US3369892A - Heat-treatable nickel-containing refractory carbide tool steel - Google Patents

Heat-treatable nickel-containing refractory carbide tool steel Download PDF

Info

Publication number
US3369892A
US3369892A US481416A US48141665A US3369892A US 3369892 A US3369892 A US 3369892A US 481416 A US481416 A US 481416A US 48141665 A US48141665 A US 48141665A US 3369892 A US3369892 A US 3369892A
Authority
US
United States
Prior art keywords
matrix
titanium
carbide
steel
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US481416A
Other languages
English (en)
Inventor
John L Ellis
Stuart E Tarkan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alloy Technology International Inc
Original Assignee
Chromalloy American Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chromalloy American Corp filed Critical Chromalloy American Corp
Priority to US481416A priority Critical patent/US3369892A/en
Priority to US481386A priority patent/US3369891A/en
Priority to GB31392/66A priority patent/GB1094829A/en
Priority to DEC39812A priority patent/DE1298293B/de
Priority to CH1136966A priority patent/CH465242A/fr
Priority to FR72922A priority patent/FR1489454A/fr
Priority to SE6611130A priority patent/SE370959B/xx
Application granted granted Critical
Publication of US3369892A publication Critical patent/US3369892A/en
Assigned to ALLOY TECHNOLOGY INTERNATIONAL, INC. reassignment ALLOY TECHNOLOGY INTERNATIONAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CHROMALLOY AMERICAN CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder

Definitions

  • a refractory carbide tool steel comprising about 20 to 80% by volume of a carbide selected from the group consisting of VC, CbC and TaC distributed through a low carbon alloy steel matrix making up substantially the balance, the matrix being being characterized in the solution annealed state by a microstructure of soft martensite containing at least one age hardening element when air cooled from an austenitizing temperature.
  • the matrix may contained by weight about 10 to 30% nickel, about 0.2 to 9% titanium, up to about 5% aluminum, the sum of the titanium and aluminum not exceeding about 9%, up to about 25% cobalt, up to about 10% molybdenum, substantially the balance of the matrix being at least 50% iron.
  • This invention relates to a nickel-containing refractory carbide tool steel and, in particular, to a nickel-containing refractory carbide tool steel bar stock capable of being precision machined into desired shapes in the marten sitic condition and of being thereafter heat treated to high hardness while maintaining close dimensional tolerances.
  • a tool steel comprising titanium carbide
  • the amount of titanium employed is at least 10% of the total composition, the titanium being in the form of a primary titanium carbide.
  • the titanium carbide is uniformly distributed through a heat treatable ferrous matrix comprising either carbon steel, or carbon-containing medium alloy or high alloy steel.
  • the composition is formed by employing titanium and carbon together in a combined form as titanium carbide as an alloying ingredient together with a steel matrix utilizing powder metallurgy methods of fabrication.
  • the steel employed in forming the matrix contains iron as the major allowing element which generally comprises at least about 60% by weight of the steel matrix composition.
  • the amount of titanium may range from about 10% to 70% by weight (about to 90% by volumn of titanium carbide or 12.5% to 87% by weight) and preferably about 20% to 58% by weight of titanium (about 40% to 80% by volume of titanium carbide or to 75% by weight), substantially the balance being formed of a carbon-containing steel matrix.
  • Another tool steel of the foregoing type is one conl taining at least one refractory carbide selected from the group consisting of VC, CbC and TaC, with the balance formed substantially of a carbon-containing steel matrix, for example a steel matrix constituting about 25% to 75%, or preferably to 60%, by weight of the total composition.
  • a sintered product is first fabricated which is annealed by furnace cooling from about 1300 C. to room temperature, the microstructure of the matrix metal generally comprising pearlite.
  • the annealed product is then machined into the desired shape by turning and/or grinding, and then subjected to a hardening heat treatment by austenitizing the "ice annealed tool steel at a temperature of about 950 C. for about one-quarter of an hour followed by quenching in oil or water. Hardnesses of up to about 70 Rockwell C are obtained for such titanium carbide tool steels. This class of materials has found commercial acceptance as specialty steels.
  • a sill further problem is the additional finish grinding which is sometimes required when the matrix of a heat treated titanium carbide steel has decarburized during heat treatment. While the decarburized matrix is generally softer, the presence of primary grains of refractory carbide makes grinding diflicult. Moreover the hardness of the decarburized matrix is adversely affected. To avoid this, strict percautions must be taken via atmosphere control to prevent decarburization.
  • Another object is to provide a new and improved refractory carbide tool steel capable of being hardened without quenching in oil, water or other liquid media.
  • a further object is to provide as an article of manufacture a tool steel bar stock containing substantially large amounts of a carbide selected from the group consisting of VC, CbC and TaC distributed as primary carbide grains through a nickel-containing steel matrix having an age hardenable martensitic microstructure.
  • a primary carbide one or more of the refractory carbides selected from the group consisting of VC, CbC and TaC.
  • primary carbide is meant the refractory carbide which is added to the composition as such and which is substantially insoluble in the matrix, whereby it is still recognizable under the microscope after the composition is subjected to fabrication and to normal steel heat treating practice.
  • the nickel-containing carbidic tool steel comprises by volume about 20% to 80% of primary carbide grains based on a carbide selected from the group consisting of VC, CbC and TaC distributed through a nickel-containing steel matrix making up substantially the balance, the matrix containing by weight of steel matrix about 10% to 30% nickel, about 0.2% to 9% titanium and up to about 5% aluminum, the sum of the titanium and aluminum content not exceeding about 9%, up to about 25% cobalt, up to about 10% molybdenum, with substantially the balance of the matrix by weight being at least 50% iron.
  • the elements making up the matrix composition are proportioned such that when the nickel content ranges from about 10% to 22% and the sum of titanium and aluminum is less than about 1.5% or less than about 1.3%, the cobalt and molybdenum contents are each at least about 2% by weight; and such that when the nickel content ranges from about 18% to 30% and the molybdenum content is less than about 2%, the sum of titanium and aluminum in the matrix exceeds about 1.5%.
  • a composition range which is particularly advantageous for our purpose is one comprising about 20% to 80% or 30% to 70% by volume of primary carbide grains based on a carbide selected from said group distributed through a matrix making up the balance containing by weight of the matrix about 18% to 30% nickel, about 1.5% to 9% of titanium, up to about 5% aluminum, the sum of titanium and aluminum not exceeding about 9%, substantially the balance of the matrix alloy being at least about 50% iron by weight.
  • Other metals which may advantageously be present include up to about 20% cobalt, up to about 2% molybdenum and chromium total with substantially the balance of the matrix being at least 50% iron.
  • a composition which is advantageous for our purpose comprises 24% to 30% nickel, 1.5% to 9% titanium and/or aluminum, the total titanium and aluminum not exceeding 9%, and low carbon in the matrix, for example below 0.15 carbon and more advantageously below 0.1 carbon.
  • the titanium and/or aluminum content may range from about 5% to 9% by weight total.
  • composition range which is advantageous for our purpose is one comprising about 20% to 80% or 30% to 70% by volume of said primary carbide grains distributed through a nickel alloy steel matrix constituting the balance, the matrix containing by weight about 18% to 24% nickel, about 1.5% to 3% of a metal from the group titanium and aluminum, low carbon, e.g., not exceeding 0.1% C, and the balance of the matrix substantially iron.
  • a still further composition range which is advantageous for our purpose is one comprising about 20% to 80% or 30% to 70% by volume of said primary carbide grains distributed through a low carbon nickel alloy steel matrix containing by weight of the matrix about 10% to 22% nickel, about 0.2% to 1.5% of titanium, up to about 1.5% aluminum, with the sum of titanium and aluminum contents less than 1.5%, about 2% to 10% cobalt, about 2% to 8% molybdenum and the balance of the matrix substantially iron of at least about 50% by weight, the carbon content being maintained below 0.15% and more advantageously not exceeding 0.1%.
  • a matrix composition which is particularly advantageous when employed with the primary carbide over the foregoing ranges is one comprising about 16% to 22% nickel, about 6% to 10% cobalt and about 2% to 6% of molybdenum, about 0.2% to 1% titanium, up to about 0.4% aluminum and the balance of the matrix substantially iron of at least about 50% by weight.
  • the foregoing compositions may contain up to 10% in the aggregate of up to about 5% Cr, up to about 7% W, up to about 3% Cb and/or Ta, up to about 6 Cu, up to about 0.5% Mn, up to about 1% Be, etc.
  • the resulting carbidic composition can be solution treated at an elevated temperature and air cooled to form a soft martensitic matrix having attributes that enable the resulting product to be easily machined and/ or ground to substantially precise dimensions prior to hardening.
  • the hardening treatment employed after the solution treatment is unlike the high temperature austenitizing quenching treatment in that relatively low temperatures are employed while the matrix is in the martensitic condition, followed by air cooling.
  • the heat treatment is in nature of an agehardening treatment due to the presence of age hardening elements, which heat treatment is carried out at a temperature in the range of about 265 C. to 655 C. (about 500 F. to 1200 F.).
  • Example 1 A heat treatable carbidic tool steel containing columbiurn carbide and a matrix of a nickel-containing alloy steel was produced with the following composition: Primary carbide about 45 vol. percent Cbc Matrix steel about 55 vol. percent Nickelcontaining steel.
  • the matrix had the following composition by Weight:
  • the balance iron includes small amounts of other ingredients which do not adversely affect the novel characteristics of the alloy.
  • the carbidic tool steel composition In producing the carbidic tool steel composition, about 800 grams of CbC powder is mixed with 1,000 grams of powdered steel-forming ingredients corresponding to the aforementioned matrix metal composition.
  • the CbC powder has a total carbon content of about 11.4% which corresponds to a total of about 5% carbon in 1,800 grams of powder mixture. It is desirable for optimum results that the carbon content of the matrix metal not exceed 0.15% by weight of matrix and more advantageously not exceed about 0.1%.
  • a strong carbide former other than Mo and Cr, and which is substantially insoluble in the matrix as the carbide, such as excess metallic titanium or other strong car-bide former is advantageously added to the mixture to combine with any excess free carbon to form a secondary carbide of titanium by reaction. This is achieved by adding the titanium in the form of TiH which yields active titanium for combining with free carbon.
  • Another strong carbide former wihch may be added is zirconium in the form of zirconium hydride.
  • the amount of titanium added is calculated to be at least 4 times the amount of free carbon to be combined as TiC plus excess titanium to leave about 0.2% to 0.4% free titanium to each matrix metal.
  • Examples of other strong carbide formers which form substantially insoluble carbides are V, Cb, Ta, etc.
  • suflicient TiH by weight of the mixture is added to yield enough active free titanium to combine with the free carbon to form a secondary carbide of titanium and provide an excess of free titanium (about 0.2% to 0.4%) for the matrix metal.
  • the compacts thus produced are subjected to liquid phase sintering by heating'them to about 1425 C. in vacuum in 2 /2 hours and holding at temperature for three-quarters of an hour, followed by cooling to 1300 C. in 30 minutes and then furnace cooling from 1300 C. to room temperature.
  • the sintering is advantageously carried out on a ceramic plate of previously fired Magnorite (a commercial MgO refractory).
  • the sintered alloy is solution annealed by heating to a temperature at which austenite prevails, for example, from about 760 C. (1400 F.) to 1165 C. (2150 F.) followed by air cooling. After heating the alloy at 815 C. (-1500" F.) for thirty minutes and air cooling to ambient temperature, it has a Rockwell C hardness not exceeding about 50, the microstructure of the matrix being soft martensite. In this condition, the alloy machines and/or I grinds easily to a precisely dimensioned shape. By cooling the alloy to ambient temperature in air from the solution temperature, transformation to soft martensite is effected. Thus, any growth that has ocurred due to transformation to soft martensite presents no problems since the carbidic alloy can be easily machined and hardened without any further growth taking place.
  • the alloy is hardened to values of 60 R and above by aging it at a temperature in the range of about 260 C. (500 F.) to 650 C. (1200 F.) for about three hours followed by air cooling.
  • the advantage of the hardening heat treatment at the lower temperature .(e.g., 260 C. to 650 C.) is that substantially close dimensional tolerance can be maintained with intricate shapes and cracking greatly inhibited.
  • the amount of carbon in the nickel-containing steel matrix be maintained as low as possible, for example, below 0.15% by weight of the matrix.
  • TiH was omitted from the mixture as a result of which the as-sintered hardness was 57.8 R and the solution hardness after cooling from 1500 C. was 61.5 R Because the free carbon was not combined with the refractory metal, the solution hardness rose substantially above 50 R and was as high as 61.5 R
  • Example 2 Primary carbide: about 30 vol. percent of CbC.
  • .Matrix steel about 70 vol. percent nickel-containing steel.
  • the nominal composition of the matrix by weight is as follows:
  • the amount of CbC present also includes with it some excess titanium added to combine with any free carbon present and prevent it from entering the matrix metal.
  • Example 3 Primary carbide: about 65 vol. percent VC. 3 Matrix steel: about 35 vol. percent nickel-containing steel.
  • Example 4 Primary carbide: about 25 vol. percent TaC.
  • Matrix steel about 75 vol. percent nickel-containing steel.
  • the nominal composition of the matrix steel by weight is as follows:
  • Example 5 Primary carbide: about 40 vol. percent CbC.
  • Matrix steel about 60 vol. percent of nickel-containing steel.
  • the nominal composition of the matrix by weight is as follows:
  • Example 6 Primary carbide: about 75 vol. percent CbC.
  • Matrix steel about 25 vol. percent nickel-containing steel.
  • Example 7 Primary carbide: about 50 vol. percent TaC.
  • Matrix steel about 50 vol. percent nickel-containing steel.
  • balanc Free carbon in the system is combined with titanium by adding Til-I to the powder mixture prior to sintering.
  • the iron given as the balance in the foregoing examples does not exclude the presence of amounts of other ingredients which do not adversely affect the novel characteristics of the carbide steel and small amounts of such other ingredients such as calcium, boron, zirconium as well as manganese and silicon and the like.
  • the powder metallurgy method of mixing the powdered ingredients and then compacting the mixture into a desired shape followed by liquid phase or solid state sintering at an elevated temperature to achieve full densification comprises mixing the appropriate amount of steel-forming ingredients with the appropriate amount of the primary carbide, using a small amount of wax to give sufficient green strength to the resulting pressed compact, for example one gram of wax for each 100 grams of mixture.
  • the mixture may be shaped a variety of ways. We find it advantageous to press the mixture to a density at least 50% of true density by pressing over the range of about t.s.i. to 75 t.s.i., preferably t.s.i.
  • the product is allowed to furnace cool to ambient temperature. If necessary, the as-sintered product is subjected to any mechanical cleaning and then solution treated over the range of about 760 C. (1400 F.) to 1165 C. (2150 F.) followed by air cooling. We have found the range of 760 C. (1400 F.) to 982 C. (1800 F.) to be particularly advantageous,
  • the solution treatment may be carried out at a temperature for one-quarter hour or longer, for example, one hour.
  • ingredients which may be present in the matrix metal besides the main constituents include up to about 1% Mn, up to about 0.5% Si, up to about 0.1% Ca, up to about 0.1% B, up to about 0.1% Zr, etc.
  • Other alloying ingredients which may be present in the matrix steel in amounts which do not adversely affect the novel characteristics of the carbidic tool steel are Cr, Cu, W, V and Cb, among others.
  • carbides in addition to the primary carbides, VC, CbC and TaC, other carbides may be present, in amounts which do not adversely affect the tool steel, such as up to about 25% zirconium carbide and the like, provided they are substantially insoluble in the matrix.
  • the invention provides a carbidic tool steel comprising about to 80% or 30% to 70% by volume of primary carbide grains comprising essentially the primary carbide distributed through a relatively low carbon alloy steel matrix making a substantially the balance, the matrix being characterized on slow cooling from its austenitizing temperature by a microstructure comprising substantially martensite in the relatively soft condition containing at least one age hardening element.
  • the foregoing composition despite the presence of substantial amounts of primary carbide, is advantageous in that after it is sintered, it can be solution treated by air cooling from a high temperature (i.e., the austenitizing temperature) to form a matrix of relatively soft martensite.
  • an article of this com position may then be precision machined to any shape, however intricate, and then hardened at a relatively low temperature without any substantial amount of warping, cracking, or volumetric change occurring.
  • a carbidic tool steel having a quench-hardenable steel matrix generally requires re-finishing after hardening due to volumetric growth, warping, etc.
  • Another advantage of the composition of the invention is that decarburization is not a problem since the matrix does not rely on the presence of carbon to achieve the requisite hardening. Thus, the usual precaution of strict atmosphere control during heat treatment is not necessary.
  • the invention provides a carbidic heat treatable ferrous alloy which in the form of bar stock, rounds, squares, blocks, ingots and other shapes can be utilized in the fabrication of cutting tools, blanking dies, forming dies, drawing dies, rolls, hot extrusion dies, forging dies, upsetting dies, broaching tools, and in general all types of wear and/or heat resisting elements, tools or machine parts.
  • a hardenable refractory carbide tool steel comprising about 20% to by volume of primary carbide grains comprising essentially a carbide selected from the group consisting of VC, CbC and TaC distributed through a low carbon alloy steel matrix making up substantially the balance, the matrix being characterized in the solution annealed state by a microstructure of soft martensite containing at least one age hardening element.
  • a heat treatable carbidic tool steel comprising about 20% to 80% by volume of primary carbide grains based on a carbide selected from the group consisting of VC, CbC and TaC distributed through a matrix of a high nickel alloy steel constituting the balance; said matrix nickel alloy steel containing by weight of matrix about 10 to 30% nickel, about 0.2 to 9% of titanium and up to about 5% aluminum, the sum of titanium and aluminum not exceeding about 9%, up to about 25% cobalt, up to about 10% molybdenum, substantially the balance of the matrix being at least 50% iron; the metals making up the matrix composition being proportioned such that when the nickel content ranges from about 10% to 22% and the sum of aluminum and titanium is less than about 1.5%, the cobalt and molybdenum contents are each at least about 2% by weight; and such that when the nickel content ranges from about 18% to 30% and the molybdenum content is less than 2%, the sum of aluminum and titanium exceeds 1.5%, said matrix being also characterized in the solution treated condition by a micro
  • a heat treatable carbidic tool steel comprising about 30% to 70% by volume of primary carbide grains based on a carbide selected from the group consisting of'VC, CbC and TaC distributed through a matrix of a high nickel alloy steel constituting the balance; said matrix nickel alloy steel containing by weight of matrix about 10 to 30% nickel, about 0.2 to 9% of titanium and up to about aluminum, the sum of titanium and aluminum not exceeding about 9%, up to about 25 cobalt, up to about 10% molybdenum, substantially the balance of the matrix being at least 50% iron, an efiective amount of a strong carbide former at least sufiicient to combine with carbon in excess of the carbon combined as primary carbide selected from the group consisting of canadium, columbium, tantalum, zirconium and titanium, the titanium of said group being that amount in addition to the titanium employed in producing the nickel alloy steel matrix; the metals making up the matrix composition being proportioned such that when the nickel content ranges from about 10% to 22% and the sum of aluminum and titanium is less than
  • a heat treatable carbidic tool steel comprising about 20% to 80% by volume of primary carbide grains based on a carbide selected from the group consisting of VC, CbC and TaC distributed through a matrix of a high nickel alloy steel constituting the balance; said matrix nickel alloy steel containing by weight of matrix about 10 to 22% nickel, about 0.2 to 1.5% of titanium, up to about 1.5 aluminum, the sum of titanium and aluminum not exceeding about 1.5 about 2% to 10% cobalt, about 2% to 8% molybdenum, an effective amount of a strong carbide former at least sutficient to combine with carbon in excess of the carbon combined as primary carbide selected from the group consisting of vanadium, columbium, tantalum, zirconium and titanium, the titanium of said group being that amount in addition to the titanium employed in producing the nickel alloy steel matrix, substantially the balance of the matrix being at least 50% iron, and matrix being also characterized in the solution treated condition by a microstructure of soft martensite.
  • a heat treatable carbidic tool steel comprising about 30% to 70% by volume of primary carbide grains based on a carbide selected from the group consisting of VC, CbC and TaC distributed through a matrix of a high nickel alloy steel constituting the balance; said matrix nickel alloy steel containing by Weight of matrix about 16% to 22% nickel, about 0.2% to 1% titanium, up to about 0.4% aluminum, about 6% to 10% cobalt, about 2% to 6% molybdenum, the amount of titanium present being at least sufiicient to combine with carbon in excess of the carbon combined as primary carbide and provide age hardening, substantially the balance of the matrix being at least 50% iron, said matrix being also characterized in the solution-treated condition by a microstructure of soft martensite.
  • a heat treatable high carbon high titanium tool steel comprising about 20% to 80% by volume of primary carbide grains based on a carbide selected from the group consisting of VC, CbC and TaC distributed through a matrix of a high nickel alloy steel constituting the balance; said matrix nickel alloy steel containing by weight of matrix about 18 to 30% nickel, about 1.5% to 9% of a metal selected from the group consisting of titanium and aluminum, up to about 20% cobalt, less than about 2% of molybdenum, and an etfective amount of a strong carbide former at least sufiicient to combine with carbon present in excess of the carbon combined as primary carbide selected from the group consisting of vanadium, columbium, tantalum, zirconium and titanium, the titaniumpf said group being that amount in addition to the titanium employed in producing the nickel alloy steel matrix, substantially the balance of the matrix being at least 50% iron, said matrix being also characterized in the solution treated condition by a microstructure of soft martensite.
  • a heat treatable high carbon tool steel comprising about 20% to 80% by volume of primary carbide grains based on a carbide selected from the group consisting of VC, CbC and TaC distributed through a matrix of a high nickel alloy steel constituting the balance; said matrix nickel alloy steel containing by weight of matrix about 18 to 24% nickel, about 1.5% to 3% of a metal selected from the group consisting of titanium and aluminum, and an effective amount of a strong carbide former at least sufiicient to combine with carbon in excess of the carbon combined as primary carbide selected from the group consisting of vanadium, columbium, tantalum, zirconium and titanium, the titanium of said group being that amount in addition to the titanium employed in producing the nickel alloy steel matrix, substantially the balance of the matrix being at least 50% iron.
  • a method of producing a machinable refractory carbide tool steel which comprises providing a compact produced by compressing a powder mixture containing about 20% to 80% by volumeof primary carbide grains based on a carbide selected from the group consisting of VC, CbC and TaC dispersed through a matrix powder of nickel-containing steel-forming ingredients constituting the balance, said matrix powder containing by weight of matrix about 10 to 30% nickel, about 0.2 to 9% of titanium and up to about 5% aluminum, the sum of the titanium and aluminum not exceeding 9%, up to about 25% cobalt, up to 10% molybdenum, a strong carbide former in an amount at least sufiicient to combine with any carbon in excess of the carbon combined as primary carbide selected from the group consisting of vanadium, columbium, tantalum, Zirconium and titanium, the titanium of said group being that amount in addition to the titanium employed in producing the nickel alloy steel matrix, substantially the balance of the matrix being at least 50% iron; the metals making up the matrix composition being proportioned such

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
US481416A 1965-08-20 1965-08-20 Heat-treatable nickel-containing refractory carbide tool steel Expired - Lifetime US3369892A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US481416A US3369892A (en) 1965-08-20 1965-08-20 Heat-treatable nickel-containing refractory carbide tool steel
US481386A US3369891A (en) 1965-08-20 1965-08-20 Heat-treatable nickel-containing refractory carbide tool steel
GB31392/66A GB1094829A (en) 1965-08-20 1966-07-13 Improvements in or relating to tool steel
DEC39812A DE1298293B (de) 1965-08-20 1966-08-04 Hochverschleissfeste, bearbeitbare und haertbare Sinterstahllegierung und Verfahren zu deren Herstellung
CH1136966A CH465242A (fr) 1965-08-20 1966-08-08 Acier à outil au carbure réfractaire et procédé de préparation d'un tel acier
FR72922A FR1489454A (fr) 1965-08-20 1966-08-12 Acier à outil à carbure réfractaire durcissable et procédé de préparation d'un tel acier
SE6611130A SE370959B (es) 1965-08-20 1966-08-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US481416A US3369892A (en) 1965-08-20 1965-08-20 Heat-treatable nickel-containing refractory carbide tool steel
US481386A US3369891A (en) 1965-08-20 1965-08-20 Heat-treatable nickel-containing refractory carbide tool steel

Publications (1)

Publication Number Publication Date
US3369892A true US3369892A (en) 1968-02-20

Family

ID=27046939

Family Applications (2)

Application Number Title Priority Date Filing Date
US481416A Expired - Lifetime US3369892A (en) 1965-08-20 1965-08-20 Heat-treatable nickel-containing refractory carbide tool steel
US481386A Expired - Lifetime US3369891A (en) 1965-08-20 1965-08-20 Heat-treatable nickel-containing refractory carbide tool steel

Family Applications After (1)

Application Number Title Priority Date Filing Date
US481386A Expired - Lifetime US3369891A (en) 1965-08-20 1965-08-20 Heat-treatable nickel-containing refractory carbide tool steel

Country Status (5)

Country Link
US (2) US3369892A (es)
CH (1) CH465242A (es)
DE (1) DE1298293B (es)
GB (1) GB1094829A (es)
SE (1) SE370959B (es)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3450528A (en) * 1968-07-25 1969-06-17 Crucible Steel Corp Method for producing dispersioned hardenable steel
US3472709A (en) * 1966-03-25 1969-10-14 Nasa Method of producing refractory composites containing tantalum carbide,hafnium carbide,and hafnium boride
US3492101A (en) * 1967-05-10 1970-01-27 Chromalloy American Corp Work-hardenable refractory carbide tool steels
US3496036A (en) * 1967-05-25 1970-02-17 Penn Nuclear Corp Process of making titanium alloy articles
US3713788A (en) * 1970-10-21 1973-01-30 Chromalloy American Corp Powder metallurgy sintered corrosion and heat-resistant, age hardenable nickel-chromium refractory carbide alloy
US3715792A (en) * 1970-10-21 1973-02-13 Chromalloy American Corp Powder metallurgy sintered corrosion and wear resistant high chromium refractory carbide alloy
US3859085A (en) * 1971-05-12 1975-01-07 Toyoda Chuo Kenkyusho Kk Method for producing iron-base sintered alloys with high density
US4194910A (en) * 1978-06-23 1980-03-25 Chromalloy American Corporation Sintered P/M products containing pre-alloyed titanium carbide additives
US4519839A (en) * 1981-04-08 1985-05-28 The Furukawa Electric Co., Ltd. Sintered high vanadium high speed steel and method of making same
US5358545A (en) * 1990-09-18 1994-10-25 Carmet Company Corrosion resistant composition for wear products
US20050236072A1 (en) * 2004-04-22 2005-10-27 Takemori Takayama Ferrous abrasion resistant sliding material
US8317944B1 (en) * 2005-09-15 2012-11-27 U.S. Department Of Energy 9 Cr— 1 Mo steel material for high temperature application
CN115029643A (zh) * 2022-05-16 2022-09-09 湖南英捷高科技有限责任公司 一种优异抗热震性能汽车零件及其制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1608131B1 (de) * 1967-11-10 1970-08-20 Deutsche Edelstahlwerke Ag Gesinterte Karbidhartlegierung
CH564092A5 (es) * 1970-07-16 1975-07-15 Deutsche Edelstahlwerke Ag
US3914113A (en) * 1970-09-11 1975-10-21 Quebec Iron & Titanium Corp Titanium carbide preparation
US3779720A (en) * 1971-11-17 1973-12-18 Chromalloy American Corp Plasma sprayed titanium carbide tool steel coating
US3966423A (en) * 1973-11-06 1976-06-29 Mal M Kumar Grain refinement of titanium carbide tool steel
US3977837A (en) * 1973-11-06 1976-08-31 Chromalloy American Corporation Titanium carbide tool steel having improved properties
GB1541058A (en) * 1975-04-09 1979-02-21 Uddeholms Ab Pulp refining apparatus
DE2630266C3 (de) * 1976-07-06 1979-10-31 Thyssen Edelstahlwerke Ag, 4000 Duesseldorf Verwendung einer Sinterstahllegierung für Werkzeuge und Verschleißteile
US4556424A (en) * 1983-10-13 1985-12-03 Reed Rock Bit Company Cermets having transformation-toughening properties and method of heat-treating to improve such properties
TWI468531B (zh) * 2013-09-30 2015-01-11 Advanced Int Multitech Co Ltd The golf club head is made of stainless steel alloy
JP6378717B2 (ja) * 2016-05-19 2018-08-22 株式会社日本製鋼所 鉄基焼結合金及びその製造方法
MX2021006735A (es) 2018-12-19 2021-07-15 Oerlikon Metco Us Inc Sistema de recubrimiento sin cobalto de baja friccion y alta temperatura para valvulas de compuerta, valvulas de bola, vastagos y asientos.
EP3988229A1 (de) * 2020-10-26 2022-04-27 Deutsche Edelstahlwerke Specialty Steel GmbH & Co. KG Pulver für die verwendung in einem pulvermetallurgischen oder additiven verfahren, stahlwerkstoff und verfahren zur herstellung eines bauteils

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3093518A (en) * 1959-09-11 1963-06-11 Int Nickel Co Nickel alloy
US3093519A (en) * 1961-01-03 1963-06-11 Int Nickel Co Age-hardenable, martensitic iron-base alloys
US3132937A (en) * 1962-06-11 1964-05-12 Int Nickel Co Cast steel
US3183127A (en) * 1959-04-27 1965-05-11 Chromalloy Corp Heat treatable tool steel of high carbide content
US3303066A (en) * 1966-04-22 1967-02-07 Burgess Norton Mfg Co Powder metallurgy age hardenable alloys

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2828202A (en) * 1954-10-08 1958-03-25 Sintercast Corp America Titanium tool steel
US3053706A (en) * 1959-04-27 1962-09-11 134 Woodworth Corp Heat treatable tool steel of high carbide content

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183127A (en) * 1959-04-27 1965-05-11 Chromalloy Corp Heat treatable tool steel of high carbide content
US3093518A (en) * 1959-09-11 1963-06-11 Int Nickel Co Nickel alloy
US3093519A (en) * 1961-01-03 1963-06-11 Int Nickel Co Age-hardenable, martensitic iron-base alloys
US3132937A (en) * 1962-06-11 1964-05-12 Int Nickel Co Cast steel
US3303066A (en) * 1966-04-22 1967-02-07 Burgess Norton Mfg Co Powder metallurgy age hardenable alloys

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472709A (en) * 1966-03-25 1969-10-14 Nasa Method of producing refractory composites containing tantalum carbide,hafnium carbide,and hafnium boride
US3492101A (en) * 1967-05-10 1970-01-27 Chromalloy American Corp Work-hardenable refractory carbide tool steels
US3496036A (en) * 1967-05-25 1970-02-17 Penn Nuclear Corp Process of making titanium alloy articles
US3450528A (en) * 1968-07-25 1969-06-17 Crucible Steel Corp Method for producing dispersioned hardenable steel
US3713788A (en) * 1970-10-21 1973-01-30 Chromalloy American Corp Powder metallurgy sintered corrosion and heat-resistant, age hardenable nickel-chromium refractory carbide alloy
US3715792A (en) * 1970-10-21 1973-02-13 Chromalloy American Corp Powder metallurgy sintered corrosion and wear resistant high chromium refractory carbide alloy
US3859085A (en) * 1971-05-12 1975-01-07 Toyoda Chuo Kenkyusho Kk Method for producing iron-base sintered alloys with high density
US4194910A (en) * 1978-06-23 1980-03-25 Chromalloy American Corporation Sintered P/M products containing pre-alloyed titanium carbide additives
US4519839A (en) * 1981-04-08 1985-05-28 The Furukawa Electric Co., Ltd. Sintered high vanadium high speed steel and method of making same
US5358545A (en) * 1990-09-18 1994-10-25 Carmet Company Corrosion resistant composition for wear products
US20050236072A1 (en) * 2004-04-22 2005-10-27 Takemori Takayama Ferrous abrasion resistant sliding material
US20100074791A1 (en) * 2004-04-22 2010-03-25 Takemori Takayama Ferrous abrasion resistant sliding material
US20100108199A1 (en) * 2004-04-22 2010-05-06 Takemori Takayama Ferrous abrasion resistant sliding material
US7922836B2 (en) 2004-04-22 2011-04-12 Komatsu Ltd. Ferrous abrasion resistant sliding material
US7967922B2 (en) 2004-04-22 2011-06-28 Komatsu Ltd. Ferrous abrasion resistant sliding material
US8317944B1 (en) * 2005-09-15 2012-11-27 U.S. Department Of Energy 9 Cr— 1 Mo steel material for high temperature application
CN115029643A (zh) * 2022-05-16 2022-09-09 湖南英捷高科技有限责任公司 一种优异抗热震性能汽车零件及其制备方法
CN115029643B (zh) * 2022-05-16 2024-02-20 湖南英捷高科技有限责任公司 一种优异抗热震性能汽车零件及其制备方法

Also Published As

Publication number Publication date
US3369891A (en) 1968-02-20
CH465242A (fr) 1968-11-15
SE370959B (es) 1974-11-04
GB1094829A (en) 1967-12-13
DE1298293B (de) 1969-06-26

Similar Documents

Publication Publication Date Title
US3369892A (en) Heat-treatable nickel-containing refractory carbide tool steel
US5516483A (en) Hi-density sintered alloy
US5476632A (en) Powder metal alloy process
JP3351970B2 (ja) 改良された金属−金属摩耗抵抗を持つ腐食抵抗高バナジウム粉末冶金工具鋼物体及びその製造法
KR820002180B1 (ko) 바나듐-탄화물 성분을 다량 함유하는 분말야금강 제품
US3053706A (en) Heat treatable tool steel of high carbide content
US4121927A (en) Method of producing high carbon hard alloys
US2828202A (en) Titanium tool steel
US5552109A (en) Hi-density sintered alloy and spheroidization method for pre-alloyed powders
US4121930A (en) Nitrogen containing high speed steel obtained by powder metallurgical process
JPH036982B2 (es)
US4174967A (en) Titanium carbide tool steel composition for hot-work application
US3744993A (en) Powder metallurgy process
US4121929A (en) Nitrogen containing high speed steel obtained by powder metallurgical process
US3183127A (en) Heat treatable tool steel of high carbide content
US3416976A (en) Method for heat treating titanium carbide tool steel
JP4703005B2 (ja) スチール、該スチールの使用、該スチール製の製品および該スチールの製造方法
US4011108A (en) Cutting tools and a process for the manufacture of such tools
US3658604A (en) Method of making a high-speed tool steel
US5834640A (en) Powder metal alloy process
US3627514A (en) High-speed steel containing chromium tungsten molybdenum vanadium and cobalt
US4018632A (en) Machinable powder metal parts
GB1573052A (en) Method of producing high carbon hard alloys
US4173471A (en) Age-hardenable titanium carbide tool steel
US3715792A (en) Powder metallurgy sintered corrosion and wear resistant high chromium refractory carbide alloy

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALLOY TECHNOLOGY INTERNATIONAL, INC., 169 WESTERN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CHROMALLOY AMERICAN CORPORATION;REEL/FRAME:004059/0159

Effective date: 19820928