US3365788A - Method of constructing welded tubular sections of hollow pile driving mandrel - Google Patents

Method of constructing welded tubular sections of hollow pile driving mandrel Download PDF

Info

Publication number
US3365788A
US3365788A US510430A US51043065A US3365788A US 3365788 A US3365788 A US 3365788A US 510430 A US510430 A US 510430A US 51043065 A US51043065 A US 51043065A US 3365788 A US3365788 A US 3365788A
Authority
US
United States
Prior art keywords
tube
channel
mandrel
welding
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US510430A
Inventor
Rusche Fredric
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MILLGARD Corp A CORP OF MICH
Original Assignee
Rusche Fredric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US323941A external-priority patent/US3269127A/en
Application filed by Rusche Fredric filed Critical Rusche Fredric
Priority to US510430A priority Critical patent/US3365788A/en
Application granted granted Critical
Publication of US3365788A publication Critical patent/US3365788A/en
Assigned to MILLGARD CORPORATION, A CORP. OF MICH. reassignment MILLGARD CORPORATION, A CORP. OF MICH. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: RUSCHE, FREDRIC
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/28Placing of hollow pipes or mould pipes by means arranged inside the piles or pipes
    • E02D7/30Placing of hollow pipes or mould pipes by means arranged inside the piles or pipes by driving cores

Definitions

  • This invention relates to pile driving mandrels of the type disclosed in my US. Patent 3,006,152, issued Oct. 31, 1961, the disclosure of which is incorporated herein by reference.
  • pile driving operations it is customary to drive into the ground a stout tubular mandrel surrounded by a thin, relatively delicate casing which casing is to form a mold of a concrete pile.
  • the piles may be of the order of a foot in diameter and may be required to be from about 10 feet to about 80 feet long.
  • the casings are made of thin steel for example of 16 gauge. They may be corrugated spirally as known in the art and as shown for example in the US. patent to McKee, 2,928,252.
  • the assembly of mandrel and casing punches a hole in the earth after which the mandrel is removed, leaving the casing in the hole to form a permanent mold for pouring the concrete pile.
  • the long line of plugs running the length of the mandrel (which may be as much as feet) is mounted on a single steel channel member running the length of the mandrel.
  • This channel member is pushed radially outward by a hose running the length of the mandrel and filled with air under pressure.
  • the plugs are retracted by pushing the channel radially inward by a number of separate coil springs distributed along the length of the channel, the channel being bolted to all the plugs in one row.
  • This arrangement requires a large number of springs which must be inserted in a large number of holes drilled through the wall of the tube and tapped to receive backing plugs or spring abutments threaded into these holes.
  • the tubes forming the mandrel are of hard steel through which it is diificult and expensive to bore and tap a large number of holes.
  • the elongated openings which support the plugs can be readily and cheaply formed by a cutting torch.
  • FIG. 1 is a view partly in elevation and partly in section of a mandrel embodying one form of the invention
  • FIG. 2 is a section on an enlarged scale on the lines 22 of FIG. 1,
  • FIG. 3 is a section on a correspondingly enlarged scale on the line 33 of FIG. 1,
  • FIG. 4 is a diagrammatic section of a portion of a mandrel showing a step in one method of making a mandrel embodying one form of the invention
  • FIG. 5 is a diagrammatic elevation showing a step subsequent to that of FIG. 4, and
  • FIG. 6 is a section similar to FIG. 4 showing a step subsequent to that of FIG. 5.
  • FIG. 10 designates a mandrel tube closed at its lower end by a foot plate 12 and closed at its upper end by a head plate or driving plate 14 which is struck by the driving hammer.
  • the mandrel is of the solid core type, by which I mean that the cross section of the tube is a complete integral annulus. It may have a range of wall thickness from approximately an inch and a quarter to about an inch and three quarters.
  • elongated openings or slits 16 are formed in any suitable manner as by burning with a cutting torch.
  • the openings have rounded ends 18. Preferably wherever an opening occurs, there are four such openings distributed at 90 about the circumference of the tube.
  • a gripping and driving connection for the shell to be driven is placed in each opening 16.
  • This is in the form of a plug .29 provided on its outside surface with a number of slanting lugs 22 which conform to the spacing and pitch of the corrugations of the shell in which the mandrel is to be used.
  • Each plug has rounded ends conforming to the shape of the slit 16 and has a snug but easily sliding fit in the opening. The plugs are expressed into the position providing a gripping and driving connection between tube and shell by expansible hoses inflated with compressed air, and are retracted by springs when the hoses are exhausted or deflated as will be explained.
  • each plug is attached to a fiat retaining and bearing plate 24 by a pair of bolts 26 threaded into nuts 28 welded to the plate.
  • the plate 24 is longer than the opening 16 and is slightly narrower than the width of the opening so that it can be inserted through the opening into the interior of the mandrel and placed approximately parallel to the axis of the tube 10.
  • the plate may be fiat and the springs 30 may be leaf springs attached in any suitable manner but I prefer to form the plate and both springs as a single integral spring, having its ends reversely bent to form the springs 30 as shown in FIG. 1.
  • the spring plate 24 may normally (or when not stressed) be bowed or concave with respect to the tube 16, as indicated schematically by dotted lines in FIG. 1.
  • This arrangement is preferred, for the retracting force can be provided principally by the main body of the spring between its recurved ends.
  • the ends 30, while exerting some retracting force as springs, also act as slides for the ends of the spring in flexing from its concave, retracted position to its flat position which holds the plug in shell-engaging position.
  • Each spring 24 urges its plug 20 inwardly and the spring is calibrated so that in its relaxed position the ends ofthe lugs or cleats 22 do not protrude beyond the external diameter of the tube 10.
  • the lugs are expressed into contact with the shell by air pressure in an inflatable or expansible hose 32 which is supported and confined in a chamber or cage formed by a U-shaped channel member 34 extending substantially the entire length of the tube 10 and welded to the inside of the tube. Both edges of the channel member 34 are welded to the tube at least along lines or lengths which are adjacent both ends of each opening 16. I prefer to weld the channel members to the tube along their entire length.
  • each channel member 34 is cut away as at 36 to receive an annular channel iron 38 the edges of which are welded to the inside of the tube 10 around its entire circumference.
  • the chamber 40 confined between the tube 10 and the channel 38 provides a manifold for delivering air pressure from a pipe connection 42 to the four hoses 32, each of which is closed at its ends, as indicated at 44 in FIG. 1 to form a fluid pressure chamber for operating the plugs.
  • Each hose is connected to the manifold chamber 38 near its upper end but between its ends by a hollow nipple 46.
  • each channel 34 being welded to the tube throughout its entire length, is an integral part of the tube and cannot move with respect to the tube when the hammer strikes the head plate 14-.
  • the cross section of each hose when inflated is so related to the cross section of the channel chamber, and the modulus of expansion, if any,
  • the hose is so related to the force of each spring that when the hose is inflated to drive a pile shell the hose substantially fills the channel. Also the hose is held by air pressure firmly in contact with all four sides of the channel chamber, except possibly in the corners, to provide four firm friction supports for the hose along its entire length. The only solid connection between the hose and the mandrel is at the nipple 46.
  • the inertia effects which would tend to cause any relative movement between the hose and the nipple are so low that they can be absorbed by re silience of the hose and by the nipple without rupturing or damaging the air connection.
  • a feature of the invention is the construction of the mandrel so that the entire length of each hose supporting cage or channel can be welded to the mandrel tube 10.
  • the relative length and diameter of the mandrel are critical.
  • a single mandrel may be as much as 60 feet long. It will in general be not less than 8 feet long. It will have a maximum inside diameter of about 13 /2 inches and this dimension may be as little as 8 /2 inches.
  • Welding of the channel to the tube must be done by welding apparatus, such as a torch or electrode, inserted from the ends of the tube. It is impossible, or at least impractical, to weld the entire length of a channel to the inside of such a tube 60 feet long or even 8 feet long.
  • a length of the tubing designated 50 in FIG. 1 which may be about four feet long is provided with the appropriate four circumferentially distributed slots 16 and lengths of channel 34 just equal to the length of the section 50 may be welded in place.
  • a length of the tubing designated 50 in FIG. 1 which may be about four feet long is provided with the appropriate four circumferentially distributed slots 16 and lengths of channel 34 just equal to the length of the section 50 may be welded in place.
  • For an 8 /2 inch (inside diameter) tube I prefer to make the sections about four feet long as this is the greatest practical length along which a section of channel can be welded from opposite ends along its entire length. Both ends of the section 50 and the channels may be finished flat and perpendicular to the axis of the tube and the desired number of such four foot lengthsis then joined by welding as indicated at 52 in FIG. 1.
  • This welding process provides a straight tube of any desired practical length, for example up to 60 feet, which is smooth on the outside.
  • Each channel 34, which runs the length of the tube, is made of a series of short channel members, butted end to end in alignment.
  • the only openings needed are the oval or elongated plug openings 16 and the four threaded openings 54 for insertion of the nipples 46.
  • the last or top section 50 contains the manifold ring 38.
  • the mandrel is assembled as shown more specifically in FIGS. 4 to 6.
  • a tube it which may be four feet long having its plug openings 16 near one end, is assembled with four channel members 34, each also four feet long.
  • the channels are welded to the tube with one end of each set back from the end of the tube near which are the plug openings 16.
  • the other end of each channel protrudes from the other end of the tube a corresponding distance, for example about six inches as shown in FIG. 4.
  • a plurality of such tube and channel assemblies are then assembled by inserting the protruding channel ends of one into the recessed end of the other as shown in FIG. 5.
  • the channels are aligned, the tubes and channels abutted and the tubes welded on the outside as described in connection with FIG. 1.
  • a Welding torch or electrode is inserted through the plug openings 16 as shown in PEG. 6 to weld the ends of the channel protruding from one tube to the recessed end of the adjacent tube, or to weld the abutted ends of the channels together, or both.
  • the hoses 32 are inserted in the channels from one end. This can be readily done as the hoses are then deflated and there is clearance in the channels to receive them.
  • the nipples 46 having previously been inserted in the hoses through the holes 54, are secured to the manifold by nuts 56 and packing washers 58, set by a wrench inserted through one of the openings 54. Three openings 54 are closed by flush plugs 60 and the air connection 42 is secured in the fourth opening 54.
  • each spring 24 is inserted endwise through an opening 16 and held in place.
  • the individual plugs 2b can then be attached to the nuts 28 by the bolts 26. Thereafter the foot plate 12 and head plate 14 can be attached and the mandrel is complete.
  • the hoses When the mandrel is to be lowered into a shell the hoses are deflated by exhausting the air pressure through the connection 42 so that the springs can assume their relaxed positions indicated in dotted lines as in FIG. 1 and retract the plugs 26 to bring the lugs 22 within the outer diameter of the tube.
  • the hoses When the mandrel is in place in the shell the hoses are expanded to hold the plugs in the position shown in FIG. 1 in which the lugs 22 engage the corrugatious of the shell establishing a firm driving connection between the mandrel and the shell.
  • the springs Upon completion of the driving the air pressure is exhausted, the springs retract the plugs to clear the shell and the mandrel is withdrawn by any suitable hoisting connection, not shown, as known in the art.
  • the entire structure is much lighter than a mandrel having guts shown in my patent referred to, and the inertia of the mandrel is correspondingly lower. This enables more of the energy of the hammer to be transmitted to the shell being driven, than with previously known mandrels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Piles And Underground Anchors (AREA)

Description

3,365,788 ONS 2 Sheets-Sheet 1- F. RUSCHE CONSTRUCTING WELDED T ULAR SECTI HOLLOW PILE DRIVING DREL 63 9 F M D 0 m Du T E w 8 N w w 1 H F 0 a 3 n n m a m J 0 INVENTOR.
V FREDRIC RUSCHE ATTORNEY Jan. 30, 1968 uscH I 3,355,788
METHOD OF CONSTRUCTING WELDED TUBULAR SECTIONS OF HOLLOW FILE-DRIVING MANDREL Original Filed Nov. 15, 1963 2 Sheets-Sheet 2.
CHANNELS WELDED INSIDE TUBE TUBES WELDED END TO END OUTSIDE I 5 TUBE 8 TO EACH OTHER CHANNELS WELDED TO FIG. 6 INSIDE INVENTOR. FREDRIC 'RUSCHE ATTORNEY United States Patent 3,365,788 METHOD OF CONSTRUCTING WELDED TUBU- LAR SECTIONS OF HOLLOW PILE DRIVING MANDREL Fredric Rusche, Southfield, Mich. (8155 Medina St., Detroit, Mich. 48217) Original application Nov. 15, 1963, Ser. No. 323,941, now Patent No. 3,269,127, dated Aug. 30, 1966. Divided and this application Oct. 21, 1965, Ser. No. 510,430
3 Claims. (Cl. 29-4711) This application is a divisional of Application 323,941, filed Nov. 15, 1963, now Patent No. 3,269,127.
This invention relates to pile driving mandrels of the type disclosed in my US. Patent 3,006,152, issued Oct. 31, 1961, the disclosure of which is incorporated herein by reference.
In pile driving operations it is customary to drive into the ground a stout tubular mandrel surrounded by a thin, relatively delicate casing which casing is to form a mold of a concrete pile. The piles may be of the order of a foot in diameter and may be required to be from about 10 feet to about 80 feet long. The casings are made of thin steel for example of 16 gauge. They may be corrugated spirally as known in the art and as shown for example in the US. patent to McKee, 2,928,252. The assembly of mandrel and casing punches a hole in the earth after which the mandrel is removed, leaving the casing in the hole to form a permanent mold for pouring the concrete pile.
It is of advantage to drive such casings with a solid core mandrel, by which I mean a mandrel, the driving member of which is a circumferentially integral or complete tube which is not split nor made in longitudinal sections. Such solid core mandrels as disclosed in my patent referred to, have been very successful in driving casings but various problems have been encountered which the present invention is intended to solve.
In mandrels of this type the great force of the driving hammer must be transmitted to the thin shell through expressable and retractable connections between the mandrels and the shells. Such connections are shown in that patent in the form of long lines of plugs extending the length of the mandrel. Each plug is movable radially in an opening through the wall of the tubular mandrel to engage and interlock with the corrugations of the shell and thus form a driving connection between the mandrel and the shell. Expansible, flexible fluid pressure chamber formed by hoses or bladders filled with air under pressure are used to express the plugs into contact with the shells, and springs are used to retract the plugs when the air pressure is relieved.
Two forms of plugs and springs have been proposed. In the forms shown in FIGS. 4 and 5 of my patent referred to, circular plugs are placed in circular holes through the wall of the mandrel and these are retracted by a coil spring surrounding each plug inside of the hole. This arrangement requires retaining rings for the springs and clearance between the plug and the hole in which the springs may be placed. This in turn requires all of the force of the driving hammer to be transmitted through the retaining rings. Such structure limits the amount of driving force that can be transmitted without damaging or destroying the force transmitting devices.
Accordingly it has been proposed to make the driving connections or plugs in the form shown in FIGS. 9 through 12 in which a stout elongated plug bears directly against the wall of the hole through which it slides and transmits the force of the hammer on the tube edgewise through the elongated plug to the shell. This permits direct driving contact between the wall of the tube which may be of the order of an inch and a quarter thick and per- 3,365,788 Patented Jan. 30, 1968 "ice mits the use of a plug having a cross section as long as desired, for example of the order of 14 inches. Such a plug, in direct contact with the thick wall of the tube through which it passes, can transmit a very great force without damage to the plug. The length of the plug permits corrugations in its surface or lugs on its surface to match a large number of corrugations in the tube. This can successfully transmit great force to the shell.
While the plugs as just described are successful in transmitting great driving forces to the shell problems arise in connection with the expressing and retracting of the plugs.
As previously proposed the long line of plugs, running the length of the mandrel (which may be as much as feet) is mounted on a single steel channel member running the length of the mandrel. This channel member is pushed radially outward by a hose running the length of the mandrel and filled with air under pressure. The plugs are retracted by pushing the channel radially inward by a number of separate coil springs distributed along the length of the channel, the channel being bolted to all the plugs in one row. This arrangement requires a large number of springs which must be inserted in a large number of holes drilled through the wall of the tube and tapped to receive backing plugs or spring abutments threaded into these holes.
This arrangement has proved inconvenient and expensive. The tubes forming the mandrel are of hard steel through which it is diificult and expensive to bore and tap a large number of holes. On the other hand the elongated openings which support the plugs can be readily and cheaply formed by a cutting torch.
Another problem arises from the existence of the four elongated channels and the necessity of supporting four elongated hoses running the length of the mandrel, keeping them accurately in contact with the channels, and supplying them with air under pressure. This has required an elaborate, heavy and extensive steel structure, known as guts, which is placed inside of the mandrel tube and runs its ent'u'e length. Because of the necessity of having this structure run the entire length of the mandrel it has been impossible to weld the structure to the mandrel tube throughout its length. This has resulted in floating guts, that is guts separated structurally from the mandrel. The large inertia of the guts causes great reaction force on the tube and on the hose connections when the hammer strikes the tube. The tube tends to sink into the earth under the force of the hammer and the guts tend to remain in place. This causes bending or whipping of the guts, vibration, rupture of the air pressure connection to the hoses, and other disadvantages.
It is among the objects of the present invention to provide an improved mandrel of the general type illustrated in my patent referred to and toeliminate the problems arising from floating guts, while providing improved supports or containers for the hoses which supports run the length of the mandrel and are secured to the wall of the mandrel throughout their entire length.
It is another object of the invention to provide an improved arrangement for retracting the plugs which do not require separate openings for the mounting of springs.
It is another object of the invention to provide an improved arrangement of air connections to the hoses which is not subject to damage or disruption by vibration or inertia forces.
These and other objects and advantages of the invention will be apparent from the following description and accompanying drawings, in which the same reference character always designates the same part wherever it occurs.
In the drawings FIG. 1 is a view partly in elevation and partly in section of a mandrel embodying one form of the invention,
FIG. 2 is a section on an enlarged scale on the lines 22 of FIG. 1,
FIG. 3 is a section on a correspondingly enlarged scale on the line 33 of FIG. 1,
FIG. 4 is a diagrammatic section of a portion of a mandrel showing a step in one method of making a mandrel embodying one form of the invention,
FIG. 5 is a diagrammatic elevation showing a step subsequent to that of FIG. 4, and
FIG. 6 is a section similar to FIG. 4 showing a step subsequent to that of FIG. 5.
In the drawings 10 designates a mandrel tube closed at its lower end by a foot plate 12 and closed at its upper end by a head plate or driving plate 14 which is struck by the driving hammer. The mandrel is of the solid core type, by which I mean that the cross section of the tube is a complete integral annulus. It may have a range of wall thickness from approximately an inch and a quarter to about an inch and three quarters. At suitable intervals along its length, for example at about four foot intervals, elongated openings or slits 16 are formed in any suitable manner as by burning with a cutting torch. The openings have rounded ends 18. Preferably wherever an opening occurs, there are four such openings distributed at 90 about the circumference of the tube. A gripping and driving connection for the shell to be driven is placed in each opening 16. This is in the form of a plug .29 provided on its outside surface with a number of slanting lugs 22 which conform to the spacing and pitch of the corrugations of the shell in which the mandrel is to be used. Each plug has rounded ends conforming to the shape of the slit 16 and has a snug but easily sliding fit in the opening. The plugs are expressed into the position providing a gripping and driving connection between tube and shell by expansible hoses inflated with compressed air, and are retracted by springs when the hoses are exhausted or deflated as will be explained.
As shown in FIG. 2 each plug is attached to a fiat retaining and bearing plate 24 by a pair of bolts 26 threaded into nuts 28 welded to the plate. The plate 24 is longer than the opening 16 and is slightly narrower than the width of the opening so that it can be inserted through the opening into the interior of the mandrel and placed approximately parallel to the axis of the tube 10. A retracting'spring 30, between each end of the plate 24 and the tube, urges the plug 20 inwardly. The plate may be fiat and the springs 30 may be leaf springs attached in any suitable manner but I prefer to form the plate and both springs as a single integral spring, having its ends reversely bent to form the springs 30 as shown in FIG. 1. In such case the spring plate 24 may normally (or when not stressed) be bowed or concave with respect to the tube 16, as indicated schematically by dotted lines in FIG. 1. This arrangement is preferred, for the retracting force can be provided principally by the main body of the spring between its recurved ends. The ends 30, while exerting some retracting force as springs, also act as slides for the ends of the spring in flexing from its concave, retracted position to its flat position which holds the plug in shell-engaging position. Each spring 24 urges its plug 20 inwardly and the spring is calibrated so that in its relaxed position the ends ofthe lugs or cleats 22 do not protrude beyond the external diameter of the tube 10.
The lugs are expressed into contact with the shell by air pressure in an inflatable or expansible hose 32 which is supported and confined in a chamber or cage formed by a U-shaped channel member 34 extending substantially the entire length of the tube 10 and welded to the inside of the tube. Both edges of the channel member 34 are welded to the tube at least along lines or lengths which are adjacent both ends of each opening 16. I prefer to weld the channel members to the tube along their entire length.
As shown in FIGS. 1 and3 at the upper end of the mandrel each channel member 34 is cut away as at 36 to receive an annular channel iron 38 the edges of which are welded to the inside of the tube 10 around its entire circumference. The chamber 40 confined between the tube 10 and the channel 38 provides a manifold for delivering air pressure from a pipe connection 42 to the four hoses 32, each of which is closed at its ends, as indicated at 44 in FIG. 1 to form a fluid pressure chamber for operating the plugs. Each hose is connected to the manifold chamber 38 near its upper end but between its ends by a hollow nipple 46. By this construction the interior of the mandrel is entirely free of all unattached heavy structure, the only thing loosely attached to it being the four hoses which are of relatively low inertia. Each channel 34, being welded to the tube throughout its entire length, is an integral part of the tube and cannot move with respect to the tube when the hammer strikes the head plate 14-. The cross section of each hose when inflated is so related to the cross section of the channel chamber, and the modulus of expansion, if any,
of the hose is so related to the force of each spring that when the hose is inflated to drive a pile shell the hose substantially fills the channel. Also the hose is held by air pressure firmly in contact with all four sides of the channel chamber, except possibly in the corners, to provide four firm friction supports for the hose along its entire length. The only solid connection between the hose and the mandrel is at the nipple 46. Since the hose is of relatively low inertia and since the entire length of the hose is firmly supported against the channel iron 34 and the inside of the tube 10, the inertia effects which would tend to cause any relative movement between the hose and the nipple are so low that they can be absorbed by re silience of the hose and by the nipple without rupturing or damaging the air connection.
.A feature of the invention is the construction of the mandrel so that the entire length of each hose supporting cage or channel can be welded to the mandrel tube 10. In this the relative length and diameter of the mandrel are critical. A single mandrel may be as much as 60 feet long. It will in general be not less than 8 feet long. It will have a maximum inside diameter of about 13 /2 inches and this dimension may be as little as 8 /2 inches. Welding of the channel to the tube must be done by welding apparatus, such as a torch or electrode, inserted from the ends of the tube. It is impossible, or at least impractical, to weld the entire length of a channel to the inside of such a tube 60 feet long or even 8 feet long. Consequently I build the mandrel either as indicated generally in FIG. 1, or as shown specifically in FIGS. 4 to 6. A length of the tubing designated 50 in FIG. 1 which may be about four feet long is provided with the appropriate four circumferentially distributed slots 16 and lengths of channel 34 just equal to the length of the section 50 may be welded in place. For an 8 /2 inch (inside diameter) tube I prefer to make the sections about four feet long as this is the greatest practical length along which a section of channel can be welded from opposite ends along its entire length. Both ends of the section 50 and the channels may be finished flat and perpendicular to the axis of the tube and the desired number of such four foot lengthsis then joined by welding as indicated at 52 in FIG. 1. This can be done eflectively and inexpensively on an automatic welding machine using a shielded arc. This welding process provides a straight tube of any desired practical length, for example up to 60 feet, which is smooth on the outside. Each channel 34, which runs the length of the tube, is made of a series of short channel members, butted end to end in alignment. The only openings needed are the oval or elongated plug openings 16 and the four threaded openings 54 for insertion of the nipples 46. The last or top section 50 contains the manifold ring 38.
Preferably the mandrel is assembled as shown more specifically in FIGS. 4 to 6.
First a tube it which may be four feet long having its plug openings 16 near one end, is assembled with four channel members 34, each also four feet long. The channels are welded to the tube with one end of each set back from the end of the tube near which are the plug openings 16. The other end of each channel protrudes from the other end of the tube a corresponding distance, for example about six inches as shown in FIG. 4. A plurality of such tube and channel assemblies are then assembled by inserting the protruding channel ends of one into the recessed end of the other as shown in FIG. 5. The channels are aligned, the tubes and channels abutted and the tubes welded on the outside as described in connection with FIG. 1. Thereafter a Welding torch or electrode is inserted through the plug openings 16 as shown in PEG. 6 to weld the ends of the channel protruding from one tube to the recessed end of the adjacent tube, or to weld the abutted ends of the channels together, or both.
The hoses 32 are inserted in the channels from one end. This can be readily done as the hoses are then deflated and there is clearance in the channels to receive them. The nipples 46, having previously been inserted in the hoses through the holes 54, are secured to the manifold by nuts 56 and packing washers 58, set by a wrench inserted through one of the openings 54. Three openings 54 are closed by flush plugs 60 and the air connection 42 is secured in the fourth opening 54. Then each spring 24 is inserted endwise through an opening 16 and held in place. The individual plugs 2b can then be attached to the nuts 28 by the bolts 26. Thereafter the foot plate 12 and head plate 14 can be attached and the mandrel is complete.
When the mandrel is to be lowered into a shell the hoses are deflated by exhausting the air pressure through the connection 42 so that the springs can assume their relaxed positions indicated in dotted lines as in FIG. 1 and retract the plugs 26 to bring the lugs 22 within the outer diameter of the tube. When the mandrel is in place in the shell the hoses are expanded to hold the plugs in the position shown in FIG. 1 in which the lugs 22 engage the corrugatious of the shell establishing a firm driving connection between the mandrel and the shell. Upon completion of the driving the air pressure is exhausted, the springs retract the plugs to clear the shell and the mandrel is withdrawn by any suitable hoisting connection, not shown, as known in the art.
The entire structure is much lighter than a mandrel having guts shown in my patent referred to, and the inertia of the mandrel is correspondingly lower. This enables more of the energy of the hammer to be transmitted to the shell being driven, than with previously known mandrels.
It is to be understood that the invention may be carried out or practiced in various ways other than the illustrative embodiment described herein and that the terminology employed is illustrative only and does not limit the invention.
1 claim:
1. The method of making a pile-driving mandrel structure free of separate masses and including an elongated tube having a hose-snpporting chamber extending substantially the entire length of the inside of the tube, the length of the tube being so related to its inside diameter that portions of the hose-supporting chamber are inaccessible to welding apparatus insertable into the ends of the tube, which method consists of taking a plurality of short mandrel tubes each having an opening through its wall near one end of the tube for receiving a shell-driving connection, assembling inside of each of said tubes a channel member whose length approximately equals the length of its associated tube with one end of the channel member set in from said one end of its associated tube to form a recess and with the other end of the channel projecting beyond the other end of the tube, welding the edges of each channel member to its associated tube, inserting the protruding portion of one channel member into recessed end of another tube, abutting the tubes with the channel members in alignment, welding the tubes together from the outside and welding the channel which protrudes from one tube to the other tube through the opening in the other tube.
2. The method of making a pile-driving mandrel structure free of separate masses and including an elongated tube having a hose-supporting chamber extending substantially the entire length of the inside of the tube, the length of the tube being so related to its inside diameter that portions of the hose-supporting chamber are inaccessible to welding apparatus insertable into the ends of the tube, which method consists of taking a plurality of short mandrel tubes each having an opening through its wall near one end of the tube for receiving a shell-driving connection, assembling inside of each of said tubes 21 channel member whose length approximately equals the length of its associated tube with one end of the channel member set in from said one end of its associated tube to form a recess and with the other end of the channel projecting beyond the other end of the tube, welding the edges of each channel member to its associated tube, inserting the protruding portion of one channel member into recessed end of another tube, abutting the tubes with the channel members in alignment, Welding the tubes together from the outside, and welding the channel which protrudes from one tube to the aligned channel member in the other tube through the opening in the other tube.
3. The method of making a pile-driving mandrel structure free of separate masses and including an elongated tube having a hose-supporting chamber extending substantially the entire length of the inside of the tube, the length of the tube being so related to its inside diameter that portions of the hose-supporting chamber are inaccessible to welding apparatus insertable into the ends of the tube, which method consists of taking a plurality of short mandrel tubes each having an opening through its wall near one end of the tube for receiving a shell-driving connection, assembling inside of each of said tubes a channel mernber whose length approximately equals the length of its associated tube with one end of the channel member set in from said one end of its associated tube to form a recess and with the other end of the channel projecting beyond the other end of the tube, welding the edges of each channel member to its associated tube, inserting the protruding portion of one channel member into recessed end of another tube, abutting the tubes with the channel members in alignment, welding the tubes together from the outside, and welding the channel which protrudes from one tube to the other tube and the adjacent ends of the aligned channel member through said opening in the other tube.
References Qited UNITED STATES PATENTS 1,698,034 1/1929 Stringfellow 29 471.l 2,015,173 9/1935 Andrus 29471.3 2,164,074 6/1939 Moses et al. 29-471.3 2,3 08,307 1/1943 Robinson 29-487 X 2,943,387 7/1960 Dawson 29-471.1
JOHN F. CAMPBELL, Primdry Examiner,
I. CLINE, Assistant Examiner,

Claims (1)

1. THE METHOD OF MAKING A PILE-DRIVING MANDREL STRUCTURE FREE OF SEPARATE MASSES AND INCLUDING AN ELONGATED TUBE HAVING A HOSE-SUPPORTING CHAMBER EXTENDING SUBSTANTIALLY THE ENTIRE LENGTH OF THE INSIDE OF THE TUBE, THE LENGTH OF THE TUBE BEING SO RELATED TO ITS INSIDE DIAMETER THAT PORTIONS OF THE HOSE-SUPPORTING CHAMBER ARE INACCESSIBLE TO WELDING APPARATUS INSERTABLE INTO THE ENDS OF THE TUBE, WHICH METHOD CONSISTS OF TAKING A PLURALITY OF SHORT MANDREL TUBES EACH HAVING AN OPENING THROUGH ITS WALL NEAR ONE END OF THE TUBE FOR RECEIVING A SHELL-DRIVING CONNECTION, ASSEMBLNG INSIDE OF EACH OF SAID TUBES A CHANNEL MEMBERS WHOSE LENGTH APPROXIMATELY EQUALS THE LENGTHS OF ITS ASSOCIATED TUBE WITH ONE END OF THE CHANNEL MEMBER SET IN FROM SAID ONE END OF ITS ASSOCIATED TUBE TO FORM A RECESS AND WITH THE OTHER END OF THE CHANNEL PROJECTING BEYOND THE OTHER END OF THE TUBE, WELDING THE EDGES OF EACH CHANNEL MEMBER TO ITS ASSOCIATED MEMBER INTO RECESSED PROTRUDING PORTION OF ONE CHANNEL MEMBER INTO RECESSED END OF ANOTHER, TUBE, ABUTTING THE TUBES WITH THE CHANNEL MEMBERS IN ALIGNMENT, WELDING THE TUBES TOGETHER FROM THE OUTSIDE AND WELDING THE CHANNEL WHICH PROTRUDES FROM ONE TUBE TO THE OTHER TUBE THROUGH THE OPENING IN THE OTHER TUBE.
US510430A 1963-11-15 1965-10-21 Method of constructing welded tubular sections of hollow pile driving mandrel Expired - Lifetime US3365788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US510430A US3365788A (en) 1963-11-15 1965-10-21 Method of constructing welded tubular sections of hollow pile driving mandrel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US323941A US3269127A (en) 1963-11-15 1963-11-15 Hollow pile driving mandrel
US510430A US3365788A (en) 1963-11-15 1965-10-21 Method of constructing welded tubular sections of hollow pile driving mandrel

Publications (1)

Publication Number Publication Date
US3365788A true US3365788A (en) 1968-01-30

Family

ID=26984198

Family Applications (1)

Application Number Title Priority Date Filing Date
US510430A Expired - Lifetime US3365788A (en) 1963-11-15 1965-10-21 Method of constructing welded tubular sections of hollow pile driving mandrel

Country Status (1)

Country Link
US (1) US3365788A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1698034A (en) * 1927-03-26 1929-01-08 Biggs Boiler Works Company Pipe joint and method of making the same
US2015173A (en) * 1933-06-17 1935-09-24 Smith Corp A O Uniting metal parts
US2164074A (en) * 1935-12-11 1939-06-27 Comb Eng Co Inc Protective liner for drums
US2308307A (en) * 1939-06-10 1943-01-12 Robinson Engineering Corp Pipe, pipe lining, and method of making same
US2943387A (en) * 1957-10-24 1960-07-05 Lukens Steel Co Process of circumferentially welding steel pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1698034A (en) * 1927-03-26 1929-01-08 Biggs Boiler Works Company Pipe joint and method of making the same
US2015173A (en) * 1933-06-17 1935-09-24 Smith Corp A O Uniting metal parts
US2164074A (en) * 1935-12-11 1939-06-27 Comb Eng Co Inc Protective liner for drums
US2308307A (en) * 1939-06-10 1943-01-12 Robinson Engineering Corp Pipe, pipe lining, and method of making same
US2943387A (en) * 1957-10-24 1960-07-05 Lukens Steel Co Process of circumferentially welding steel pipe

Similar Documents

Publication Publication Date Title
US4420866A (en) Apparatus and process for selectively expanding to join one tube into another tube
US4459067A (en) Method of rock bolting and tube-formed expansion bolt
CA1171310A (en) Expanding hollow tube rock stabilizer
US6354373B1 (en) Expandable tubing for a well bore hole and method of expanding
US3504515A (en) Pipe swedging tool
US4602495A (en) Device and method for removing irregularities in or enlarging an underground duct
US4418457A (en) Apparatus and process for expanding to join a tube into a tube sheet opening
US5110237A (en) Ramming device
US3327483A (en) Pile driving mandrel construction and method for driving extensible piles
US2313625A (en) Collapsible mandrel or core for driving molds for concrete piles
US3006152A (en) Pile driving mandrel
US3365788A (en) Method of constructing welded tubular sections of hollow pile driving mandrel
US3316722A (en) Pile driving mandrel construction and method
US4389763A (en) Apparatus for joining pipe sections by jacking
US4512178A (en) Tube end deforming tool
US2741093A (en) Core for driving pile shells
US3269127A (en) Hollow pile driving mandrel
US3365220A (en) Joint for coupled pile driving mandrel
US1813096A (en) Tube expander and method of expanding tubes
KR102120971B1 (en) Rotating type rock crushing device and the rock crushing method thereby
US3131544A (en) Driving mandrel
US4067200A (en) Device and method for installing ducts in holes produced by soil piercing tool
JP6470601B2 (en) Rock bolt and its construction method
US4462716A (en) Pile driving
US1836140A (en) Apparatus for forming concrete piles

Legal Events

Date Code Title Description
AS Assignment

Owner name: MILLGARD CORPORATION, A CORP. OF MICH.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:RUSCHE, FREDRIC;REEL/FRAME:003961/0476

Effective date: 19811215