US3375186A - Apparatus for the manufacture of electrical coils - Google Patents
Apparatus for the manufacture of electrical coils Download PDFInfo
- Publication number
- US3375186A US3375186A US643755A US64375567A US3375186A US 3375186 A US3375186 A US 3375186A US 643755 A US643755 A US 643755A US 64375567 A US64375567 A US 64375567A US 3375186 A US3375186 A US 3375186A
- Authority
- US
- United States
- Prior art keywords
- rolls
- anodizing
- contact
- turns
- strip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/06—Suspending or supporting devices for articles to be coated
- C25D17/08—Supporting racks, i.e. not for suspending
Definitions
- This invention relates to the manufacture of electrical coils. More particularly, it relates to an anodizing rack for anodizing the edges of the coils according to the method of the invention.
- Electrical coils are often made up of a plurality of turns of flat aluminum strip with a continuous coating of dielectric material disposed between the turns of the coil to electrically insulate them from one another.
- Leaves of thin paper or a film of insulating enamel, varnish or lacquer are ordinarily used as a dielectric coating between the turns of the strips.
- An improvement on those coatings is the deposition of aluminum oxide which frequently serves the purpose.
- the most practical method of making strips from which these coils are formed is to cut them from a wider aluminum strip which has been coated previously with a dielectric material.
- the major advantage in coating dielectric material over a single wide strip and subsequently cutting it to individual narrow strips is that the insulated coating can be formed with much more uniform thickness and quality than can many narrower coatings. Also, a succession of individual coatings cannot be applied nearly as economically as can one single coating.
- edge anodizing rolls of strip conductor material has been to make anode contact with the outermost and innermost turns in a roll of conductor material.
- the oxidic formation is initiated at the points of anode contact and forms outwardly therefrom.
- the electric current must pass through the insulated turn thereafter, and it has been found that as the number of insulated turns increases, the resistance to the flow of electric current through the several turns correspondingly increases, thus causing a serious volt-age drop.
- This voltage drop causes a decrease in the efficiency of anodizing, thereby resulting in formations of weak oxidic insulation and increased periods for complete anodizing of the edges of the rolls.
- the invention provides a novel anodizing rack for edge anodizingthe rolls of strip conductor material according to the method of the invention.
- the anodizing rack of the invention is comprised of an anode supporting member on which at least one roll can be mounted and anode contact members which are mounted on the supporting member and extend outwardly therefrom to make anode contact on an edge portion of a multiplicity of turns in said rolls.
- Locking means can also be provided on the supporting member for maintaining the contact members and rolls on the supporting member with proper contact therebetween.
- the anodizing rack of the invention can accommodate a plurality of rolls of conductor material and thus can be used for batch anodizing rolls.
- the anodizing rack can be suspended into a bath of electrolyte in a horizontal or vertical direction whichever may be desired.
- a relatively wide strip of aluminum of a thickness of say .003 inch is run over one or more applicator rolls carrying a liquid organic dielectric coating composition, whereby a layer of such composition of uniform thickness is transferred to one or both the surfaces of the advancing aluminum strip.
- the coating composition Upon emerging from this coating apparatus, the coating composition is dried to a hardened condition.
- the wide strip may be covered by an inorganic dielectric coating, such as an anodic film, in which case the laterapplied anodic edge-coating is still separate from insulation on the broad surface of the strip.
- the coated wide strip is then directed through continuous cutting apparatus where it is divided longitudinally into a plurality of narrow strips, each the width of avroll. Any type of cutter used in this step bares the aluminum base metal and leaves a certain amount of slivers, burrs, or other irregularities on the edges of the narrow strip.
- the narrow strips exiting from the cut-ting apparatus are then directed into winding apparatus where they are formed into rolls of a multiplicity of turns.
- the fiat sides of the cylindrical rolls so wound are defined, of course, by the exposed edges of the aluminum strip which are in ragged condition as a result of the cutting operation.
- the rolls are then taken in batches to anodizing equipment which is constructed to make anode contact along an edge portion of a multiplicity of turns in each roll.
- the rolls thus contacted are subjected to conventional cleaning operations and then are lowered into an electrolytic bath which may advantageously be chromic, sulphuric, oxalic, or other acid, or it may be a caustic alkaline bath.
- Low voltage direct current (or sometimes alternating current) is passed through the bath with each of the rolls therein serving as the anode.
- a lead, stainless steel or other conducting electrode is employed as the cathode.
- the roll being contacted along a multiplicity of turns caused the current to flow substantially uniformly throughout the turns of the coil with substantially constant resistance and thus little voltage drop between turns in the roll. Hence, the resultant anodic deposit was substantially uniform throughout the edge of the roll.
- the batch of rolls is lifted from the bath, rinsed and dried.
- the resulting rolls each comprise a multiplicity of turns of aluminum strip which is electrically insulated on one or both faces by the coating composition, and at both side edges by the oxidic anodized film.
- anodic contact was made at a portion of the turns in the roll, no oxidic film has been deposited and it remains uninsulated.
- knife-edged contacts this can be kept at a minimum since only a minute cross-sectional edge portion of the strip has been contacted.
- a novel step in the method of the invention provides winding the coil such that the contacted edge portions in one turn of the strip in the coil are substantially out of registry with the contacted portion in an adjacent turn in the coil.
- FIG. 1 is an elevation of the horizontally suspended embodiment of the anodizing apparatus of the invention
- FIG. 2 is a side elevation partly in section and partly broken away of the vertically suspended embodiment of the anodizing apparatus of the invention
- FIG. 3 is a section taken substantially along lines 3-3 of FIG. 1;
- FIG. 4 is a perspective of an anode contact of the apparatus.
- a tank having flange portion 11 formed thereon is substantially filled with a bath 12 of electrolyte.
- the mounting members 13 and 14 serve to maintain a suspension bar 15 across the span of the tank 10, thereby overlying the bath 12.
- the suspension bar 15 has an electrical terminals 16 secured to one portion thereof which is connected by electrical conductors 17 to a suitable D.C. source to deliver a positive electrical charge.
- hangers 18 and 19 Mounted on the suspension bar 15 and depending therefrom to a substantial distance within the tank 10 and submerged in the electrolyte 12 during the anodizing operat-ion are hangers 18 and 19.
- the hangers 18 and 19 serve to hold a supporting rod 20 at substantially opposite ends thereof and thus maintain the rod in a substantially horizontal poistion.
- the rod 20, as best shown in FIG. 2 is threaded along substantially its entire intermediate length 22.
- a plurality of rolls 23 of strip conductor material are slidably mounted on the rod 20 along the threaded portion 22 so that they are positioned substantially concentrically thereon.
- anode contact members 25 Positioned axially along the rod 20 and disposed between each of the respective rolls 23 to maintain the rolls in spaced relationship along the axial extent of the rod 20 as well as to make contact along a minute side edge portion of each turn of the rolls 23, are anode contact members 25.
- the anode contact members 25 are, in this preferred embodiment, comprised of an internal sleeve portion 26 which has an inside diameter substantially equal to the outside diameter of the rod 20 and has contact arms 27 which extend radially outward from the sleeve member 26.
- the contact arms 27 are of very small knife-like thickness at least along that edge portion thereof which is adapted to abut the fiat edges of the rolls 23. Thus, only a minute cross section of the flat edge of each turn is contacted by the arms 4 27.
- the contact members 25 are not required to have the arms 27 thereof extending radially outward in the same direction, rather the arms of each of the members can extend in different directions than the arms of other members and nevertheless function properly.
- a pressure plate 28 is brought flush against the last contact member to be loaded thereon and is longitudinally compressed by means of a lock nut 29 which is threaded onto the threaded length 22 of the rod 20.
- a permanent contact member 31 forms an integral part of the rod 20.
- the permanent contact member 31 is mounted on one end portion of the rod 20 opposite to the end portion of the rod in which the lock nut 29 is threaded, and thus opposite to the end of the rod on which the rolls 23 and contact member 25 are loaded thereon.
- a permanent contact member 31 serves in both instances as a base member against which the plurality of rolls 23 and spacers 25 can be compressed axially along the rod 20 so as to maintain these elements in tight compression.
- contact arms 32 of the permanent contact 31 converse to a knife-edge 33 from a substantially wide base 34, thereby providing the smallest area of contact with sufficient structural support.
- FIG. 2 a vertical support assembly is shown.
- the vertical support assembly is comprised of the same elements described above in relation to the horizontal assembly, the disposition of the assembly being vertically suspended into the bath 12 of electrolyte by means of a hanger 35 which is suitably mounted on the suspension bar 15 and attached to one end of the rod 20,.
- the horizontal anodizing rack assembly is the most desirable. Owing to the weight of the plurality of rolls 23 and contact members 25 it is possible that the knife-edged arms 27 of the contact members could score the fiat edges of the rolls 23 and mechanically distort these edges. Moreover, it is possible that some electrolyte may be drawn between the respective turns of the rolls 23 by capillary action and this is also undesirable. All of these difiicultiesare obviated with the horizontal anodizing assembly.
- Ananodizing rack for edge anodizing rolls of strip conductor material comprising:
- An anodizing rack for edge anodizing rolls of strip conductor material comprising:
- An anodizing rack for edge anodizing rolls of strip conductor material of the type adapted to be suspended into a bath of electrolyte comprising:
- anode contact members having a sleeve portion for insertion on said supporting member and at least one knife edged contact arm extending outwardly :from said sleeve member to make anode contact along an edge portion of each turn of the roll, and
- An anodizing rack for edge anodizing rolls of strip conductor material of the type adapted to be suspended into a bath of electrolyte comprising:
- anode contact members having a sleeve portion slidable on said supporting rod and a plurality of 6 knife edged contact arms extending radially from said sleeve member to make anode contact along edge portions of each turn of the roll, and (c) locking means for maintaining said contact mem- 5 her and rolls on said supporting member with said arms in proper contact therebetween.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
March 26, 1968 A. R. SMITH ll 3,375,186
APPARATUS FOR THE MANUFACTURE OF ELECTRICAL COILS Original Filed Feb. 19, 1962 il r. 1 H
Jul
I I5 FIG. 2
fT Il 29/28 i i i 23 N ENTOR.
ADDISON ROMAINE SMITH t T.
BY u 34 \3l 32 g S i/14 4 0 4 ATTORNEY United States Patent C) 3,375,186 APPARATUS FOR THE MANUFACTURE OF ELECTRICAL COILS Addison Romaine Smith II, Louisville, Ky., assignor to Anaconda Aluminum Company, a corporation of Montana Original application Feb. 19, 1962, Ser. No. 174,171, now Patent No. 3,334,413, dated Aug. 8, 1967. Divided and this application Mar. 9, 1967, Ser. No. 643,755
4 Claims. (Cl. 204-297) ABSTRACT oF THE DISCLOSURE Cross references to related applications This is a divisional application of co-pending application, Ser. No. 174,171 filed Feb. 19, 1962, and now Patent No. 3,334,413.
This invention relates to the manufacture of electrical coils. More particularly, it relates to an anodizing rack for anodizing the edges of the coils according to the method of the invention.
Electrical coils are often made up of a plurality of turns of flat aluminum strip with a continuous coating of dielectric material disposed between the turns of the coil to electrically insulate them from one another. Leaves of thin paper or a film of insulating enamel, varnish or lacquer, are ordinarily used as a dielectric coating between the turns of the strips. An improvement on those coatings is the deposition of aluminum oxide which frequently serves the purpose. The most practical method of making strips from which these coils are formed is to cut them from a wider aluminum strip which has been coated previously with a dielectric material. The major advantage in coating dielectric material over a single wide strip and subsequently cutting it to individual narrow strips is that the insulated coating can be formed with much more uniform thickness and quality than can many narrower coatings. Also, a succession of individual coatings cannot be applied nearly as economically as can one single coating.
It is evident, however, that when a relatively wide dielectric coated strip is cut longitudinally into narrower strips the cutting operation exposes the aluminum base material at the edge portions of the narrower strips and leaves them rough with slivers and burrs and, of course, uninsulated. These bared edge portions must be insulated or else they will cause short circuits between the turns of the resultant coil. Among the various proposals which have been suggested for insulating the edges in an economical and satisfactory manner and one which has been generally adopted to be the most favorable, is to submit the edges of the strip to an anodizing operation.
The method presently being followed for edge anodizing rolls of strip conductor material has been to make anode contact with the outermost and innermost turns in a roll of conductor material. When such contact is made, the oxidic formation is initiated at the points of anode contact and forms outwardly therefrom. As the edge of one turn of one layer of strip conductor material becomes effectively insulated the electric current must pass through the insulated turn thereafter, and it has been found that as the number of insulated turns increases, the resistance to the flow of electric current through the several turns correspondingly increases, thus causing a serious volt-age drop. This voltage drop causes a decrease in the efficiency of anodizing, thereby resulting in formations of weak oxidic insulation and increased periods for complete anodizing of the edges of the rolls.
I have found that by making anode contact along a portion of the side edges of a plurality of turns in a roll of strip conductor material the electric current flows within each of the turns substantially simultaneously. This substantially uniform current flow eifectively decreases the anodizing time as well as contributes to the deposition of a superior insulation on the edges. I have found that this improvement can particularly be used in the method of forming electric coils from rolls of strip conductor material which have uninsulated side edges.
The invention provides a novel anodizing rack for edge anodizingthe rolls of strip conductor material according to the method of the invention. Broadly stated, the anodizing rack of the invention is comprised of an anode supporting member on which at least one roll can be mounted and anode contact members which are mounted on the supporting member and extend outwardly therefrom to make anode contact on an edge portion of a multiplicity of turns in said rolls. Locking means can also be provided on the supporting member for maintaining the contact members and rolls on the supporting member with proper contact therebetween. The anodizing rack of the invention can accommodate a plurality of rolls of conductor material and thus can be used for batch anodizing rolls. Moreover, it is also contemplated that the anodizing rack can be suspended into a bath of electrolyte in a horizontal or vertical direction whichever may be desired.
In a preferred embodiment, a relatively wide strip of aluminum of a thickness of say .003 inch, is run over one or more applicator rolls carrying a liquid organic dielectric coating composition, whereby a layer of such composition of uniform thickness is transferred to one or both the surfaces of the advancing aluminum strip. Upon emerging from this coating apparatus, the coating composition is dried to a hardened condition. Alternatively, the wide strip may be covered by an inorganic dielectric coating, such as an anodic film, in which case the laterapplied anodic edge-coating is still separate from insulation on the broad surface of the strip. The coated wide strip is then directed through continuous cutting apparatus where it is divided longitudinally into a plurality of narrow strips, each the width of avroll. Any type of cutter used in this step bares the aluminum base metal and leaves a certain amount of slivers, burrs, or other irregularities on the edges of the narrow strip.
The narrow strips exiting from the cut-ting apparatus are then directed into winding apparatus where they are formed into rolls of a multiplicity of turns. The fiat sides of the cylindrical rolls so wound are defined, of course, by the exposed edges of the aluminum strip which are in ragged condition as a result of the cutting operation. The rolls are then taken in batches to anodizing equipment which is constructed to make anode contact along an edge portion of a multiplicity of turns in each roll.
The rolls thus contacted are subjected to conventional cleaning operations and then are lowered into an electrolytic bath which may advantageously be chromic, sulphuric, oxalic, or other acid, or it may be a caustic alkaline bath. Low voltage direct current (or sometimes alternating current) is passed through the bath with each of the rolls therein serving as the anode. A lead, stainless steel or other conducting electrode is employed as the cathode. The roll being contacted along a multiplicity of turns, caused the current to flow substantially uniformly throughout the turns of the coil with substantially constant resistance and thus little voltage drop between turns in the roll. Hence, the resultant anodic deposit was substantially uniform throughout the edge of the roll.
When the anodizing is completed, the batch of rolls is lifted from the bath, rinsed and dried. The resulting rolls each comprise a multiplicity of turns of aluminum strip which is electrically insulated on one or both faces by the coating composition, and at both side edges by the oxidic anodized film. Of course, where anodic contact was made at a portion of the turns in the roll, no oxidic film has been deposited and it remains uninsulated. By using knife-edged contacts however, this can be kept at a minimum since only a minute cross-sectional edge portion of the strip has been contacted. Moreover, in the next step of rewinding the strip from the roll into electrical coils, a novel step in the method of the invention provides winding the coil such that the contacted edge portions in one turn of the strip in the coil are substantially out of registry with the contacted portion in an adjacent turn in the coil.
A preferred embodiment of the anodizing apparatus of the invention is described hereinbelow with reference to the accompanying drawing wherein:
FIG. 1 is an elevation of the horizontally suspended embodiment of the anodizing apparatus of the invention;
FIG. 2 is a side elevation partly in section and partly broken away of the vertically suspended embodiment of the anodizing apparatus of the invention;
FIG. 3 is a section taken substantially along lines 3-3 of FIG. 1; and
FIG. 4 is a perspective of an anode contact of the apparatus.
Referring initially to FIG. 1 a tank having flange portion 11 formed thereon is substantially filled with a bath 12 of electrolyte. Positioned on the flange portion 11 on opposite sides of the tank 10 are suitable mounting members 13 and 14. The mounting members 13 and 14 serve to maintain a suspension bar 15 across the span of the tank 10, thereby overlying the bath 12. The suspension bar 15 has an electrical terminals 16 secured to one portion thereof which is connected by electrical conductors 17 to a suitable D.C. source to deliver a positive electrical charge. Mounted on the suspension bar 15 and depending therefrom to a substantial distance within the tank 10 and submerged in the electrolyte 12 during the anodizing operat-ion are hangers 18 and 19. The hangers 18 and 19 serve to hold a supporting rod 20 at substantially opposite ends thereof and thus maintain the rod in a substantially horizontal poistion. The rod 20, as best shown in FIG. 2, is threaded along substantially its entire intermediate length 22.
A plurality of rolls 23 of strip conductor material are slidably mounted on the rod 20 along the threaded portion 22 so that they are positioned substantially concentrically thereon. Positioned axially along the rod 20 and disposed between each of the respective rolls 23 to maintain the rolls in spaced relationship along the axial extent of the rod 20 as well as to make contact along a minute side edge portion of each turn of the rolls 23, are anode contact members 25. As best shown in FIG. 4 the anode contact members 25 are, in this preferred embodiment, comprised of an internal sleeve portion 26 which has an inside diameter substantially equal to the outside diameter of the rod 20 and has contact arms 27 which extend radially outward from the sleeve member 26. The contact arms 27 are of very small knife-like thickness at least along that edge portion thereof which is adapted to abut the fiat edges of the rolls 23. Thus, only a minute cross section of the flat edge of each turn is contacted by the arms 4 27. Although not shown, it has been found that the contact members 25 are not required to have the arms 27 thereof extending radially outward in the same direction, rather the arms of each of the members can extend in different directions than the arms of other members and nevertheless function properly.
After the rolls 23 and contact members 25 are alternately mounted on the rod 20, a pressure plate 28 is brought flush against the last contact member to be loaded thereon and is longitudinally compressed by means of a lock nut 29 which is threaded onto the threaded length 22 of the rod 20. By this means the entire assembly can be maintained tightly compressed together with the anode contact members 25 abutting flushly against the flat side edges 30 of the rolls 23.
In both embodiments shown in the drawing a permanent contact member 31 forms an integral part of the rod 20. The permanent contact member 31 is mounted on one end portion of the rod 20 opposite to the end portion of the rod in which the lock nut 29 is threaded, and thus opposite to the end of the rod on which the rolls 23 and contact member 25 are loaded thereon. By providing a permanent contact member 31, it serves in both instances as a base member against which the plurality of rolls 23 and spacers 25 can be compressed axially along the rod 20 so as to maintain these elements in tight compression. As shown, contact arms 32 of the permanent contact 31 converse to a knife-edge 33 from a substantially wide base 34, thereby providing the smallest area of contact with sufficient structural support.
In FIG. 2 a vertical support assembly is shown. The vertical support assembly is comprised of the same elements described above in relation to the horizontal assembly, the disposition of the assembly being vertically suspended into the bath 12 of electrolyte by means of a hanger 35 which is suitably mounted on the suspension bar 15 and attached to one end of the rod 20,.
Of the two embodiments the horizontal anodizing rack assembly is the most desirable. Owing to the weight of the plurality of rolls 23 and contact members 25 it is possible that the knife-edged arms 27 of the contact members could score the fiat edges of the rolls 23 and mechanically distort these edges. Moreover, it is possible that some electrolyte may be drawn between the respective turns of the rolls 23 by capillary action and this is also undesirable. All of these difiicultiesare obviated with the horizontal anodizing assembly.
I claim:
1. Ananodizing rack for edge anodizing rolls of strip conductor material comprising:
(a) an anode supporting member on which at least one roll can be mounted, and
(b)v anode contact members mounted on said supporting member and extending outwardly therefrom to make substantially knife contact along an edge portion of a plurality of turns in said rolls.
2. An anodizing rack for edge anodizing rolls of strip conductor material comprising:
(a) an anode supporting member on which a plurality of said rolls can be loaded in substantially concentric relationship thereto,
(b) anode contact members slidably mounted on said supporting member and having contact arms extending outwardly therefrom to make substantially knife contact along an edge portion of each turn of the roll, and
(c) locking means for maintaining said contact members and rolls on said supporting member with said arms in proper contact the-rebetween.
3. An anodizing rack for edge anodizing rolls of strip conductor material of the type adapted to be suspended into a bath of electrolyte comprising:
(a) an anode supporting member on which at least one roll can be mounted in substantially concentric relationship thereto,
(b) anode contact members having a sleeve portion for insertion on said supporting member and at least one knife edged contact arm extending outwardly :from said sleeve member to make anode contact along an edge portion of each turn of the roll, and
(c) locking means for maintaining said contact members and rolls on said supporting member with said arms in proper contact therebetween.
4. An anodizing rack for edge anodizing rolls of strip conductor material of the type adapted to be suspended into a bath of electrolyte comprising:
(a) an anode supporting rod on which at least one roll can be mounted in substantially concentric relationship thereto,
(b) anode contact members having a sleeve portion slidable on said supporting rod and a plurality of 6 knife edged contact arms extending radially from said sleeve member to make anode contact along edge portions of each turn of the roll, and (c) locking means for maintaining said contact mem- 5 her and rolls on said supporting member with said arms in proper contact therebetween.
References Cited UNITED STATES PATENTS 8/1958 Chambers et al. 204-25 5/ 1962 Rosner 204-297
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US643755A US3375186A (en) | 1962-02-19 | 1967-03-09 | Apparatus for the manufacture of electrical coils |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US174171A US3334413A (en) | 1962-02-19 | 1962-02-19 | Manufacture of electrical coils |
US643755A US3375186A (en) | 1962-02-19 | 1967-03-09 | Apparatus for the manufacture of electrical coils |
Publications (1)
Publication Number | Publication Date |
---|---|
US3375186A true US3375186A (en) | 1968-03-26 |
Family
ID=26869947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US643755A Expired - Lifetime US3375186A (en) | 1962-02-19 | 1967-03-09 | Apparatus for the manufacture of electrical coils |
Country Status (1)
Country | Link |
---|---|
US (1) | US3375186A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4116803A (en) * | 1977-05-11 | 1978-09-26 | Kolosov Ivan A | Method and apparatus for forming cermet electrodes for alkaline accumulators |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2846379A (en) * | 1951-06-14 | 1958-08-05 | Gen Motors Corp | Plating equipment and method of plating piston rings |
US3033776A (en) * | 1959-09-21 | 1962-05-08 | Ernest B Rosner | Anodizing rack |
-
1967
- 1967-03-09 US US643755A patent/US3375186A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2846379A (en) * | 1951-06-14 | 1958-08-05 | Gen Motors Corp | Plating equipment and method of plating piston rings |
US3033776A (en) * | 1959-09-21 | 1962-05-08 | Ernest B Rosner | Anodizing rack |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4116803A (en) * | 1977-05-11 | 1978-09-26 | Kolosov Ivan A | Method and apparatus for forming cermet electrodes for alkaline accumulators |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2500206A (en) | Apparatus for plating | |
US2408910A (en) | Electrical condenser | |
KR880000156A (en) | Flat coil and its manufacturing method | |
US2280789A (en) | Electrolytic device | |
US2668936A (en) | Electrical condenser | |
US1789949A (en) | Electrolytic cell | |
US2098774A (en) | Electrolytic condenser | |
US3334413A (en) | Manufacture of electrical coils | |
US3375186A (en) | Apparatus for the manufacture of electrical coils | |
US2709663A (en) | Electrical capacitors | |
US3223896A (en) | Aluminum strip roll for forming electrical coils | |
US3525652A (en) | Method of manufacturing an insulated foil conductor | |
US3079536A (en) | Film-forming metal capacitors | |
US3729389A (en) | Method of electroplating discrete conductive regions | |
US4089756A (en) | Hard anodizing process | |
US2412201A (en) | Method of making electrolytic devices | |
US3270401A (en) | Method and apparatus for producing insulated electrical conductor | |
US3686428A (en) | Multiple strand conductor with increased contact resistance | |
US1600257A (en) | Manufacture of copper strips or bars | |
US3102216A (en) | Metallized capacitor | |
US3378801A (en) | Strip electrical coils | |
US2322353A (en) | Dielectric material | |
US3317876A (en) | Electrically insulated copper strip conductors | |
US3455021A (en) | Method of making electrically insulated copper strip conductors | |
US3290761A (en) | Method of manufacturing and attaching non-electrolytic tantalum capacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ATLANTIC RICHFIELD COMPANY, A PA CORP. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ANACONDA COMPANY THE, A DE CORP;REEL/FRAME:003992/0218 Effective date: 19820115 |