US3369735A - Gas-jet suction device, particularly for connection to a vacuum pump - Google Patents

Gas-jet suction device, particularly for connection to a vacuum pump Download PDF

Info

Publication number
US3369735A
US3369735A US558870A US55887066A US3369735A US 3369735 A US3369735 A US 3369735A US 558870 A US558870 A US 558870A US 55887066 A US55887066 A US 55887066A US 3369735 A US3369735 A US 3369735A
Authority
US
United States
Prior art keywords
gas
housing
inlet
suction device
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US558870A
Inventor
Hoffmeister Gunter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Application granted granted Critical
Publication of US3369735A publication Critical patent/US3369735A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/466Arrangements of nozzles with a plurality of nozzles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K51/00Other details not peculiar to particular types of valves or cut-off apparatus
    • F16K51/02Other details not peculiar to particular types of valves or cut-off apparatus specially adapted for high-vacuum installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/75Flowing liquid aspirates gas

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Nozzles (AREA)

Description

OFFMEISTER Feb. 20, 1968 G. 3,369,735
GAS-JET SUCTION DE E, PARTICULARLY FOR CONNECTION TO. A VACUUM PUMP Filed June 20, 1966 2 Sheets-Sheet 1 Feb. 20, 1968 G. HOFFMEISTER 3,369,735
GASJET SUCTION DEVICE, PARTICULARLY FOR CONNECTION TO A VACUUM PUMP Filed June 20, 1966 2 Sheets-Sheet 2 United States Patent ABSTRACT OF THE DISCLOSURE Gas-jet suction device, particularly for connection to a. pump inlet of liquid ring gas pumps in shunt with a controllable bypass includes a housing structure having a suction inlet and a bypass inlet and an outlet, and an injector unit formed of a mixing tube and a jet nozzle located within the mixing tube, the injector unit being mounted in the housing structure, the mixing tube and the housing structure defining therebetween an interspace communicating with the bypass inlet and with the outlet, the mixing tube having a neck portion seated and peripherally sealed in the housing structure at a locality remote from the outlet, the neck portion separating the interspace from the suction inlet, the jet nozzle being coaxially seated in the neck portion for driving a gas jet through the tube toward the outlet. the neck portion having lateral openings through which the suction inlet communicates with the interior of the tube near the jet nozzle.
Specification My invention relates to gas-jet suction devices, particularly for use in vacuum pump systems in which the suction device is connected to the inlet of a rotor-type pump together with a controllable bypass which permits placing the suction device in and out of operation.
In known systems of this type (German Patent 968,232) the gas-jet device is connected to a liquid-ring pump, and the bypass is provided with a valve for opening the bypass and thereby inactivating the suction device under given operating conditions, for example, when the pump is being started up.
In such systems, the ejector device involves a relatively large share of the production and maintenance cost. Particularly any exchange of individual components of the ejector device, such as the jet driving nozzle, causes considerable difliculties and loss of time.
It is therefore an object of the invention to devise an improved gas-jet suction device, particularly for use on the inlet side of liquid-ring vacuum pumps, that minimizes the above-mentioned shortcomings.
To this end, and in accordance with the invention, I provide the suction device with a mixer tube which has a neck portion in peripheral sealing engagement with the housing structure at a locality remote from the outlet to be connected to the inlet of the pump, and I insert the nozzle for issuing the driving jet of gas coaxially into the neck portion of the mixing tube. Furthermore, the neck portion of the mixing tube is provided with openings I through which the suction inlet duct of the housing communicates with the jet nozzle and the inserted tube, the housing having a second inlet through which the abovementioned bypass communicates with the outlet through an interspace formed between the housing and the mixing tube.
The invention will be further described and explained with reference to the accompanying drawings in which FIG. 1 shows for comparison a sectional view of a known gas-jet suction device;
FIG. 2 is a schematic perspective view of a multiple gas-jet suction assembly which may be composed of in- "ice dividual devices according to the prior art or according to the present invention as exemplified in FIGS. 3 and 4;
FIG. 3 is a sectional view of a gas-jet suction device according to the invention;
FIG. 4 shows partly in section a mixing tube which forms part of the device shown in FIG. 3; and
FIG. 4a shows in section a detail of FIG. 4;
FIG. 5 is a partly sectional view of another embodiment of a device according to the invention;
FIG. 6 is a side elevation of the latter embodiments;
FIG. 7 is a plan view corresponding to FIGS. 5 and 6; and
FIG. 8 is a lateral view of a vacuum pump system comprising a liquid-ring pump in combination with an ejector device according to the invention.
Referring to FIG. 1, there is shown a suction device of the ejector type for use with a motor-driven pump. The device comprises a tubular housing G formed of a casting or a welded tubular structure which has two lateral flanged inlets S and S for the direct or indirect connection of the feeder line leading, for example, to a vessel to be evacuated. Pressed into the housing G is a mixing tube ST so that a diametrically wider neck portion N of the tube is firmly and tightly seated between the two inlets S and S Separately inserted into the upper end of the housing G is a coaxial driving nozzle Tr which is pressei into the tubular housing and thus firmly seated therein.
During operation, and assuming the supply of gas to the bypass inlet S to be shut off, a jet of gas supplied in the direction indicated by T entrains gas through the inlet S and through the interior of the mixer tube ST to the outlet opening at the bottom of the housing G, whence it enters into the inlet of the motor-driven pump under the pre-vacuum produced by the ejector device.
For a larger delivery or eflicacy of the system, several suction devices G, such as those shown in FIG. 1, may be connected in parallel relation to each other through conduit connections R R and R as shown inFIG. 2. This assembly has two suction inlets S S and an inlet for. supplying the driving gas, such as air, as is indicated by an arrow T. It should be understood that a similar parallel arrangement of' ejectors is applicable with individual devices according to the present invention, such as the one described presently.
The suction device according to the invention illustrated in FIG. 3 comprises a mixing tube M whose upper end forms a neck portion H which is tightly pressed into the upper end of the tubular housing G. The neck portion H of the mixing tube M has an annular coaxial flange K held in position on an annular shoulder formed by an internal peripheral recess at the top opening of the housing G (FIGS. 3, 4a). Pressed into the upper end portion of the neck portion H is the driving jet nozzle Tr. The nozzle has an annular flange K (FIGS. 4, 4a) seated on an annular shoulder formed by a recess H of the neck portion H.
The nozzle Tr and the upper cylindrical end of the neck portion H are provided with respective peripheral grooves located opposite each other and forming a seat for a gasket or sealing ring 0 of silicone rubber or other elastically deformable material. In lieu of a single ring, several such gaskets may be located coaxially one above the other with reference to the illustration in FIG. 4a. Sealing or gasket rings 0 of elastically compressible material are provided in the same manner between the top portion H of the mixing tube M and the correspondingly machined sealing surface of the housing G.
The neck portion H of the mixing tube has slot-shaped openings S peripherally distributed and arranged near the orifice portion of the driving nozzle Tr so that the gas entering through the inlet S; into an annular recess formed by the housing G around the slots S can pass through the slots to be inducted into the mixing tube M by the jet of driving gas issuing from the nozzle Tr.
As shown in FIG. 3, the mixing tube M with the firmly inserted driving nozzle Tr is inserted as a unit (FIG. 4) into the housing G which in this case is formed by a casting. The second inlet S for connection to a bypass is located near the lower end of the mixing tube. The purpose of the bypass inlet will be apparent from the following description of the. complete vacuum pump system shown in FIG. 8, of which the gas-jet suction device according to FIGS. 3 and 4 constitutes a component. The system, otherwise similar to that shown and described in the above-mentioned German Patent 968,232, comprises a motor-driven liquid ring pump 1 whose inlet 2 is connected to the outlet end of the tubular housing G through an intermediate flanged connecting piece 2a to which a manometer or other pressure sensor is attached. The outlet 3 of pump 1 is connected through a water separator 4 to an outlet conduit 11. The inlet S of the suction device is connected to a gas inlet conduit 12. The abovementioned bypass 8 connects the same inlet conduit 12 with the bypass inlet S of the suction device through a shut-off valve 9. Driving gas is supplied to the nozzle Tr (FIGS. 3, 4) through a conduit 13 (FIG. 8) under control by a valve 14. Selectively, however, the driving-gas conduit 13 may be connected through a valve 15 with the outlet conduit 11 of the pump 1 to receive driving gas therefrom.
During the starting-up period of the pump system, the valve 9 is kept open so that the suction device is bypassed since the gas passes directly through the bypass inlet S into the inlet 2 of the pump 1. Now the suction device is inactive. After the pump 1 has reached the rated values of speed and vacuum pressure, this pressure being indicated by the manometer 10, the valve 9 is closed and one of the valves 14, 15 is opened. This puts the suction device in operation for reducing the vacuum pressure of the system below the value otherwise attainable.
According to a feature of my invention, embodied in the above-described device according to FIGS. 3 and 4, the driving nozzle is seated in the mixing tube by a sliding fit, and the mixing tube is seated in the housing of the gas-jet suction device likewise by a sliding fit. This permits axial displacement and mutual disengagement of the respective two parts engaging each other, the necessary seal between the interengaging parts being efiected by the peripheral grooves in which the sealing rings of elastic material are seated.
From manufacturing viewpoints, an ejector suction device according to the invention affords considerable advantages. In the first place, it obviates the necessity of pressing the jet nozzle and the mixing tube separately into the housing at respective localities that are located axially one behind the other and have respectively different diameters while being required to satisfy each the exacting tolerance requirements of a tight press-fit. The use of accurately fitting surfaces to provide a tight seal is eliminated since the insertion of the elastic sealing rings, subjected only to the rather slight pressure obtaining within the ejector suction device, reliably secures the required seal under all operation conditions, even in the event of small gaps remaining between driving nozzle and mixing tube or between mixing tube and housing. Furthermore, an ejector suction device according to the invention readily aflords the possibility of exchanging the driving nozzle as well as the mixing tube. Such exchange may be needed, for example, in order to adapt the vacuum pump system to seasonal changes in pumping epoxy resins reinforced by embedded glass fibers or othe 1 filler media, without entailing the danger of damaging the mixing tube when the driving nozzle is being inserted into the housing of the ejector device, or the mixing tube is being disassembled from, or inserted into, the housing which may consist of steel or cast iron with orwithout a coating of rubber or other elastomer material.
As briefly mentioned above with reference to FIG. 2, ejector suction devices according to the invention are also applicable in groups of parallel connected units. In this respect, and in accordance with another feature of my invention, the design of the ejector suction devices for very large gas quantities or very low negative pressures, can be further improved according to the following features. Several mixing tubes, each having an inserted driving nozzle, are bunched together in parallel connection within a common intermediate housing portion which is connected with the suction inlet conduit for the gaseous medium to be pumped, this housing portion being arranged within or between other components of the housing.
An embodiment of such parallel connected ejector devices with a common housing structure is exemplified in FIGS. 5 to 7. Four mixing tubes M to M each designed as illustrated in FIGS. 4 and 4a, are mounted in parallel relation within the enclosed interior space of a mixer housing Gm, which is provided with the lateral inlet duct S for supplying the gaseous medium to be pumped. The mixer housing Gm is designed as an intermediate structure and is disposed between a lower housing portion Gu and an upper housing portion or cover G0. The lower housing portion Gu is provided with the second inlet for connection to the bypass. The lower housing portion Gu has a bottom outlet for connection to the inlet of a motor-driven pump.
It will be recognized that when the bypass conduit connected to inlet S is closed and the pump is in operation while driving gas is supplied through the top opening of the cover Go, as indicated by the arrow T, the gas to be pumped will be drawn through the inlet S into the interior space I of the housing Gm from which it passes through the slots S into the parallel connected ejector suction devices. Upon removal of the cover G0, the driving nozzles Tr or the mixing tubes can be pulled out for such purposes as inspection or replacement. If desired, the mixer housing Gm may be made of a single piece with the lower housing portion Gu, for example by welding both housing portions together.
As will be recognized from the illustrations, the invention affords composing such multiple-device assemblies and systems from uniform component parts, thus further reducing the manufacturing cost.
To those skilled in the art, it will be obvious upon a study of this disclosure that my invention permits of various modifications with respect to details of the devices and arrangements described. This applies to the gas-jet suction devices themselves as well as to the housings in which they are mounted or groupwise assembled. The invention is applicable in all cases where a controllable ejector suction device is connected into a fluid-flow path or circuit.
I claim:
I. A gas-jet suction device, particularly for connection to a pump inlet of liquid ring gas pumps in shunt with a controllable bypass, comprising a housing structure having a suction inlet and a bypass inlet and an outlet, and an injector unit formed of a mixing tube and a jet nozzle located within said mixing tube, said injector unit being mounted in said housing structure, said mixing tube and said housing structure defining therebetween in interspace communicating with said bypass inlet and with said outlet, said mixing tube having a neck portion slidingly fitted and seated and peripherally sealed in said housing structure at a locality remote from said outlet, said neck portion separating said interspace from said suction inlet, said jet nozzle being coaxially seated in said neck portion for driving a gas jet through said tube toward said outlet, said neck portion having lateral openings through which said suction inlet communicates with the interior of said tube near said jet nozzle.
2. In a suction device according to claim 11, said housing structure being tubular and having an open end which forms said outlet, said mixing tube extending coaxially in said housing and having said neck portion coaxially seated and peripherally sealed in said housing structure near the other end thereof so that said interspace is annular and extends from said neck portion toward said outlet end, and said jet nozzle being seated in said neck portion at said other housing end.
3. In a suction device according to claim 2, said neck portion and said tubular housing structure forming an axially sliding fit relative to each other, said nozzle and said neck portion forming an axially sliding fit relative to each other, sealing ring means coaxially disposed between said neck portion and said housing structure, and sealing ring means coaxially disposed between said neck portion and said nozzle.
4. In a suction device according to claim 1, said openings in said neck portion forming respective slots peripherally distributed and extending parallel to the axis of said mixing tube.
5. In a suction device according to claim 2, said mixing tube and said jet nozzle being formed of fillerreenforced synthetic plastic.
6. In a suction device according to claim 1, said housing structure comprising a plurality of said mixing tubes having respective neck portions, said mixing tubes extending parallel to each other, said openings of all of said neck portions being in communication with said suction 7. In a suction device according to claim 6, said housing structure having an intermediate portion, a cover portion on top of said intermediate portion, and a lower portion connected to the bottom of said intermediate portion, said intermediate portion forming an enclosed inner space with which said suction inlet and said openings in said neck portions communicate, said lower portion being provided with said bypass inlet and said outlet, and said top portion having an inlet for the supply of driving gas to said jet nozzles.
8. In a suction device according to claim 2, said mixing tube having an inner peripheral shoulder at said other end of said housing, and said jet nozzle having a flange in engagement with said shoulder.
9. In a suction device according to claim 8, said housing having an inner peripheral shoulder at said other end, and said neck portion of said mixing tube having a flange in engagement with said shoulder.
References Cited UNITED STATES PATENTS 1,890,708 12/1932 White 230 1,951,588 3/1934 Van Zandt 23095 X 2,396,290 3/1946 Schwarz 103-272 2,549,218 4/1951 McBean 103260 X 2,859,703 11/1958 Evans 103-262 3,018,799 1/1962 Volkrnann 103262 X 3,031,127 4/1962 Duhaime 23095 3,064,878 11/1962 Bayles 230-95 X 3,146,726 9/ 1964 Sidebottom 103-262 3,166,020 1/1965 Cook 103262 FOREIGN PATENTS 1,074,817 2/1960 Germany.
ROBERT M. WALKER, Primary Examiner.
DONLEY J. STOCKING, Examiner.
W. I. KRAUSS, Assistant Examiner.
US558870A 1965-06-19 1966-06-20 Gas-jet suction device, particularly for connection to a vacuum pump Expired - Lifetime US3369735A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1965S0097695 DE1503706C3 (en) 1965-06-19 1965-06-19 JET SUCTION UNITS CONNECTED TO A VACUUM PUMP

Publications (1)

Publication Number Publication Date
US3369735A true US3369735A (en) 1968-02-20

Family

ID=7520916

Family Applications (1)

Application Number Title Priority Date Filing Date
US558870A Expired - Lifetime US3369735A (en) 1965-06-19 1966-06-20 Gas-jet suction device, particularly for connection to a vacuum pump

Country Status (4)

Country Link
US (1) US3369735A (en)
DE (1) DE1503706C3 (en)
GB (1) GB1153450A (en)
NL (1) NL6608285A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3474953A (en) * 1969-03-05 1969-10-28 Air Vac Eng Co Inc Vacuum creating device
US3481529A (en) * 1966-05-12 1969-12-02 Siemens Ag Method and apparatus for pumping with a liquid-ring in series with a jet ejector
US3520639A (en) * 1968-08-21 1970-07-14 Brittain Ind Inc Venturi tube
JPS5355507A (en) * 1976-10-29 1978-05-20 Tlv Co Ltd Condensate recovery pumps
DE2749300A1 (en) * 1977-11-01 1979-05-03 Koerting Ag JET PUMP FOR PUMPING A GAS AND A LIQUID TOGETHER
US4400138A (en) * 1981-10-19 1983-08-23 Baer William F Multiple jet eductor
US4632649A (en) * 1984-07-26 1986-12-30 Sihi Gmbh & Co. Kg Gas jet pump
US4634559A (en) * 1984-02-29 1987-01-06 Aluminum Company Of America Fluid flow control process
US4634560A (en) * 1984-02-29 1987-01-06 Aluminum Company Of America Aspirator pump and metering device
US4820131A (en) * 1987-09-02 1989-04-11 Wayne/Scott Fetzer Company Venturi nozzle assembly construction in a shallow well pump casing
US4861232A (en) * 1987-05-30 1989-08-29 Myotoku Ltd. Vacuum generating device
US4880357A (en) * 1988-06-27 1989-11-14 Mathers Terrence L Method and apparatus for producing high vacuum
US4938665A (en) * 1987-06-29 1990-07-03 Volkmann Juergen Jet pump
US5222525A (en) * 1992-07-15 1993-06-29 Coppus Engineering Corp. Plastic diffuser
US5403475A (en) * 1993-01-22 1995-04-04 Allen; Judith L. Liquid decontamination method
US5797377A (en) * 1996-05-08 1998-08-25 Robert Bosch Gmbh Fuel feeding device for motor vehicles
US20080247881A1 (en) * 2007-03-21 2008-10-09 Honeywell Nomalair-Garrett (Holdings) Limited Jet pump apparatus
US8290112B2 (en) * 2010-07-19 2012-10-16 Ge-Hitachi Nuclear Energy Americas Llc Multi-stage jet pump mixer assembly
WO2013045040A1 (en) * 2011-10-01 2013-04-04 Daimler Ag Gas jet pump for delivering a main gas stream
US20130167566A1 (en) * 2011-05-23 2013-07-04 Carrier Corporation Ejectors and Methods of Manufacture
US20140255218A1 (en) * 2011-06-23 2014-09-11 Caltec Limited Pump assembly comprising a plurality of jet pumps
US20170021369A1 (en) * 2014-05-14 2017-01-26 Danfoss A/S Ejector arrangement
US9770830B2 (en) 2015-02-12 2017-09-26 J. Schmaiz GmbH Vacuum generating apparatus and vacuum tube lifter having a vacuum generating apparatus
US20210069733A1 (en) * 2019-09-06 2021-03-11 Boris Schmidt Injection nozzle for a spray device and spray device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3025525A1 (en) * 1980-07-05 1982-01-28 Jürgen 4477 Welver Volkmann EJECTOR DEVICE
US5228839A (en) * 1991-05-24 1993-07-20 Gast Manufacturing Corporation Multistage ejector pump

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1890708A (en) * 1930-05-31 1932-12-13 Ernest M White Supercharger
US1951588A (en) * 1929-01-02 1934-03-20 C A Dunham Co Heating system
US2396290A (en) * 1945-03-01 1946-03-12 Schwarz Sigmund Sludge pump
US2549218A (en) * 1945-08-01 1951-04-17 Deming Co Pump
US2859703A (en) * 1955-06-01 1958-11-11 Girton Mfg Company Inc Combined jet pump and regulator
DE1074817B (en) * 1960-02-04 Siemens-Schuckertwerke Aktiengesellschaft, Berlin Und Erlangen Jet suction device for air or a gaseous delivery medium with an annular nozzle for the propellant that generates a hollow jet of liquid
US3018799A (en) * 1958-02-20 1962-01-30 Willy B Volkmann Water surge arrester
US3031127A (en) * 1960-12-12 1962-04-24 Air Vac Engineering Company Vacuum creating devices
US3064878A (en) * 1958-01-03 1962-11-20 Nash Engineering Co Method and apparatus for high performance evacuation system
US3146726A (en) * 1962-07-24 1964-09-01 Union Tank Car Co Aspiratory assembly
US3166020A (en) * 1961-09-20 1965-01-19 Hypro Engineering Inc Venturi mixer nozzle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1074817B (en) * 1960-02-04 Siemens-Schuckertwerke Aktiengesellschaft, Berlin Und Erlangen Jet suction device for air or a gaseous delivery medium with an annular nozzle for the propellant that generates a hollow jet of liquid
US1951588A (en) * 1929-01-02 1934-03-20 C A Dunham Co Heating system
US1890708A (en) * 1930-05-31 1932-12-13 Ernest M White Supercharger
US2396290A (en) * 1945-03-01 1946-03-12 Schwarz Sigmund Sludge pump
US2549218A (en) * 1945-08-01 1951-04-17 Deming Co Pump
US2859703A (en) * 1955-06-01 1958-11-11 Girton Mfg Company Inc Combined jet pump and regulator
US3064878A (en) * 1958-01-03 1962-11-20 Nash Engineering Co Method and apparatus for high performance evacuation system
US3018799A (en) * 1958-02-20 1962-01-30 Willy B Volkmann Water surge arrester
US3031127A (en) * 1960-12-12 1962-04-24 Air Vac Engineering Company Vacuum creating devices
US3166020A (en) * 1961-09-20 1965-01-19 Hypro Engineering Inc Venturi mixer nozzle
US3146726A (en) * 1962-07-24 1964-09-01 Union Tank Car Co Aspiratory assembly

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3481529A (en) * 1966-05-12 1969-12-02 Siemens Ag Method and apparatus for pumping with a liquid-ring in series with a jet ejector
US3520639A (en) * 1968-08-21 1970-07-14 Brittain Ind Inc Venturi tube
US3474953A (en) * 1969-03-05 1969-10-28 Air Vac Eng Co Inc Vacuum creating device
JPS5355507A (en) * 1976-10-29 1978-05-20 Tlv Co Ltd Condensate recovery pumps
DK151051B (en) * 1977-11-01 1987-10-19 Koerting Ag PROCEDURE FOR SIMILAR EXPANSION OF TRANSPORT IN THE FORM OF SALT WATER CONCENTRATE AND GASES FROM A SEA WATER EVAPORATOR
DE2749300A1 (en) * 1977-11-01 1979-05-03 Koerting Ag JET PUMP FOR PUMPING A GAS AND A LIQUID TOGETHER
US4400138A (en) * 1981-10-19 1983-08-23 Baer William F Multiple jet eductor
US4634559A (en) * 1984-02-29 1987-01-06 Aluminum Company Of America Fluid flow control process
US4634560A (en) * 1984-02-29 1987-01-06 Aluminum Company Of America Aspirator pump and metering device
US4632649A (en) * 1984-07-26 1986-12-30 Sihi Gmbh & Co. Kg Gas jet pump
US4861232A (en) * 1987-05-30 1989-08-29 Myotoku Ltd. Vacuum generating device
US4938665A (en) * 1987-06-29 1990-07-03 Volkmann Juergen Jet pump
US4820131A (en) * 1987-09-02 1989-04-11 Wayne/Scott Fetzer Company Venturi nozzle assembly construction in a shallow well pump casing
US4880357A (en) * 1988-06-27 1989-11-14 Mathers Terrence L Method and apparatus for producing high vacuum
US5222525A (en) * 1992-07-15 1993-06-29 Coppus Engineering Corp. Plastic diffuser
US5403475A (en) * 1993-01-22 1995-04-04 Allen; Judith L. Liquid decontamination method
US5423979A (en) * 1993-01-22 1995-06-13 Allen; Judith L. Liquid decontamination apparatus
US5797377A (en) * 1996-05-08 1998-08-25 Robert Bosch Gmbh Fuel feeding device for motor vehicles
US8465264B2 (en) * 2007-03-21 2013-06-18 Honeywell Nomalair-Garrett (Holdings) Jet pump apparatus
US20080247881A1 (en) * 2007-03-21 2008-10-09 Honeywell Nomalair-Garrett (Holdings) Limited Jet pump apparatus
US20130343919A1 (en) * 2007-03-21 2013-12-26 Bernard Francis Sampson Jet pump apparatus
US8985966B2 (en) * 2007-03-21 2015-03-24 Honeywell Nomalair-Garrett (Holdings) Limited Jet pump apparatus
US8290112B2 (en) * 2010-07-19 2012-10-16 Ge-Hitachi Nuclear Energy Americas Llc Multi-stage jet pump mixer assembly
US20130167566A1 (en) * 2011-05-23 2013-07-04 Carrier Corporation Ejectors and Methods of Manufacture
US20140255218A1 (en) * 2011-06-23 2014-09-11 Caltec Limited Pump assembly comprising a plurality of jet pumps
WO2013045040A1 (en) * 2011-10-01 2013-04-04 Daimler Ag Gas jet pump for delivering a main gas stream
US20170021369A1 (en) * 2014-05-14 2017-01-26 Danfoss A/S Ejector arrangement
US9770830B2 (en) 2015-02-12 2017-09-26 J. Schmaiz GmbH Vacuum generating apparatus and vacuum tube lifter having a vacuum generating apparatus
US20210069733A1 (en) * 2019-09-06 2021-03-11 Boris Schmidt Injection nozzle for a spray device and spray device
US11583870B2 (en) * 2019-09-06 2023-02-21 Lechler Gmbh Injection nozzle for a spray device and spray device

Also Published As

Publication number Publication date
DE1503706C3 (en) 1971-09-02
NL6608285A (en) 1966-12-20
GB1153450A (en) 1969-05-29
DE1503706A1 (en) 1970-07-02
DE1503706B2 (en) 1971-09-02

Similar Documents

Publication Publication Date Title
US3369735A (en) Gas-jet suction device, particularly for connection to a vacuum pump
KR101016135B1 (en) Device for transporting fuel from a reservoir to an internal combustion engine
US5762049A (en) Fuel supply apparatus for motor vehicle
US4466778A (en) Ejector device
CN101663483B (en) Motor pump unit particularly for a high-pressure cleaning device
US6330876B1 (en) High-pressure injection system with common rail
US5197863A (en) Bearing fluid distribution systems for liquid ring pumps with rotating lobe liners
US2649318A (en) Pressure lubricating system
US4371003A (en) Swimming pool/spa selector valve
KR920701653A (en) Fuel supply module
US6311725B1 (en) Fuel supply apparatus
US5263826A (en) Device for refueling a gaseous fuel tank
US2232983A (en) Fluid pump
US3216365A (en) Reciprocating pump
US3162129A (en) Two-stage fuel unit
US2388939A (en) Pump for fuel systems
US2475118A (en) Deep and shallow well pump
US2563665A (en) Valve
US2344287A (en) Pumping means
US2843048A (en) Liquid pumping apparatus
US2700338A (en) Shallow well centrifugal pump with jet
US3746039A (en) A fuel control device mounting arrangement with a fuel supply manifold
US3606586A (en) Air injection pump
US2667125A (en) Pump
US3367269A (en) Booster assembly for low pressure pump