US3370015A - Process for preparing detergent compositions - Google Patents

Process for preparing detergent compositions Download PDF

Info

Publication number
US3370015A
US3370015A US341419A US34141964A US3370015A US 3370015 A US3370015 A US 3370015A US 341419 A US341419 A US 341419A US 34141964 A US34141964 A US 34141964A US 3370015 A US3370015 A US 3370015A
Authority
US
United States
Prior art keywords
detergent
tablets
tablet
hydrated
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US341419A
Inventor
Daniel Marten Van Kampen
Kerkhoven Frederick Johan
Star Willem Van Der
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lever Brothers Co
Original Assignee
Lever Brothers Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lever Brothers Co filed Critical Lever Brothers Co
Priority to US341419A priority Critical patent/US3370015A/en
Application granted granted Critical
Publication of US3370015A publication Critical patent/US3370015A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0086Laundry tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/06Phosphates, including polyphosphates
    • C11D3/062Special methods concerning phosphates

Definitions

  • Detergent tablets are already known, but the production of such tablets requires very special measures as regards selecting the components of the tablet and working up these components into the final detergent tablet. Consequently, the production of detergent tablets is a complex matter. It involves even more than the mere selection of the components or the compression of a particulate detergent composition into a tablet: the tablet must be capable of withstanding the shocks of packing, handling and distribution without crumbling. In other words, the tablet must be strong. Besides, the tablet must have a satisfactory rate of disintegration when put in water. The tablets known so far have generally shown too long a disintegration time, in favour of their strength, or they have had a very low strength, in favour of their disintegration time.
  • detergent tablets which are strong and yet disintegrate quickly in water can be. prepared by simply incorporating one or more partially or completely hydrated condensed phosphates in particulate form into a mixture of detergent components which is in the dry, particulate state, after which the particulate mass obtained is compressed into tablets.
  • condensed phosphates Preferably, completely hydrated condensed phosphates are used, but good results are also obtained with partially hydrated condensed phosphates. It has even appeared to be possible to obtain satisfactory results by using partially hydrated condensed phosphates having a degree of hydration as low as 30%. However, when partially hydrated condensed phosphates are used, optimal results are achieved with condensed phosphates that have been bydrated for at least 60%.
  • the present invention must therefore be seen in that by using one or more partially (preferably for at least 60%) or completely hydrated condensed phosphates detergent tablets are obtained which are strong and yet disintegrate quickly in water.
  • Examples of such hydratable condensed phosphates are penta-sodium tripolyphosphate, which may form a hexahydrate, and tetra-sodium pyrophosphate, which may form a decahydrate.
  • penta-sodium tripolyphosphate which may form a hexahydrate
  • tetra-sodium pyrophosphate which may form a decahydrate.
  • they must preferably have been hydrated for at least 60%. This means that if penta-sodium tripolyphosphate is used, 60% of this salt should be in the hexahydrate form, and in the case of tetra-sodium pyrophosphate 60% of this salt should be in the decahydrate form.
  • the particulate state of the hydrated condensed phosphates does not in principle affect the favourable properties of the detergent tablet with respect to strength and disintegration time.
  • Optimal results, however, are obtained by using fine phosphates.
  • the fineness of the phosphates is pref erably smaller than 200
  • the amount of hydrated condensed phosphates necessary for imparting the desired properties to the detergent tablets is empirically established.
  • the tablet should have a content of hydrated condensed phosphates of at least 15% based on the total weight of the tablet; preferably this content should vary between 40-60% by Weight of the tablet.
  • the partially or completely hydrated condensed phosphates may be prepared in any conventional manner.
  • a simply and highly satisfactory method is to spray the predetermined quantity of water by means of any suitable fine spray producing device onto the surface of a given bulk of an anhydrous commercially available hydratable condensed phosphate, while the latter is being kept in agitation in a mixture.
  • the hydrated condensed phosphate may also be formed previously by spraying on the anhydrous salt an aqueous solution of a component of the detergent composition, such as e.g. the active detergent or a silicate. Care should of course be taken that the amount of water present in the solution is such that the resulting hydrate is in a dry, particulate state, which hydrate is then mixed with the bulk of the detergent composition, which is also in a dry, particulate state.
  • the detergent composition in particulate form in which the partially or completely hydrated condensed phosphates are incorporated, may be of any kind commonly used in practice. They may contain in any suitable proportion one or more organic synthetic surface-active agents, such as anionics and/or nonionics- Also soaps may be used. They may further contain builders, fillers and normal adjuvant material, such as soil-suspending agents, perfumes, foaming agents, foam stabilizers, whiteners, etc., as well as bleaching agents.
  • anionics examples include alkylaryl sulphonates, alkyl sulphates, condensation products of fatty acids with isethionates or methyl taurine; examples of nonionics are fatty alcohols condensed with ethylene oxides, alkyl phenols condensed with ethylene oxide, etc.
  • As builders may be used silicates and/or sodium salts of ethylene diamine tetraacetic acid.
  • sodium sulphate may be chosen, while eg sodium perborate may be used as a bleaching agent.
  • the total amount of one or more active detergents present in the detergent tablet varies from 5 to 30% by weight and is preferably between about 15 and 25% by weight of the tablet.
  • the ratio between the amounts of phosphate or phosphates and active detergent or detergents is more or less critical in order to obtain detergent tablets that have both a satisfactory strength and a satisfactory disintegration time. If the weight ratio of phosphate or phosphates to active detergent or detergents lies within the range of about 2:1 to 25:1, tablets are obtained which fulfil the aforesaid conditions.
  • the required amount of one or more partially or completely hydrated condensed phosphates in dry form is added and thoroughly mixed.
  • the mixture thus obtained is then compressed into a tablet of any suitable form, such as cylindrical, hexagonal, square, cylindrical with truncated faces, etc. Tablets prepared in this Way have a much higher rate of disintegration in water than equally strong tablets containing anhydrous condensed phosphates.
  • Example 1 A dry detergent composition was prepared by mixing the following components:
  • the disintegration time was determined as follows: A tablet of 50 grammes was placed in a transparent plastic cage perforated on all sides. The cage was moved up and down with a frequency of 90 times per minute in a bucket containing 15 litres of tap water at a temperature of 50 C. The tablet was observed and the time necessary for complete disintegration measured.
  • the following table gives the data thus obtained regarding the disintegration time of each of the tablets containing a specific penta-sodium tripolyphosphate in the anhydrous form as compared with the disintegration time of each of the tablets containing the specific penta-sodium tripolyphosphate in the completely hydrated form.
  • disintegration times measured for tablets containing anhydrous and completely hydrated STPP, respectively were 275 sec. and 130 sec., respectively. The difference between these disintegration times was reduced to nil in case the phosphate content was decreased to 9% by weight of the tablets; for both types of tablets the disintegration time then was 190 seconds.
  • Example 2 Two series of tablets were prepared based on a formula identical to that according to Example 1, with the exception that instead of penta-sodium tripolyphosphate tetra-sodium pyrophosphate (TSPP) was used. Two series of tablets were prepared, one containing anhydrous tetra- 20 sodium pyrophosphate and the other containing this phosphate in completely hydrated form, by compressing the dry detergent mixture until the tablets had a fracture strength of 6 kg. The disintegration times at 50 C. of these tablets were:
  • Tetra-sodium pyrophosphate ex ENCK. 600 80 This comparative experiment was repeated by using anhydrous TSPP and TSPP which had been hydrated for 60% respectively. This resulted in disintegration times of 600 sec. and 150 sec., respectively.
  • Example 3 The same method was applied as in Example 1, but this time a dry detergent mixture was made of the following composition:
  • Example 4 Two tablets were prepared from a detergent composition identical to that according to Example 1. Both tablets were made by compressing the dry detergent mixture until a fracture strength of 6.3 kg. was obtained. One tablet contained anhydrous penta-sodium tripolyphosphate, the other containing penta-sodium tripolyphosphate which had been hydrated for 60%. The following disintegration times were determined at 50 C.:
  • Penta-sodium tripolyphosphate ex ENCK 480 75 This table clearly shows the improvement obtained by using partially, i.e. for at least 60%, hydrated condensed phosphate.
  • Example 5 The following tables show the comparative disintegration times of tablets prepared according to Example 1, but with different fracture strengths.
  • the detergent composition was the same as in Example 1, but the mixture was compressed until tablets were obtained having a fracture strength of 4 and 8 kg., respectively.
  • Penta-sodium tri ol hos hate ex Marehon HPHK LHR 900 180 Penta-sodium tripolyphosphate ex ENCK 750 130 Penta-sodium tripolyphosphate ex Kuhl- Example 6
  • Two series of tablets were prepared based on a formula identical to that according to Example 1, with the exception that instead of STPP a mixture of STPP and TSPP was used.
  • Two series of tablets were prepared, one containing 42% by weight of a mixture of equal quantities of the phosphates in anhydrous form, and the other containing 42% by weight of a mixture of these phosphates, calculated on the anhydrous phosphates, each of which was in the completely hydrated form, by compressing the dry detergent mixture until the tablets had a fracture strength of 6 kg.
  • the disintegration times at 50 C. of these tablets were as follows:
  • a process for preparing a detergent tablet which comprises forming a dry, particulate detergent, said detergent being selected from the group consisting of an anionic detergent, nonionic detergent or mixtures thereof; forming separately a dry, particulate phosphate which has been hydrated between about and said phosphate being pentasodium tripolyphosphate, tetrasodium pyrophosphate or mixtures thereof; adding said phosphate to said detergent to obtain a mixture having a weight ratio of phosphate to detergent of about 2:1 to 25: 1; and compressing said dry mixture at a pressure suflicient to provide a detergent tablet which is strong and which disintegrates quickly when placed in water.
  • the detergent is an anionic detergent which is selected from the group consisting of an alkyl aryl sulphonate, an alkyl sulphate, a condensation product of a fatty acid with an isethionate and a condensation product of a fatty acid with methyl taurine.
  • the detergent is an nonionic detergent which is selected from the group consisting of a fatty alcohol condensed with ethylene oxide and an alkyl phenol condensed with ethylene oxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

United States Patent Ofitlce Patented Feb. 20, 1968 3,370,015 PROCESS FOR PREPARING DETERGENT CUB/[POSITIONS Daniel Marten van Kampen and Frederick Johan Kerkhoven, Vlaardingen, and Willem van der Star, Rotterdam, Netherlands, assignors to Lever Brothers Company, New York, N.Y., a corporation of Maine No Drawing. Filed Jan. 30, 1964, Ser. No. 341,419
9 Claims. (Cl. 252137) ABSTRACT OF THE DISCLOSURE This disclosure is concerned with forming a strong, fast-dissolving detergent tablet. In this disclosure, a hydrated condensed phosphate is added to a detergent prior to compression into a tablet.
Detergent tablets are already known, but the production of such tablets requires very special measures as regards selecting the components of the tablet and working up these components into the final detergent tablet. Consequently, the production of detergent tablets is a complex matter. It involves even more than the mere selection of the components or the compression of a particulate detergent composition into a tablet: the tablet must be capable of withstanding the shocks of packing, handling and distribution without crumbling. In other words, the tablet must be strong. Besides, the tablet must have a satisfactory rate of disintegration when put in water. The tablets known so far have generally shown too long a disintegration time, in favour of their strength, or they have had a very low strength, in favour of their disintegration time.
It is therefore the object of the present invention to provide detergent tablets which do not have the abovementioned disadvantages, but which on the contrary are strong and yet disintegrate quickly when put in water.
It is another object of the invention to provide a simple and cheap process for producing detergent tablets having the aforesaid highly desirable properties.
It has surprisingly been found that detergent tablets which are strong and yet disintegrate quickly in water can be. prepared by simply incorporating one or more partially or completely hydrated condensed phosphates in particulate form into a mixture of detergent components which is in the dry, particulate state, after which the particulate mass obtained is compressed into tablets.
Preferably, completely hydrated condensed phosphates are used, but good results are also obtained with partially hydrated condensed phosphates. It has even appeared to be possible to obtain satisfactory results by using partially hydrated condensed phosphates having a degree of hydration as low as 30%. However, when partially hydrated condensed phosphates are used, optimal results are achieved with condensed phosphates that have been bydrated for at least 60%.
The present invention must therefore be seen in that by using one or more partially (preferably for at least 60%) or completely hydrated condensed phosphates detergent tablets are obtained which are strong and yet disintegrate quickly in water.
Examples of such hydratable condensed phosphates are penta-sodium tripolyphosphate, which may form a hexahydrate, and tetra-sodium pyrophosphate, which may form a decahydrate. As already stated above, if partially hydrated condensed phosphates are used, they must preferably have been hydrated for at least 60%. This means that if penta-sodium tripolyphosphate is used, 60% of this salt should be in the hexahydrate form, and in the case of tetra-sodium pyrophosphate 60% of this salt should be in the decahydrate form. It is the very advantage of the process according to the present invention that in this way any commercially available hydratable condensed phosphate can be used for the preparation of satisfactory detergent tablets, Whereas according to the prior art satisfactory detergent tablets could only be obtained so far with very special and rather expensive condensed phosphates. These known phosphates are completely anhydrous, i.e. they contain less than 1% moisture.
According to the present invention the particulate state of the hydrated condensed phosphates does not in principle affect the favourable properties of the detergent tablet with respect to strength and disintegration time. Optimal results, however, are obtained by using fine phosphates. In that case the fineness of the phosphates is pref erably smaller than 200 The amount of hydrated condensed phosphates necessary for imparting the desired properties to the detergent tablets is empirically established. In general the tablet should have a content of hydrated condensed phosphates of at least 15% based on the total weight of the tablet; preferably this content should vary between 40-60% by Weight of the tablet.
The partially or completely hydrated condensed phosphates may be prepared in any conventional manner. A simply and highly satisfactory method is to spray the predetermined quantity of water by means of any suitable fine spray producing device onto the surface of a given bulk of an anhydrous commercially available hydratable condensed phosphate, while the latter is being kept in agitation in a mixture. The hydrated condensed phosphate may also be formed previously by spraying on the anhydrous salt an aqueous solution of a component of the detergent composition, such as e.g. the active detergent or a silicate. Care should of course be taken that the amount of water present in the solution is such that the resulting hydrate is in a dry, particulate state, which hydrate is then mixed with the bulk of the detergent composition, which is also in a dry, particulate state.
The detergent composition in particulate form, in which the partially or completely hydrated condensed phosphates are incorporated, may be of any kind commonly used in practice. They may contain in any suitable proportion one or more organic synthetic surface-active agents, such as anionics and/or nonionics- Also soaps may be used. They may further contain builders, fillers and normal adjuvant material, such as soil-suspending agents, perfumes, foaming agents, foam stabilizers, whiteners, etc., as well as bleaching agents. Examples of the anionics are alkylaryl sulphonates, alkyl sulphates, condensation products of fatty acids with isethionates or methyl taurine; examples of nonionics are fatty alcohols condensed with ethylene oxides, alkyl phenols condensed with ethylene oxide, etc. As builders may be used silicates and/or sodium salts of ethylene diamine tetraacetic acid. As a filler sodium sulphate may be chosen, while eg sodium perborate may be used as a bleaching agent.
The total amount of one or more active detergents present in the detergent tablet varies from 5 to 30% by weight and is preferably between about 15 and 25% by weight of the tablet.
The ratio between the amounts of phosphate or phosphates and active detergent or detergents is more or less critical in order to obtain detergent tablets that have both a satisfactory strength and a satisfactory disintegration time. If the weight ratio of phosphate or phosphates to active detergent or detergents lies within the range of about 2:1 to 25:1, tablets are obtained which fulfil the aforesaid conditions.
In general, on carrying out the process of the invention, the components of the detergent composition to be preparedi.e. without the phosphates-can be mixed in a dry state in any desired sequence and in such a way that a dry, particulate mass is obtained. To this mixture the required amount of one or more partially or completely hydrated condensed phosphates in dry form is added and thoroughly mixed. The mixture thus obtained is then compressed into a tablet of any suitable form, such as cylindrical, hexagonal, square, cylindrical with truncated faces, etc. Tablets prepared in this Way have a much higher rate of disintegration in water than equally strong tablets containing anhydrous condensed phosphates.
The invention will now be illustrated by means of the following examples:
Example 1 A dry detergent composition was prepared by mixing the following components:
Parts Sodium tetrapropylene benzene sulphonate 5 Nonyl phenol condensed with 11 moles ethylene oxide 2.5 Tallow fatty alcohol condensed with 50 moles ethylene oxide 1.5 Sodium soap (100%) 5 Sodium silicate (Na O:SiO =1:2) 8.7 Sodium sulphate anh. 16.8 Sodium carboxy methylcellulose (100%) 0.5 Brighteners 0.11 Perfume 0.08 Sodium perborate 10 58 parts of this composition were mixed with 42 parts of a specific commercially available anhydrous penta- 30 sodium tripolyphosphate and the mixture thus obtained was compressed into a tablet of cylindrical form with truncated faces having a diameter of 57 mm., a thickness of 24 mm. and a weight of 50 grammes. In this manner three types of tablets were prepared, each containing a commercial anhydrous penta-sodium tripolyphosphate (STPP) originating from a different manufacturer, viz. Marchon, E.N.C.K. and Kuhlmann, respectively.
In the same way and with the same detergent composition another series of three tablets was prepared, which 4 tablets were consequently identical to those mentioned before, except in that the tablets of this second series contained the commercial penta-sodium tripolyphosphate in the completely hydrated form. Each of the dry detergent mixtures was compressed to such an extent that the finally obtained tablets had a fracture strength of 6 kg. This fracture strength was determined in the following way: A tablet was placed on its edge on a plate resting on a scale graduated in kilogrammes. A top plate was gradually forced down onto the tablet until it broke, at which point the number of kilogrammes was read from the scale, this reading being a measure for the fracture strength of the tablets.
For each tablet the disintegration time was determined as follows: A tablet of 50 grammes Was placed in a transparent plastic cage perforated on all sides. The cage was moved up and down with a frequency of 90 times per minute in a bucket containing 15 litres of tap water at a temperature of 50 C. The tablet was observed and the time necessary for complete disintegration measured. The following table gives the data thus obtained regarding the disintegration time of each of the tablets containing a specific penta-sodium tripolyphosphate in the anhydrous form as compared with the disintegration time of each of the tablets containing the specific penta-sodium tripolyphosphate in the completely hydrated form.
[Disintegration times at 50 C. at a fracture strength of 6 kg.]
From this table it will be clearly seen that the use of hydrated condensed phosphates in detergent tablets considerably reduces the disintegration times of these tablets. The content of STPP ex-Kuhlmann in the tablets was 42% by weight. If this content was decreased to 19%, the
disintegration times measured for tablets containing anhydrous and completely hydrated STPP, respectively, were 275 sec. and 130 sec., respectively. The difference between these disintegration times was reduced to nil in case the phosphate content was decreased to 9% by weight of the tablets; for both types of tablets the disintegration time then was 190 seconds.
Example 2 Two series of tablets were prepared based on a formula identical to that according to Example 1, with the exception that instead of penta-sodium tripolyphosphate tetra-sodium pyrophosphate (TSPP) was used. Two series of tablets were prepared, one containing anhydrous tetra- 20 sodium pyrophosphate and the other containing this phosphate in completely hydrated form, by compressing the dry detergent mixture until the tablets had a fracture strength of 6 kg. The disintegration times at 50 C. of these tablets were:
Anhydrous Completely Tablet with- TSPP, sec. hydrated TSPP, sec.
Tetra-sodium pyrophosphate ex ENCK. 600 80 This comparative experiment was repeated by using anhydrous TSPP and TSPP which had been hydrated for 60% respectively. This resulted in disintegration times of 600 sec. and 150 sec., respectively.
Example 3 The same method was applied as in Example 1, but this time a dry detergent mixture was made of the following composition:
Parts Sodium tetra propylene benzene sulphonate (82% AD.) 19.5 Coconut ethanolamide 4.0 Sodium carboxy methylcellulose (60%) 1.67 Sodium silicate (Na O:SiO =l:2) spray-dried 7.5 Sodium perborate 8.0
Anhydrous Completely Tablets with- STPP, see. hydrated STPP, sec.
Penta-sodium tripolyphosphate ex Marchon 900 7O Penta-sodium tripolyphosphate ex ENCK 900 80 Petite-sodium tripolyphosphate ex Kuhlmann 900 50 Also this table clearly shows the considerable reduction in disintegration time obtained with hydrated condensed phosphates.
Example 4 Two tablets were prepared from a detergent composition identical to that according to Example 1. Both tablets were made by compressing the dry detergent mixture until a fracture strength of 6.3 kg. was obtained. One tablet contained anhydrous penta-sodium tripolyphosphate, the other containing penta-sodium tripolyphosphate which had been hydrated for 60%. The following disintegration times were determined at 50 C.:
Anhyd ous Completely Tablet with- STPP, sec. hydrated STPP, see.
Penta-sodium tripolyphosphate ex ENCK 480 75 This table clearly shows the improvement obtained by using partially, i.e. for at least 60%, hydrated condensed phosphate.
Example 5 The following tables show the comparative disintegration times of tablets prepared according to Example 1, but with different fracture strengths. The detergent composition was the same as in Example 1, but the mixture was compressed until tablets were obtained having a fracture strength of 4 and 8 kg., respectively.
[Disintegration times at 50 C. of 1gatilets having a fracture strength of8 g.
Anhydrous Completely Tablets with- STPP, see. hydrated STPP, sec.
Penta-sodium tri ol hos hate ex Marehon HPHK LHR 900 180 Penta-sodium tripolyphosphate ex ENCK 750 130 Penta-sodium tripolyphosphate ex Kuhl- Example 6 Two series of tablets were prepared based on a formula identical to that according to Example 1, with the exception that instead of STPP a mixture of STPP and TSPP was used. Two series of tablets were prepared, one containing 42% by weight of a mixture of equal quantities of the phosphates in anhydrous form, and the other containing 42% by weight of a mixture of these phosphates, calculated on the anhydrous phosphates, each of which was in the completely hydrated form, by compressing the dry detergent mixture until the tablets had a fracture strength of 6 kg. The disintegration times at 50 C. of these tablets were as follows:
What is claimed is:
1. A process for preparing a detergent tablet which comprises forming a dry, particulate detergent, said detergent being selected from the group consisting of an anionic detergent, nonionic detergent or mixtures thereof; forming separately a dry, particulate phosphate which has been hydrated between about and said phosphate being pentasodium tripolyphosphate, tetrasodium pyrophosphate or mixtures thereof; adding said phosphate to said detergent to obtain a mixture having a weight ratio of phosphate to detergent of about 2:1 to 25: 1; and compressing said dry mixture at a pressure suflicient to provide a detergent tablet which is strong and which disintegrates quickly when placed in water.
2. The process according to claim 1 in which the detergent is an anionic detergent which is selected from the group consisting of an alkyl aryl sulphonate, an alkyl sulphate, a condensation product of a fatty acid with an isethionate and a condensation product of a fatty acid with methyl taurine.
3. The process according to claim 1 in which the detergent is an nonionic detergent which is selected from the group consisting of a fatty alcohol condensed with ethylene oxide and an alkyl phenol condensed with ethylene oxide.
4. The process according to claim 1 in which the dry phosphate has been partially hydrated to about 60%.
5. The process according to claim 1 in which the dry phosphate has been completely hydrated.
6. The process according to claim 1 in which the amount of phosphate is about 15% to 60% and the amount of detergent is about 5% to 30% by weight of the tablet.
7. The process according to claim 1 in which the dry admixture is compressed at a pressure sufficient to provide a fracture strength between about 4 and 8 kg. in the detergent tablet without further hydration.
8. The process according to claim 1 in which the phosphate is pentasodium tripolyphosphate.
9. The process according to claim 1 in which the phosphate is tetrasodium pyrophosphate.
References Cited UNITED STATES PATENTS 2,875,155 2/1959 Miles 252138 3,081,267 3/1963 Laskey 252- 3,172,859 3/1965 Percival et al. 252137 3,240,712 3/1966 Schulerud et al 252138 3,247,122 4/1966 Schaafsma et al. 252138 3,247,123 4/1966 Schrager et al. 252135 LEON D. ROSDOL, Primary Examiner.
A. T. MEYERS, B. BETTIS, Assistant Examiners.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,370,015 February 20, 1968 Daniel Marten Van Kampen et a1.
It is hereby certified that error appears in the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.
Column 5, line 3, for "Completely" read Partially line 54, for "wlth" read with Signed and sealed this 20th day of May 1969.
Edward M. Fletcher, Jr.
Attesting Officer Commissioner of Patents
US341419A 1964-01-30 1964-01-30 Process for preparing detergent compositions Expired - Lifetime US3370015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US341419A US3370015A (en) 1964-01-30 1964-01-30 Process for preparing detergent compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US341419A US3370015A (en) 1964-01-30 1964-01-30 Process for preparing detergent compositions

Publications (1)

Publication Number Publication Date
US3370015A true US3370015A (en) 1968-02-20

Family

ID=23337481

Family Applications (1)

Application Number Title Priority Date Filing Date
US341419A Expired - Lifetime US3370015A (en) 1964-01-30 1964-01-30 Process for preparing detergent compositions

Country Status (1)

Country Link
US (1) US3370015A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503889A (en) * 1965-03-09 1970-03-31 Procter & Gamble Detergent tablets
US5158629A (en) * 1989-08-23 1992-10-27 Rem Chemicals, Inc. Reducing surface roughness of metallic objects and burnishing liquid used
US5552079A (en) * 1993-09-13 1996-09-03 Diversey Corporation Tableted detergent, method of manufacture and use
WO1996028530A1 (en) * 1995-03-11 1996-09-19 The Procter & Gamble Company Detergent compositions in tablet form
US5571287A (en) * 1993-01-11 1996-11-05 Colgate-Palmolive Company Soap composition containing sodium pyrophosphate
WO1998055582A1 (en) * 1997-06-06 1998-12-10 Unilever Plc Cleaning compositions in tablet form
WO1999041353A1 (en) * 1998-02-10 1999-08-19 Unilever Plc Tablet detergent compositions
US6083895A (en) * 1995-03-11 2000-07-04 The Procter & Gamble Company Detergent compositions in tablet form
US6274538B1 (en) * 1997-11-10 2001-08-14 The Procter & Gamble Company Detergent compositions
US6472362B1 (en) * 1997-10-22 2002-10-29 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Detergent compositions in tablet form
US6506720B1 (en) 1997-03-13 2003-01-14 Henkel Kommanditgesellschaft Auf Aktien Process for preparing household detergent or cleaner shapes
US6730653B1 (en) * 2000-06-01 2004-05-04 Ecolab Inc. Method for manufacturing a molded detergent composition
US7008912B1 (en) 1997-03-11 2006-03-07 Henkel Kgaa Pressed piece which disintegrates in liquids
US7037886B2 (en) 2000-06-01 2006-05-02 Ecolab Inc. Method for manufacturing a molded detergent composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2875155A (en) * 1954-12-09 1959-02-24 Colgate Palmolive Co Detergent briquette and process for the production thereof
US3081267A (en) * 1959-12-31 1963-03-12 Procter & Gamble Detergent tablet and process for making same
US3172859A (en) * 1965-03-09 Betergent briquette
US3240712A (en) * 1960-11-07 1966-03-15 Colgate Palmolive Co Process for manufacturing a detergent briquette
US3247123A (en) * 1962-07-30 1966-04-19 Colgate Palmolive Co Manufacture of detergent tablets

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172859A (en) * 1965-03-09 Betergent briquette
US2875155A (en) * 1954-12-09 1959-02-24 Colgate Palmolive Co Detergent briquette and process for the production thereof
US3081267A (en) * 1959-12-31 1963-03-12 Procter & Gamble Detergent tablet and process for making same
US3240712A (en) * 1960-11-07 1966-03-15 Colgate Palmolive Co Process for manufacturing a detergent briquette
US3247123A (en) * 1962-07-30 1966-04-19 Colgate Palmolive Co Manufacture of detergent tablets
US3247122A (en) * 1962-07-30 1966-04-19 Colgate Palmolive Co Detergent tablet and process of preparing same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503889A (en) * 1965-03-09 1970-03-31 Procter & Gamble Detergent tablets
US5158629A (en) * 1989-08-23 1992-10-27 Rem Chemicals, Inc. Reducing surface roughness of metallic objects and burnishing liquid used
US5571287A (en) * 1993-01-11 1996-11-05 Colgate-Palmolive Company Soap composition containing sodium pyrophosphate
US5552079A (en) * 1993-09-13 1996-09-03 Diversey Corporation Tableted detergent, method of manufacture and use
WO1996028530A1 (en) * 1995-03-11 1996-09-19 The Procter & Gamble Company Detergent compositions in tablet form
US6083895A (en) * 1995-03-11 2000-07-04 The Procter & Gamble Company Detergent compositions in tablet form
US7008912B1 (en) 1997-03-11 2006-03-07 Henkel Kgaa Pressed piece which disintegrates in liquids
US6506720B1 (en) 1997-03-13 2003-01-14 Henkel Kommanditgesellschaft Auf Aktien Process for preparing household detergent or cleaner shapes
USRE39139E1 (en) * 1997-03-13 2006-06-20 Henkel Kgaa Process for preparing household detergent or cleaner shapes
WO1998055582A1 (en) * 1997-06-06 1998-12-10 Unilever Plc Cleaning compositions in tablet form
US6372707B1 (en) 1997-06-06 2002-04-16 Lever Brothers Company, Division Of Conopco, Inc. Cleaning compositions
US6472362B1 (en) * 1997-10-22 2002-10-29 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Detergent compositions in tablet form
US20030069162A1 (en) * 1997-10-22 2003-04-10 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Detergent compositions
US6274538B1 (en) * 1997-11-10 2001-08-14 The Procter & Gamble Company Detergent compositions
US6534473B1 (en) 1998-02-10 2003-03-18 Unilever Patent Holdings Bv Process for the manufacture of tablet detergent compositions
WO1999041353A1 (en) * 1998-02-10 1999-08-19 Unilever Plc Tablet detergent compositions
US6730653B1 (en) * 2000-06-01 2004-05-04 Ecolab Inc. Method for manufacturing a molded detergent composition
US20040204335A1 (en) * 2000-06-01 2004-10-14 Ecolab Inc. Molded detergent composition and methods for manufacturing and using a molded detergent composition
US7037886B2 (en) 2000-06-01 2006-05-02 Ecolab Inc. Method for manufacturing a molded detergent composition
US20060128593A1 (en) * 2000-06-01 2006-06-15 Ecolab Inc. Molded detergent composition and methods for manufacturing and using a molded detergent composition
US20090069211A1 (en) * 2000-06-01 2009-03-12 Ecolab Inc. Molded detergent composition
US7674763B2 (en) 2000-06-01 2010-03-09 Ecolab Inc. Method for manufacturing a molded detergent composition
US20100144578A1 (en) * 2000-06-01 2010-06-10 Ecolab Inc. Method for washing an article using a molded detergent composition

Similar Documents

Publication Publication Date Title
US3370015A (en) Process for preparing detergent compositions
US4913832A (en) Detergent compacts
TW438885B (en) Solid block detergent composition and method of manufacturing thereof
US3081267A (en) Detergent tablet and process for making same
US4265790A (en) Method of preparing a dry blended laundry detergent containing coarse granular silicate particles
EP0061296B1 (en) Process for the manufacture of detergent compositions containing sodium aluminosilicate
JP2520065B2 (en) Silicate composition
US3417024A (en) Treated phosphates
CA1140829A (en) Production of detergent compositions
JPS6126698A (en) Manufacture of bulky powdery detergent composition
JPH04227700A (en) High bulk density granulated detergent composition and method for preparation thereof
US3331780A (en) Detergent tablets and method of producing same
US3361675A (en) Dry-mixed detergent compositions
US3461074A (en) Detergent compositions
EP0002293A1 (en) Detergent tablet having a hydrated salt coating and process for preparing the tablet
JPS62242000A (en) Powdery detergent and its production
EP0451893B1 (en) Particulate bleaching detergent composition
US3329615A (en) Tableted detergent and detergentbleach compositions comprising alkyl orthophosphate salts
US3620979A (en) Process of forming free-flowing, particulate mixtures of phosphates and silicates
GB1259027A (en)
US3407144A (en) Detergent composition
US3454499A (en) Process for preparing a crystalline uniformly sized granular detergent composition
US3367876A (en) Process for producing cleaning tablets
EP0150613B1 (en) Detergent compositions
EP2870229B1 (en) Process for the production of a detergent granule, detergent granule and detergent composition comprising said granule