may however be designed when other current is used so as to be operated with a different number of electrodes, e.g. with three electrodes for threephase current operation.
  • the process of the present invention for cracking hydrocarbons by means of hydrogen introduced in partial streams into an arc zone, heated therein and conveyed into a reaction zone locally spaced from but immediately following the arc zone comprises more especially introducing radially with respect to the reaction zone, near the inflow end of that zone, a first partial stream of feed hydrocarbon in vapor form and in the form of a coneshaped shell with the apex thereof pointing in the direction of flow of hot hydrogen, and immediately thereafter introducing tangentially with respect to the reaction zone and again near the opening portion of the reaction zone a second partial stream of feed hydrocarbon in vapor form, and ultimately quenching in conventional manner cracked product leaving the reaction zone.
  • the apparatus for carrying out the process of the present invention comprises in coaxial arrangement a conventional are chamber 1 which is essentially closed and has an open bottom portion and is provided with openings to receive and with means to hold electrodes 3 and has associated inflow openings 8 for supplying hydrogen; a circular cylindrical reaction chamber 19 open at its both ends and following the arc chamber 1; a circular cylindrical quenching chamber open at its both ends which serves to quench cracked product and follows reaction chamber 19; means 13 and 18 disposed between arc chamber 1 and reaction chamber 19 and serving to introduce feed hydrocarbon in vapor form into the reaction chamber 19; means 22, 23 and 24 disposed between reaction chamber 19 and quenching chamber 25 and serving to introduce a quenching agent into quenching chamber 25; an annular slit 13 running allround serving to introduce feed hydrocarbon in vapor form and disposed between arc chamber '1 and reaction chamber 19, the meridian sectional view of that annular slit 13 corresponding to the base-adjacent portion of the directrix of a straight circular cone whose apex lies in
  • the annular slit 13 is provided at the base of a straight circular cone at an angle of 0 to
  • the apparatus also comprises an annular slit 23 for supplying quenching agent in radial relationship with respect to flowing hot cracked product, the annular slit 23 being situated at the opening portion of quenching chamber 25 on a plane perpendicular to the center axis of the apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

A1311 9, 19.68 K' PNNEWALD ET AL 3,377,402
PROCESS R CRACKING HYDROCARBONS WITH AN ELECTRIC ARC Filed July 30, 1965 2 Sheets-Sheet 1 April 9, 1968 K. SENNEWALD ET AL 3,377,402
PROCESS FOR CRACKING HYDROCARBONS WITH AN ELECTRIC ARC Filed July 30, 1965 2 Sheets-Sheet 2 United States Patent 3,377,402 PROCESS FOR CRACKING HYDROCARBQNS WITH AN ELECTRIC ARC Kurt Sennewald, Knapsack, near Cologne, Ludwig Bender, Bruhl, near Cologne, Klaus Gehrmann, Knapsack, near Cologne, Heinrich Kallrath, Ker-pen, Giinter Peantelr, Hermuiheim, near Cologne, Erich Schailus, Cologne, Hans-Werner Stephan, Cologne- Klettenberg, and Lothar Strie, Knaps'aclr, near Cologne, Germany, assignors to Knapsack Aktiengesellschaft, Knapsaclr, near Cologne, Germany, a corporation of Germany Filed July 30, 1965, Ser. No. 475,938 Claims priority, application Germany, Aug. 11, 1964, K 53,716 7 Claims. (Cl. 260-679) ABSTRACT OF THE DISCLOSURE Introducing radially with respect to a reaction zone and into hot hydrogen flowing therethrough, near the inflow end of that zone, a first partial stream of feed hydrocarbon in vapor form and in the form of a cone-shaped shell with the apex thereof pointing in the direction of flow of the hot hydrogen. Immediately thereafter introducing tangentially with respect to the reaction zone a second partial stream conventional manner cracked product leaving the reaction and travelling into a quenching zone. An apparatus comprises in coaxial arrangement a conventional arc chamber, a circular cylindrical reac tion chamber, and a circular cylindrical quenching chamber. Between the arc chamber and the reaction chamber there is an annular slit running all around. The reaction chamber is surrounded by an annular channel. An annular slit is disposed in the entrance portion of a quenching chamber.
The present invention provides a process and apparatus for cracking hydrocarbons with the aid of hydrogen heated in an electric arc, so as to obtain acetylene, ethylene, methane and hydrogen.
Various processes for cracking hydrocarbons with the aid of an electric are have already been described. For example, in the processes disclosed in German Patents Nos. 806,455 and 871,001 a liquid feed hydrocarbon is caused to travel through an electric arc while hydrogen is injected concurrently therewith, or a hydrogen-containing or inert atmosphere is maintained in the reaction chamber. But these processes incur the formation of considerable amounts of by-products which reduce the yield. Carbon black is more especially obtained in appreciable quantities.
In the process described in German Patent No. 587,129, the arc is also allowed to burn in an atmosphere con sisting essentially of hydrogen, but the inside walls of the reaction chamber are rinsed with liquid feed hydrocarbon.
As taught in German Patent No. 1,064,945, the inside wall of the reaction chamber is rinsed with water or heavy oil which is continuously supplied, and calorific energy necessary to achieve the endothermal cracking reaction is produced by subjecting the feed hydrocarbon to partial combustion in the reaction chamber, or it is produced by supplying hot gases from the outside.
Further prior art processes have been disclosed in Patent No. 160,519, Reichspatentamt, Zweigstelle Oesterreich, which describes an improved method of utilizing calorific energy in excess available in the reaction chamber for cracking purposes, and in Belgian Patent No. 544,124 which describes the manner of circulating the feed hydrocarbon and gaseous heat carrier in the reaction chamber.
Still further processes have been disclosed in German Patents Nos. 1,175,224 and 1,168,419. In the first of these two processes, a rotating, thin and continuously renewing film of liquid feed hydrocarbon is exposed to the simultaneous action of hydrogen heated in the electric arc and to the radiation emitted by the arc. In the second of these two processes, hydrogen heated in the arc zone is contacted in a reaction zone following that are zone with feed hydrocarbon which is used in gas or vapor form, the feed hydrocarbon being supplied tangentially with respect to the reaction zone at the remote end thereof and being caused to flow in a helical line along the walls of the reaction zone counterconcurrently to the hot hydrogen. At the other end of the reaction zone, the direction of motion of the reaction mixture is reversed and the reaction mixture is caused to flow along the center axis of an axially symmetrical reaction zone and with increasing flow speed into a post-reaction zone to be ultimately quenched. In this latter process, a first partial stream of hydrogen is supplied at the upper rim portion of the arc zone tangentially thereinto, and further partial streams of hydrogen are introduced into that zone along the electrodes so as uniformly to envelop the electrodes. The present invention also uses this method of introducing and heating the hydrogen. 1
As opposed to conventional methods, the process of the present invention comprises introducing radially with respect to a reaction zone and into hot hydrogen flowing therethrough, near the inflow end of that zone, a first partial stream of feed hydrocarbon in vapor form and in the form of a cone-shaped shell with the apex thereof pointing in the direction of flow of the hot hydrogen, and immediately thereafter introducing tangentially with respect to the reaction zone a second partial stream of feed hydrocarbon in vapor form, and ultimately quenching in conventional manner cracked product leaving the reaction and travelling into a quenching zone.
The first partial stream of the feed hydrocarbon in vapor form is supplied at a velocity of flow of about 20 to 400 m./second in a direction radial with respect to the reaction zone. Hydrocarbons of low molecular weight, e.g. methane, are supplied at a velocity of flow of about to 400 m./second and petroleum hydrocarbons having the mean composition C H are supplied at a velocity of flow of about 50 to m./second. The upper limits of these velocities approach sonic velocity in the substances concerned.
The second partial stream of the feed hydrocarbon in vapor form is supplied tangentially with respect to the reaction zone at a velocity of flow of about 100 to 250 m./second. The velocity to be conveniently used for tangential supply depends, and this applies in similar manner to radial supply, on the molecular Weight of the feed hydrocarbon employed.
The flow jets of the first partial stream of feed hydrocarbon introduced radially intersect in a common point in the reaction zone at an angle of about 90 to corresponding to an angle with the horizontal of about 45 to 0.All of the flow jets thus lie on the generated surface of a straight circular cone of which the apex points in the direction of flow of the hot hydrogen. Radial supply of the first partial stream of the feed hydrocarbon in vapor form into the hot flowing hydrogen ensures intimate mixing therewith, whereas tangential supply of the second partial stream, which immediately follows radial supply, enables the inside walls of the reaction chamber to be efliciently rinsed and carbon deposits on the walls to be avoided.
Hydrocarbon vapors which could produce carbon deposits in the arc zone are prevented in accordance with this invention from penetrating thereinto by appropriately selecting the velocities of flow for hydrogen and for 3 the first partial stream of feed hydrocarbon and by appropriately selecting the angle cutting the jets of the first partial stream of hydrocarbon supplied in radial relationship with respect to the reaction chamber.
Two to seven, preferably two to five kilowatt/hr. are used per cubic meter (N.T.P.) hydrogen to heat the hydrogen supplied portionwise.
T he cracked product is quenched in the quenching zone in conventional manner by means of a quenching agent sprayed into the quenching zone in a direction radial thereto. To this end, there may conveniently be used a parathnic oil, e.g., a paraflinic fuel oil distillate.
An apparatus suitable for use in carryin gout the process of the present invention comprises in coaxial arrangement a conventional arc chamber, a circular cylindrical reaction chamber, and a circular cylindrical quenching chamber.
The constructional elements forming the arc chamber have already been described in German Patent No. 1,168,-
419, and essential parts thereof are used herein unchanged. The arc chamber comprises a circular cylindrical, cooled chamber having an open bottom portion and a covered top portion provided with openings to receive and with means to hold electrodes. Near its upper rim portion, the arc chamber has hydrogen inlet openings, and the electrodes are passed through special sleeves which enable further partial streams of hydrogen to be introduced along the electrodes into the arc chamber.
Between the arc chamber and the. reaction chamber there is an annular slit running allround of which the meridian section corresponds to the base-adjacent portion of the directrix of a straight circular cone whose apex lies in the direction of flow of the reaction mixture on the center axis of the reaction chamber. The annular slit serves to introduce the first partial stream of feed hydrocarbon in vapor form in radial relationship with respect to the flowing hot hydrogen, the point of intersection common to the flow jets being situated on the center axis of the reaction chamber.
Referring to the base of the straight circular cone, the annular slit is arranged at an angle of O to 45 The reaction chamber is surrounded by an annular channel which communicates with the reaction chamber through outflow openings projecting tangentially thereinto and serving to introduce the second partial stream of evaporated feed hydrocarbon.
An annular slit for supplying quenching agent in radial relationship with respect to flowing hot cracked product, which lies on a plane perpendicular to the center axis of the whole apparatus is disposed in the opening portion of a quenching chamber following the reaction chamber.
An apparatus suitable for use in carrying out the process of the present invention is shown diagrammatically in the accompanying drawings, wherein:
FIGURE 1 represents diagrammatically a meridian section through the apparatus of the present invention;
FIGURE 2 is a cross-sectional view of the apparatus taken along lines 11-11 which indicates the constructional details for tangential supply of feed hydrocarbon;
FIGURE 3 represents a cross-sectional view of the apparatus taken along lines III-III for radial supply of feed hydrocarbon.
In FIGURE 1, the arc chamber 1 essentially comprises a circular cylindrical hollow space built-in in spacer 9. The hollow space has an open bottom portion and is limited upwardly by cover 2 provided with openings to receive and with means to hold the electrodes 3. (Cf. German Patent 1,168,419.) An annular inflow channel 4 surrounding each electrode serves to introduce hydrogen while enveloping the electrode into "the arc chamber.
A distributor ring 5 having an annular channel 6 and serving to introduce further quantities 'of hydrogen is disposed between cover 2 and spacer 9.
Annular channel 6 communicates through feed line 7 with a hydrogen source and communicates with are chamber 1 through a plurality of outflow openings 8 uniformly distributed on a circle line and projecting tangentially into arc chamber 1.
Spacer 9 is provided with channels 14} for the supply of a coolant.
Arc chamber 1 is followed in the direction of flow of the hot hydrogen partial streams by spacer ring 11, which is provided with annular channel 12, annular slit 13 and feed channel 1'4 for the supply of a coolant. Feed line 15 serves to supply the first partial stream of feed hydrocarbon to annular channel 12. Annular slit 13 is in an inclined position with respect to the direction of how of the hot hydrogen or reaction mixture, which means that feed hydrocarbon issuing therefrom forms the generated surface of a straight circular cone whose apex lies on the center axis of a reaction chamber 19. A cross-sectional view of this arrangement taken along lines IIIIII is shown diagrammatically in FIGURE 3.
Distributor ring 16 following spacer ring 11 has a built-in channel 17 which lies in a plane perpendicular to the center axis of reaction chamber 19 and which has outflow openings 18 projecting tangentially into that chamber, the openings 18 serving to supply the second partial stream of feed hydrocarbon. Feed line 26 is intended to introduce feed hydrocarbon into annular channel 17. This arrangement taken along lines IIII is shown diagrammatically in FIGURE 2.
The reference numerals 28 in FIGURE 2 and 29 in FIG- URE 3 represent the flow jets of the flowing starting hyrocarbon.
Reaction chamber 19 is installed in reactor structure 20 which may consist e.g. of graphite and is cooled from the outside.
Following reactor structure 20 there is a spacer ring 21 having an annular channel 22 which in the direction to the bore of the spacer ring tapers so as to form an annular slit 23 whose plane is perpendicular to the center axis of the whole apparatus. Quenching agent is introduced into that annular channel by means of feed line 24.
Quenching chamber 25 in which freezing of the new chemical equilibrium obtained as a result of the cracking process is completed and which is installed in block 27 is the last section of this arrangement.
Cracked product finally obtained is worked up in conventional manner.
FIG. 1 in the accompanying drawings shows two electrodes 3 of the type used for operation with direct current or monophase alternating current. The apparatus may however be designed when other current is used so as to be operated with a different number of electrodes, e.g. with three electrodes for threephase current operation.
The process of the present invention for cracking hydrocarbons by means of hydrogen introduced in partial streams into an arc zone, heated therein and conveyed into a reaction zone locally spaced from but immediately following the arc zone comprises more especially introducing radially with respect to the reaction zone, near the inflow end of that zone, a first partial stream of feed hydrocarbon in vapor form and in the form of a coneshaped shell with the apex thereof pointing in the direction of flow of hot hydrogen, and immediately thereafter introducing tangentially with respect to the reaction zone and again near the opening portion of the reaction zone a second partial stream of feed hydrocarbon in vapor form, and ultimately quenching in conventional manner cracked product leaving the reaction zone.
The apparatus for carrying out the process of the present invention comprises in coaxial arrangement a conventional are chamber 1 which is essentially closed and has an open bottom portion and is provided with openings to receive and with means to hold electrodes 3 and has associated inflow openings 8 for supplying hydrogen; a circular cylindrical reaction chamber 19 open at its both ends and following the arc chamber 1; a circular cylindrical quenching chamber open at its both ends which serves to quench cracked product and follows reaction chamber 19; means 13 and 18 disposed between arc chamber 1 and reaction chamber 19 and serving to introduce feed hydrocarbon in vapor form into the reaction chamber 19; means 22, 23 and 24 disposed between reaction chamber 19 and quenching chamber 25 and serving to introduce a quenching agent into quenching chamber 25; an annular slit 13 running allround serving to introduce feed hydrocarbon in vapor form and disposed between arc chamber '1 and reaction chamber 19, the meridian sectional view of that annular slit 13 corresponding to the base-adjacent portion of the directrix of a straight circular cone whose apex lies in the direction of flow of reaction mixture on the center axis of reaction chamber 19; and an annular channel 17 having outflow openings 18 projecting tangentially into reaction chamber 19 and supplying feed hydrocarbon in vapor form, the annular channel 17 being disposed below annular slit 13 and being situated on a plane perpendicular to the center axis of the apparatus. The annular slit 13 is provided at the base of a straight circular cone at an angle of 0 to The apparatus also comprises an annular slit 23 for supplying quenching agent in radial relationship with respect to flowing hot cracked product, the annular slit 23 being situated at the opening portion of quenching chamber 25 on a plane perpendicular to the center axis of the apparatus.
The following example serves to illustrate the process of the present invention:
750 cubic meters (N.T.P.) hydrogen were heated per hour in an electric heavy-current are kept burning in a water cooled arc chamber 1 between three graphite electrodes 3 with an electric power of 2250 kw. The hydrogen was supplied at a rate suflicient to obtain a velocity of flow of about m./ second at the inflow end of reaction chamber 19. 800 kg./hr. gasoline in vapor form boiling at 40- C. were sprayed into the hot hydrogen through a water-cooled annular slit 13 with the hydrocarbon jets forming a 30 angle of inclination with respect to the horizontal in the direction of the reactor outlet. The annular slit 13 had a cross-sectional area suflicient to ensure a hydrocarbon outflow velocity of m./second. A further 200 kg./hr. hydrocarbon in vapor form were introduced in tangential relationship with respect to the reaction chamber at a velocity of 200 m./second through six openings 18 disposed at a position immediately below annular slit 13.
Cracked product was quenched by means of a paraflinic fuel oil distillate boiling at -350" C., which was supplied at a rate of 50 cubic meters per hour through annular slit 23 and sprayed into the quenching chamber in radial relationship thereto. 1900 cubic meters (N.T.P.) cracked gas which contained 11.5% by volume acetylene and 9.5% by volume ethylene were obtained per hour.
No deposition of carbon black was observed in the apparatus.
What is claimed is:
1. In the production of acetylene and ethylene by the thermal cracking of gaseous and vaporizable hydrocarbons by means of hydrogen introduced in partial streams into an arc zone, hea'ted therein and conveyed into a reaction zone locally spaced from but immediately following the arc zone, the improvement which comprises introducing radially with respect to the reaction zone, near the inflow end of that zone, a first partial stream of feed hydrocarbon in vapor form and in the form of a cone-shaped shell with the apex thereof pointing in the direction of flow of hot hydrogen, and introducing tangentiailly with respect to the reaction zone and again near the opening portion of the reaction zone a second partial stream of feed hydrocarbon in vapor form, the said second partial stream of feed hydrocarbon being introduced in the direction of flow of the reaction zone downstream of the inlet opening for the supply of the said first partial stream of feed hydrocarbon and ultimately quenching in conventional manner cracked product leaving the reaction zone.
2. A process as claimed in claim 1, wherein the first partial stream of feed hydrocarbon in vapor form is introduced into the reaction zone at a velocity of flow or" 20 to 400 m./ second in a direction radial with respect to the reaction zone, and the second partial stream of feed hydrocarbon in vapor form is introduced tangentially with respect to the reaction zone at a velocity of flow of about 100 to 250 m./second.
3. A process as claimed in claim 2, wherein the first partial stream of feed hydrocarbon is introduced at a velocity of flow of 50 to 150 m./second.
4. A process as claimed in claim 1, wherein the first partial stream of feed hydrocarbon in vapor form to be introduced into the reaction zone in radial relationship thereto is introduced at an angle of about 0 to 45 with respect to the horizontal and in the direction of flow of reaction mixture.
5. A process as claimed in claim 1, wherein 2-7 kw. hr. are used per cubic meter (N.T.P.) hydrogen to heat the hydrogen in the electric arc.
6. A process as claimed in claim 1, wherein a paraffinic oil is used as an agent for quenching cracked product.
7. A process as claimed in claim 6, wherein a paraflinic fuel oil distillate is used as the agent for quenching cracked product.
References Cited UNITED STATES PATENTS 3,079,325 3/1963 Butenuth et al. 260679 3,217,056 11/1965 Senrewald et al. 260-679 DELBERT E. GANTZ, Primary Examiner. J. D. MYERS, Assistant Examiner.
US475938A 1964-08-11 1965-07-30 Process for cracking hydrocarbons with an electric arc Expired - Lifetime US3377402A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEK0053716 1964-08-11

Publications (1)

Publication Number Publication Date
US3377402A true US3377402A (en) 1968-04-09

Family

ID=7226829

Family Applications (2)

Application Number Title Priority Date Filing Date
US475938A Expired - Lifetime US3377402A (en) 1964-08-11 1965-07-30 Process for cracking hydrocarbons with an electric arc
US658082A Expired - Lifetime US3515519A (en) 1964-08-11 1967-08-03 Apparatus for electric arc-cracking of hydrocarbons

Family Applications After (1)

Application Number Title Priority Date Filing Date
US658082A Expired - Lifetime US3515519A (en) 1964-08-11 1967-08-03 Apparatus for electric arc-cracking of hydrocarbons

Country Status (9)

Country Link
US (2) US3377402A (en)
AT (1) AT255384B (en)
BE (1) BE668153A (en)
CH (1) CH478219A (en)
DE (1) DE1468161A1 (en)
GB (1) GB1106658A (en)
NL (1) NL6510406A (en)
NO (1) NO115251B (en)
SE (1) SE304990B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3515519A (en) * 1964-08-11 1970-06-02 Knapsack Ag Apparatus for electric arc-cracking of hydrocarbons
US3537965A (en) * 1969-06-16 1970-11-03 Diamond Shamrock Corp Process for the production of unsaturated hydrocarbons
US4014947A (en) * 1969-06-03 1977-03-29 Inst Neftechimicheskogo Sintez Method of producing vinyl chloride

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE372553B (en) * 1972-10-13 1974-12-23 Aga Ab
US4147753A (en) * 1975-10-14 1979-04-03 Kureha Kagaku Kogyo Kabushiki Kaisha Apparatus for the thermal cracking of heavy hydrocarbon
US4444697A (en) * 1981-05-18 1984-04-24 Exxon Research & Engineering Co. Method and apparatus for cooling a cracked gas stream
CA1225441A (en) * 1984-01-23 1987-08-11 Edward S. Fox Plasma pyrolysis waste destruction
US5244639A (en) * 1985-05-29 1993-09-14 Kawasaki Steel Corporation Method and apparatus for preparing high-purity metallic silicon
US4753192A (en) * 1987-01-08 1988-06-28 Btu Engineering Corporation Movable core fast cool-down furnace
US8074973B2 (en) * 2007-10-02 2011-12-13 Exxonmobil Chemical Patents Inc. Method and apparatus for cooling pyrolysis effluent
US9370757B2 (en) 2012-08-21 2016-06-21 Uop Llc Pyrolytic reactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079325A (en) * 1959-04-17 1963-02-26 Knapsack Ag Device for carrying out endothermal reactions in the electric arc
US3217056A (en) * 1960-12-24 1965-11-09 Knapsack Ag Process and apparatus for splitting hydrocarbons in an electric arc

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3114691A (en) * 1960-06-20 1963-12-17 Union Carbide Corp Arc promoted chemical reactions
DE1468161A1 (en) * 1964-08-11 1969-05-29 Knapsack Ag Method and device for the splitting of hydrocarbons with the aid of the electric arc

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079325A (en) * 1959-04-17 1963-02-26 Knapsack Ag Device for carrying out endothermal reactions in the electric arc
US3217056A (en) * 1960-12-24 1965-11-09 Knapsack Ag Process and apparatus for splitting hydrocarbons in an electric arc

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3515519A (en) * 1964-08-11 1970-06-02 Knapsack Ag Apparatus for electric arc-cracking of hydrocarbons
US4014947A (en) * 1969-06-03 1977-03-29 Inst Neftechimicheskogo Sintez Method of producing vinyl chloride
US3537965A (en) * 1969-06-16 1970-11-03 Diamond Shamrock Corp Process for the production of unsaturated hydrocarbons

Also Published As

Publication number Publication date
CH478219A (en) 1969-09-15
AT255384B (en) 1967-07-10
BE668153A (en) 1965-12-01
NL6510406A (en) 1966-02-14
SE304990B (en) 1968-10-14
US3515519A (en) 1970-06-02
NO115251B (en) 1968-09-09
GB1106658A (en) 1968-03-20
DE1468161A1 (en) 1969-05-29

Similar Documents

Publication Publication Date Title
US3409695A (en) Process and apparatus for cracking hydrocarbons with an electric arc
US2368828A (en) Process for producing carbon black
US3047371A (en) Device for carrying out chemical reactions at high temperatures
US2343866A (en) Process for the pyrolysis of hydrocarbons
US3009783A (en) Production of carbon black
US3377402A (en) Process for cracking hydrocarbons with an electric arc
US2941021A (en) Process and device for carrying out chemical reactions at high temperatures
KR100418360B1 (en) Method for producing lower olefins, reactor for the pyrolysis of hydrocarbons
US3217056A (en) Process and apparatus for splitting hydrocarbons in an electric arc
US4952743A (en) Process and apparatus for the conversion of hydrocarbons
Happel et al. Acetylene and hydrogen from the pyrolysis of methane
US3685977A (en) Partial oxidation of hydrocarbons
US2727810A (en) Apparatus for the conversion of fluid reactant streams in the presence of subdivided particles maintained in dispersed suspension
US3170863A (en) Hydrocarbon conversion process
US3168592A (en) Manufacture of acetylene by two stage pyrolysis under reduced pressure with the first stage pyrolysis conducted in a rotating arc
US3098883A (en) Process and apparatus for carrying out chemical reactions at high temperatures
US2789148A (en) Conversion of hydrocarbons
US2998464A (en) Quench system
US3468632A (en) Apparatus for production of high temperature gases and carbon black
US3019271A (en) Process and apparatus for treatment of hydrocarbons
US3176046A (en) Pyrolysis of hydrocarbons with stable high temperature flame
US2548759A (en) Fluid mixer-reactor
US5026949A (en) Method of cracking a batch of heavy hydrocarbons into lighter hydrocarbons
US3057688A (en) Carbon black process and apparatus
US3287434A (en) Process for the partial combustion of hydrocarbons to produce acetylene