US3376892A - Directional control valve - Google Patents

Directional control valve Download PDF

Info

Publication number
US3376892A
US3376892A US531951A US53195166A US3376892A US 3376892 A US3376892 A US 3376892A US 531951 A US531951 A US 531951A US 53195166 A US53195166 A US 53195166A US 3376892 A US3376892 A US 3376892A
Authority
US
United States
Prior art keywords
passage
valve
fluid
motor
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US531951A
Inventor
Hugh J Stacey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Parker Hannifin Corp
Original Assignee
Parker Hannifin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Parker Hannifin Corp filed Critical Parker Hannifin Corp
Priority to US531951A priority Critical patent/US3376892A/en
Application granted granted Critical
Publication of US3376892A publication Critical patent/US3376892A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0416Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor with means or adapted for load sensing
    • F15B13/0417Load sensing elements; Internal fluid connections therefor; Anti-saturation or pressure-compensation valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/06Check valves with guided rigid valve members with guided stems
    • F16K15/063Check valves with guided rigid valve members with guided stems the valve being loaded by a spring
    • F16K15/066Check valves with guided rigid valve members with guided stems the valve being loaded by a spring with a plurality of valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B2013/002Modular valves, i.e. consisting of an assembly of interchangeable components
    • F15B2013/006Modular components with multiple uses, e.g. kits for either normally-open or normally-closed valves, interchangeable or reprogrammable manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K2200/00Details of valves
    • F16K2200/30Spring arrangements
    • F16K2200/302Plurality of biasing means, e.g. springs, for opening or closing single valve member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2559Self-controlled branched flow systems
    • Y10T137/2574Bypass or relief controlled by main line fluid condition
    • Y10T137/2579Flow rate responsive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface
    • Y10T137/7784Responsive to change in rate of fluid flow
    • Y10T137/7792Movable deflector or choke
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7838Plural
    • Y10T137/7842Diverse types
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7838Plural
    • Y10T137/7845With common biasing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87169Supply and exhaust
    • Y10T137/87177With bypass

Definitions

  • ABSTRACT OF THE DISCLOSURE A directional control valve assembly having control or divider valves which regulate the rate of flow through the valve spool to a motor passage and also operate as load check valves to prevent flow of fluid in the opposite direction.
  • the present invention relates generally as indicated to a directional control valve and more particularly to a spool-type directional control valve.
  • the housing is provided with lateral extensions of said bypass, pressure feed, motor, and return passages which, in turn, are intersected by bores in which are provided load check valves for the respective valve spools to prevent load dropping in case of pressure drop in the system as occasioned by pump failure or, in the case of a parallel circuit valve assembly, by simultaneous operation of two or more valve spools.
  • the invention comprises the features hereinafter fully described and particularly pointed out in the claims, the following description and the annexed drawing setting forth in detail certain illustrative embodiments of the invention, these being indicative, however, of a few of the various ways in which the principl of the invention may be employed.
  • FIG. 1 is a cross-section view of a spool-type directional control valve, such section having been taken in a plane passing through the axes of the spool bores;
  • FIGS. 2 and 3 are transverse cross-section views taken substantially alongt he lines 22, and 33, respectively of FIG. 1.
  • the directional control valve 1 comprises a housing 2 having parallel bores 3 and 4 axially intersected therealong by a bypass passage 5, by pressure feed passages 6, 6 and 7, 7, by motor passages 8, 8 and 9, 9, and by return passages 10, 10.
  • the bypass passage at its upstram end communicates with the pressure inlet port 11 of the housing 2 and at its downstream end communicates with the return port 12 of the housing 2, and the return passages 10, communicate also with said return port 12.
  • the reference numeral 14 in FIG. 1 denotes schematically a relief valve which opens to relieve excess pressure in the inlet port 11 to the return port 12 via a return passage 10.
  • valve spools 15 and 16 which, by way of example, are herein shown as being of the four-way type for control of double acting fluid motors connected with the respective motor passages 8, 8 and 9, 9.
  • said bypass, pressure feed, motor, and return passages 5, 6, 8 and 10 (FIG. 2) and 5, 7, 9, and 10 (FIG. 3) have lateral extensions which intersect stepped bores 17 in which check valves 18 are conventionally disposed, as shown in the lower portions of FIGS. 2 and 3, and as shown in the aforesaid Schmiel Patent No. 3,216,443.
  • each check valve 18 comprises a body 19 screwed into the housing 2 in which the check valve 18 is movably guided and biased by spring 20 into engagement with the seat 21.
  • the bypass is closed by the lands 23 and 24, and the lower feed passage 6 is placed in fluid communication with the lower motor passage 8 via the neck 25 of the spool, whereupon build-up of pressure in the lower lateral extension of the bypass passage 5 Will open the lower check valve 18 for flow of fluid into the lower pressure feed passage 6 and thence to the fluid motor (not shown) via the lower motor passage 8, and in this upper position of the spool 15, the upper motor passage 8 is placed in fluid communication with the upper return passage 10 by way of the neck 26 whereby fluid displaced by the motor is returned to a reservoir or tank connected to the return port 12 via the upper motor and return passages 8 and 10.
  • the lower check valve 18 opens for conduction of fluid under pressure from the lower lateral extension of the bypass passage 5 to the lower pressure feed passage 7 and then to the lower motor passage 9, with fluid returning from the motor actuated thereby to a tank via the upper motor and return passages 9 and 10 which are then in fluid communication.
  • the upper stepped bore 17 has screwed therein a body 30 for a volume control valve 31 which is biased by spring 32 against a seat 34 in said body 30.
  • a volume control valve 31 which is biased by spring 32 against a seat 34 in said body 30.
  • bypass passage 5 will be closed by the lands 23 and 37 and the neck 26 will open communication between the upper pressure feed passage 6 and the upper motor passage 8 whereby fluid under pressure in the upper bypass passage 6 will urge the volume control valve 31 upwardly out of engagement with the seat 34 for flow of fluid through the openings 25 into the upper pressure feed passage 6 and into the upper motor passage 8 for actuating the associated fluid motor (not shown).
  • the volume control valve 31 upwardly out of engagement with the seat 34 for flow of fluid through the openings 25 into the upper pressure feed passage 6 and into the upper motor passage 8 for actuating the associated fluid motor (not shown).
  • the fluid flow tends to, increase through the valve 31, it will progressively block the openings 35 thus to control or limit the rate of flow of fluid to the upper motor passage 6 thus to obtain precision control of the rate of actuation of the associated fluid motor.
  • valve 31 will then be urged by spring 32 against seat 34. In the event that there is a drop in pressure in the system while the spool 15 is in its down position, the valve 31 will engage the seat 34 to prevent reverse flow from the upper pressure feed passage 6 into the upper bypass passage 5.
  • the valve 31 thus operates as a load check valve, the same as check valve 18.
  • the upper stepped bore 17 has screwed therein a flow divider body 40 in which is secured by the screw plug 41 a valve guide 42 on which the flow divider valve 43 is slidable and biased by spring 45 against the seat 46.
  • the valve guide 42 has a passage 47 therein which is slotted at 48 to register with openings 49 in the body 40 and with the upper return passage 10, and which is slotted at 50 within the valve 43 When the latter is in seated position as shown.
  • bypass passage will be closed by the lands 51 and 52, and the upper pressure feed passage 7 will be in fluid communication with the upper motor passage 9 via the spool neck 53, and build up of fluid pressure in the upper bypass passage 5 will urge the valve 43 away from its seat 46 for flow of fluid into the upper pressure feed passage 7 to the upper motor passage 9 to actuate the associated fluid motor (not shown).
  • valve 43 As the valve 43 thus moves upwardly as viewed in FIG. 3, it defines with the seat 46 an annular orifice 54 through which the fluid flows at increasing rate as the pressure drop across said orifice 54 increases.
  • the lower end of the valve 43 commences to uncover the lower slots 50 in the valve guide 42, whereby excess flow of fluid passes through the lower slots 50 and the passage 47 in the valve guide 42 to the upper return passage via the upper slots 48 and openings 49.
  • the spool 16 like spool has associated therewith a spring return mechanism 38 to return said spool 16 to neutral position when axial force thereon in either direction is released.
  • the spring 45 will urge the valve 43 into engagement with seat 46 thereby preventing load dropping.
  • the valve 43 operates as a load check valve the same as the check valve 18 which is disposed in the lower stepped bore 17.
  • a conventional spool-type directional control valve can be readily converted to include flow control, flow divider, and like functions by substituting such units for the conventional load check valves employed in such directional control valves. Furthermore, in the present case, the volume control valve 31 and the flow divider valve 43 yet retains the load check valve function to prevent load dropping in the event of pressure drop in the supply circuit to a value less than that in the motor circuit.
  • a directional control valve assembly comprising a housing having a first bore intersected axially therealong by a pressure feed passage for connection with a fluid pressure source, by a motor passage for connection with a fluid motor, and by a return passage for connection with a reservoir; a valve spool movable in said first bore to at least one operating position whereat said pressure feed passage i communicated with said motor passage; a second bore communicating said pressure feed passage with such fluid pressure source; and a flow control valve in said second bore comprising a valve body having a flow orifice therein for flow of fluid between said second bore and pressure feed passage, a valve seat, control valve means movable in said valve body away from said seat under the influence of higher fluid pressure supplied by such fluid pressure source than in said pressure feed passage for flow of fluid from such fluid pressure source through said orifice into said pressure feed passage and thence into said motor passage when said spool is in said one operating position, said flow orifice being progessively closed by continued movement of said control valve means away from said seat for
  • a directional control valve assembly comprising a housing having a first bore intersected axially therealong by a pressure feed passage for connection with a fluid pressure source, by a motor passage for connection with a fluid motor, and by a return passage for connection with a reservoir; a valve spool movable in said first bore to at least one operating position whereat said pressure feed passage is communicated with said motor passage; a second bore communicating said pressure feed passage with such fluid pressure source; and a flow divider valve in said second bore comprising a valve guide having a passage which at one end is in fluid communication with said return passage and at the other end is in fluid communication with said second bore, a valve seat, flow divider means slidable on said valve guide for movement away from said seat under the influence of higher fluid pressure supplied by such fluid pressure source than in said pressure feed passage to permit flow of fluid from such fluid pressure source into said pressure feed passage and thence into said motor passage when said spool is in said one operating position, said flow divider means when adjacent said seat blocking such fluid communication between said second bore
  • the assembly of claim 5 further comprising a bypass passage in said housing intersecting said first bore for connection with such fluid pressure source and reservoir at its respective upstream and downstream ends, said second bore communicating said pressure feed passage with said bypass passage, said valve spool being movable in said first bore from a neutral position whereat said bypass passage is open for flow of fluid therethrough from its upstream end to its downstream end and whereat communication between said motor passage and said pressure feed and return passages is blocked thereby to two operating positions whereat said bypass passage is blocked thereby and whereat said motor passage is selectively communicated with said pressure feed passage or with said return passage, respectively.

Description

April 9, 1968 H. J. STACEY 3,376,892
DIRECTIONAL CONTROL VALVE Filed March 4, 1966 2 sheets-sheet 1 i +-.5
f 6 26 7 l4 J u I2 INVENTOR HUGH J. STACEY 5.2;.J
BY 6 47M ATTORNEYS April 9, 1968 H. J. STACEY DIRECTIONAL CONTROL. VALVE 2 Sheets-Sheet 7';
Filed March 1, 1966 5 INVENTOR HUGH J. STACEY ATTORNEYS United States Patent 3,376,892 DIRECTIONAL CONTROL VALVE Hugh J. Stacey, Willoughby, Ohio, assignor to Parker- Iiannifin Corporation, Cleveland, Ohio, a corporation 0 Ohio Filed Mar. 4, 1966, Ser. No. 531,951 10 Claims. (Cl. 137--596.12)
ABSTRACT OF THE DISCLOSURE A directional control valve assembly having control or divider valves which regulate the rate of flow through the valve spool to a motor passage and also operate as load check valves to prevent flow of fluid in the opposite direction.
The present invention relates generally as indicated to a directional control valve and more particularly to a spool-type directional control valve.
In such spool-type directional control valves it is known, as shown in the patent to Herbert H. Schmiel, 3,216,443, granted Nov. 9, 1965, to provide in a multiple spool valve assembly a unitary housing having parallel bores in which the respective valve spools are reciprocable, such bores being intersected by a bypass passage which has its upstream end in communication with th pressure inlet port of the housing and its downstream end in communication with the return port of the housing, by pressure feed passages intersecting the respective bores, by motor passages intersecting the respective bores, and by return passages intersecting all bores and leading to the return port of the housing. Also, as disclosed in the aforesaid Schmiel patent, the housing is provided with lateral extensions of said bypass, pressure feed, motor, and return passages which, in turn, are intersected by bores in which are provided load check valves for the respective valve spools to prevent load dropping in case of pressure drop in the system as occasioned by pump failure or, in the case of a parallel circuit valve assembly, by simultaneous operation of two or more valve spools.
With the foregoing in mind, it is one object of this invention to utilize the aforesaid load check valve bores for selective mounting of volume control valves, flow dividers, or the like.
It is another object of this invention to provide a volume control valve, a flow divider, or the like in a load check valve bore of a directional control valve which additionally functions as a load check valve.
Other objects and advantages of the present invention will become apparent as the following description proceeds.
To the accomplishment of the fore-going and related ends, the invention, then, comprises the features hereinafter fully described and particularly pointed out in the claims, the following description and the annexed drawing setting forth in detail certain illustrative embodiments of the invention, these being indicative, however, of a few of the various ways in which the principl of the invention may be employed.
In said annexed drawing:
FIG. 1 is a cross-section view of a spool-type directional control valve, such section having been taken in a plane passing through the axes of the spool bores; and
FIGS. 2 and 3 are transverse cross-section views taken substantially alongt he lines 22, and 33, respectively of FIG. 1.
Referring now more particularly to the drawing, the directional control valve 1 comprises a housing 2 having parallel bores 3 and 4 axially intersected therealong by a bypass passage 5, by pressure feed passages 6, 6 and 7, 7, by motor passages 8, 8 and 9, 9, and by return passages 10, 10. The bypass passage at its upstram end communicates with the pressure inlet port 11 of the housing 2 and at its downstream end communicates with the return port 12 of the housing 2, and the return passages 10, communicate also with said return port 12. The reference numeral 14 in FIG. 1 denotes schematically a relief valve which opens to relieve excess pressure in the inlet port 11 to the return port 12 via a return passage 10.
Reciprocable in the respective bores 3 and 4 are valve spools 15 and 16 which, by way of example, are herein shown as being of the four-way type for control of double acting fluid motors connected with the respective motor passages 8, 8 and 9, 9.
As best shown in FIGS. 2 and 3, said bypass, pressure feed, motor, and return passages 5, 6, 8 and 10 (FIG. 2) and 5, 7, 9, and 10 (FIG. 3) have lateral extensions which intersect stepped bores 17 in which check valves 18 are conventionally disposed, as shown in the lower portions of FIGS. 2 and 3, and as shown in the aforesaid Schmiel Patent No. 3,216,443.
As herein shown, each check valve 18 comprises a body 19 screwed into the housing 2 in which the check valve 18 is movably guided and biased by spring 20 into engagement with the seat 21. Thus, When the spool 15 of FIG. 2 is moved upwardly, the bypass is closed by the lands 23 and 24, and the lower feed passage 6 is placed in fluid communication with the lower motor passage 8 via the neck 25 of the spool, whereupon build-up of pressure in the lower lateral extension of the bypass passage 5 Will open the lower check valve 18 for flow of fluid into the lower pressure feed passage 6 and thence to the fluid motor (not shown) via the lower motor passage 8, and in this upper position of the spool 15, the upper motor passage 8 is placed in fluid communication with the upper return passage 10 by way of the neck 26 whereby fluid displaced by the motor is returned to a reservoir or tank connected to the return port 12 via the upper motor and return passages 8 and 10. Similarly, when the spool 16 of FIG. 3 is shifted upwardly, the lower check valve 18 opens for conduction of fluid under pressure from the lower lateral extension of the bypass passage 5 to the lower pressure feed passage 7 and then to the lower motor passage 9, with fluid returning from the motor actuated thereby to a tank via the upper motor and return passages 9 and 10 which are then in fluid communication.
In FIG. 2 the upper stepped bore 17 has screwed therein a body 30 for a volume control valve 31 which is biased by spring 32 against a seat 34 in said body 30. As evident, when the valve 31 is moved upwardly away from seat 34 under the influence of fluid pressure in the upper lateral extension of the bypass passage 5 fluid will flow through fiow orifices 35 in body 30 into the upper feed passage 6. However, as the pressure drop between the upper bypass passage 5 and the chamber 36 increases, the valve 31 will progressively close said orifices 35 thus to regulate the rate of flow of fluid to upper feed passage 6. Thus, when the spool 15 in FIG. 2 is moved downwardly from the position shown, the bypass passage 5 will be closed by the lands 23 and 37 and the neck 26 will open communication between the upper pressure feed passage 6 and the upper motor passage 8 whereby fluid under pressure in the upper bypass passage 6 will urge the volume control valve 31 upwardly out of engagement with the seat 34 for flow of fluid through the openings 25 into the upper pressure feed passage 6 and into the upper motor passage 8 for actuating the associated fluid motor (not shown). However, as the fluid flow tends to, increase through the valve 31, it will progressively block the openings 35 thus to control or limit the rate of flow of fluid to the upper motor passage 6 thus to obtain precision control of the rate of actuation of the associated fluid motor. When the spool 15 is released, the spring return mechanism 38 will return it to the neutral position shown in FIG. 2 to open the bypass passage 5. The valve 31 will then be urged by spring 32 against seat 34. In the event that there is a drop in pressure in the system while the spool 15 is in its down position, the valve 31 will engage the seat 34 to prevent reverse flow from the upper pressure feed passage 6 into the upper bypass passage 5. The valve 31 thus operates as a load check valve, the same as check valve 18.
Referring now to FIG. 3, the upper stepped bore 17 has screwed therein a flow divider body 40 in which is secured by the screw plug 41 a valve guide 42 on which the flow divider valve 43 is slidable and biased by spring 45 against the seat 46. The valve guide 42 has a passage 47 therein which is slotted at 48 to register with openings 49 in the body 40 and with the upper return passage 10, and which is slotted at 50 within the valve 43 When the latter is in seated position as shown. When the spool 16 in FIG. 3 is shifted downwardly from the neutral position shown, the bypass passage will be closed by the lands 51 and 52, and the upper pressure feed passage 7 will be in fluid communication with the upper motor passage 9 via the spool neck 53, and build up of fluid pressure in the upper bypass passage 5 will urge the valve 43 away from its seat 46 for flow of fluid into the upper pressure feed passage 7 to the upper motor passage 9 to actuate the associated fluid motor (not shown). As the valve 43 thus moves upwardly as viewed in FIG. 3, it defines with the seat 46 an annular orifice 54 through which the fluid flows at increasing rate as the pressure drop across said orifice 54 increases. However, at a desired maximum flow as determined by the spring 45, the lower end of the valve 43 commences to uncover the lower slots 50 in the valve guide 42, whereby excess flow of fluid passes through the lower slots 50 and the passage 47 in the valve guide 42 to the upper return passage via the upper slots 48 and openings 49.
The spool 16 like spool has associated therewith a spring return mechanism 38 to return said spool 16 to neutral position when axial force thereon in either direction is released. In the event of reduction of fluid pressure in the upper bypass passage 5 to a value less than that in the upper pressure feed passage and the upper motor passage when the spool 16 is in its downwardly shifted position, the spring 45 will urge the valve 43 into engagement with seat 46 thereby preventing load dropping. Thus, the valve 43 operates as a load check valve the same as the check valve 18 which is disposed in the lower stepped bore 17.
From the foregoing, it can be seen that a conventional spool-type directional control valve can be readily converted to include flow control, flow divider, and like functions by substituting such units for the conventional load check valves employed in such directional control valves. Furthermore, in the present case, the volume control valve 31 and the flow divider valve 43 yet retains the load check valve function to prevent load dropping in the event of pressure drop in the supply circuit to a value less than that in the motor circuit.
Other modes of applying the principle of the invention may be employed, change being made as regards the details described, provided the features stated in any of the following claims, or the equivalent of such, be employed.
I therefore particularly point out and distinctly claim as my invention:
1. A directional control valve assembly comprising a housing having a first bore intersected axially therealong by a pressure feed passage for connection with a fluid pressure source, by a motor passage for connection with a fluid motor, and by a return passage for connection with a reservoir; a valve spool movable in said first bore to at least one operating position whereat said pressure feed passage i communicated with said motor passage; a second bore communicating said pressure feed passage with such fluid pressure source; and a flow control valve in said second bore comprising a valve body having a flow orifice therein for flow of fluid between said second bore and pressure feed passage, a valve seat, control valve means movable in said valve body away from said seat under the influence of higher fluid pressure supplied by such fluid pressure source than in said pressure feed passage for flow of fluid from such fluid pressure source through said orifice into said pressure feed passage and thence into said motor passage when said spool is in said one operating position, said flow orifice being progessively closed by continued movement of said control valve means away from said seat for regulating the rate of flow through said flow orifice to said pressure feed passage; and spring means biasing said control valve means toward said seat for preventing flow of fluid in the opposite direction in said pressure feed passage.
2. The assembly of claim 1 wherein there are a plurality of flow orifices in said valve body which are progressively closed by such movement of said control valve means away from said seat.
3. The assembly of claim 1 wherein said second bore is intersected axially therealong by said pressure feed passage, said motor passage, and said return passage, and said valve body isolates said motor passage from said pressure feed passage and said return passage.
4. The assembly of claim 1 further comprising a bypass passage in said housing intersecting said first bore for connection with such fluid pressure source and reservoir at its respective upstream and downstream ends, said second bore communicating said pressure feed passage with said bypass passage, said valve spool being movable in said first bore from a neutral position whereat said bypass passage is open for flow of fluid therethrough from its upstream end to its downstream end and whereat communication between said motor passage and said pressure feed and return passages i blocked thereby to two operating positions whereat said bypass passage is blocked thereby and whereat said motor passage is selectively communicated with said pressure feed passage or with said return passage, respectively.
5. A directional control valve assembly comprising a housing having a first bore intersected axially therealong by a pressure feed passage for connection with a fluid pressure source, by a motor passage for connection with a fluid motor, and by a return passage for connection with a reservoir; a valve spool movable in said first bore to at least one operating position whereat said pressure feed passage is communicated with said motor passage; a second bore communicating said pressure feed passage with such fluid pressure source; and a flow divider valve in said second bore comprising a valve guide having a passage which at one end is in fluid communication with said return passage and at the other end is in fluid communication with said second bore, a valve seat, flow divider means slidable on said valve guide for movement away from said seat under the influence of higher fluid pressure supplied by such fluid pressure source than in said pressure feed passage to permit flow of fluid from such fluid pressure source into said pressure feed passage and thence into said motor passage when said spool is in said one operating position, said flow divider means when adjacent said seat blocking such fluid communication between said second bore and said other end of said valve guide passage, and establishing such fluid communication which progressively increases as said flow divider means moves away from said seat to divert excess flow through said valve guide passage to said return passage.
6. The assembly of claim 5 further comprising spring means for biasing said flow divider means against said seat to close said other end of said valve guide passage and to prevent flow of fluid in the opposite direction in said pressure feed passage.
7. The assembly of claim 5 where in said flow divider means and a surrounding portion of said seat define an annular orifice for establishing such fluid communication between such fluid pressure source and said pressure feed passage.
8. The assembly of claim 5 wherein said second bore is intersected axially therealong by said pressure feed passage, said motor passage, and said return passage, and said flow divider valve further comprises a valve body surrounding said valve guide which isolates said motor passage from said pressure feed passage and said return passage.
9. The assembly of claim 8 wherein there are aligned openings in one end of said valve guide and body for establishing fluid communication between said passage in said valve guide and said return passage, and slots in the other end of said valve guide which are progressively uncovered by movement of said flow divider means away from said seat for establishing progressively increasing fluid communication between such fluid pressure source and said passage in said valve guide.
10. The assembly of claim 5 further comprising a bypass passage in said housing intersecting said first bore for connection with such fluid pressure source and reservoir at its respective upstream and downstream ends, said second bore communicating said pressure feed passage with said bypass passage, said valve spool being movable in said first bore from a neutral position whereat said bypass passage is open for flow of fluid therethrough from its upstream end to its downstream end and whereat communication between said motor passage and said pressure feed and return passages is blocked thereby to two operating positions whereat said bypass passage is blocked thereby and whereat said motor passage is selectively communicated with said pressure feed passage or with said return passage, respectively.
References Cited UNITED STATES PATENTS HENRY T. KLINKSIEK, Primary Examiner.
US531951A 1966-03-04 1966-03-04 Directional control valve Expired - Lifetime US3376892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US531951A US3376892A (en) 1966-03-04 1966-03-04 Directional control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US531951A US3376892A (en) 1966-03-04 1966-03-04 Directional control valve

Publications (1)

Publication Number Publication Date
US3376892A true US3376892A (en) 1968-04-09

Family

ID=24119758

Family Applications (1)

Application Number Title Priority Date Filing Date
US531951A Expired - Lifetime US3376892A (en) 1966-03-04 1966-03-04 Directional control valve

Country Status (1)

Country Link
US (1) US3376892A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3486527A (en) * 1967-09-21 1969-12-30 Westinghouse Air Brake Co Combined check valve and choke valve device
FR2396226A1 (en) * 1977-06-27 1979-01-26 Deere & Co Control valve for pump - contains fluid channel sealed by open ring, to reduce size
USRE30291E (en) * 1972-12-15 1980-06-03 Trw Inc. Power steering system with auxiliary power capability
EP1236938A1 (en) * 2001-02-26 2002-09-04 Rexroth Mecman GmbH Multiple way valve with parallel valve bores

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3207177A (en) * 1962-09-21 1965-09-21 Ohio Brass Co Valve for controlling movement of a fluid power unit
US3216443A (en) * 1963-03-11 1965-11-09 Parker Hannifin Corp Multiple spool valve assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3207177A (en) * 1962-09-21 1965-09-21 Ohio Brass Co Valve for controlling movement of a fluid power unit
US3216443A (en) * 1963-03-11 1965-11-09 Parker Hannifin Corp Multiple spool valve assembly

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3486527A (en) * 1967-09-21 1969-12-30 Westinghouse Air Brake Co Combined check valve and choke valve device
USRE30291E (en) * 1972-12-15 1980-06-03 Trw Inc. Power steering system with auxiliary power capability
FR2396226A1 (en) * 1977-06-27 1979-01-26 Deere & Co Control valve for pump - contains fluid channel sealed by open ring, to reduce size
EP1236938A1 (en) * 2001-02-26 2002-09-04 Rexroth Mecman GmbH Multiple way valve with parallel valve bores
US6688332B2 (en) 2001-02-26 2004-02-10 Rexroth Mecman Gmbh Multiway valve for switching a flow of fluid under pressure with parallel disposition of valve bores, and valve assembly kit

Similar Documents

Publication Publication Date Title
US3722543A (en) Pressure compensated control valve
US2995141A (en) Dual volume flow divider
US3455210A (en) Adjustable,metered,directional flow control arrangement
USRE26523E (en) Pilot operated control valve mechanism
US3213886A (en) Flow control valve with stop means movable at a controlled rate
US3334705A (en) Priority valve for closed center system
US4066239A (en) Metering slot configuration for a valve spool
US3827453A (en) Directional control valve
US3269416A (en) Control valve mechanism with means for reducing hydraulic shock
US4352375A (en) Control valves
US3662783A (en) Spool valve assembly
US3216443A (en) Multiple spool valve assembly
US4007666A (en) Servoactuator
CA1195206A (en) Electrohydraulic valve
US3216446A (en) Spool valve assembly with dual check valve assembly
US3979907A (en) Priority control valve
US3212523A (en) Fluid system and relief valve assembly therefor
US3596566A (en) Hydraulic valve
US4065921A (en) Hydraulic control means, particularly for vehicle steering means
US3999572A (en) Fluid flow instrumentality
US3506031A (en) Relief-makeup check assembly for directional control valves
US3376892A (en) Directional control valve
US4178962A (en) Control valve with flow control means
US3213874A (en) Pressure responsive flow control valve for directional control valve
US3563272A (en) Servocontrol valve and system