US3365324A - Solution development of xerographic latent images - Google Patents
Solution development of xerographic latent images Download PDFInfo
- Publication number
- US3365324A US3365324A US266090A US3365324DA US3365324A US 3365324 A US3365324 A US 3365324A US 266090 A US266090 A US 266090A US 3365324D A US3365324D A US 3365324DA US 3365324 A US3365324 A US 3365324A
- Authority
- US
- United States
- Prior art keywords
- image
- solution
- solid
- electrostatic
- photoconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 claims description 29
- 238000004519 manufacturing process Methods 0.000 claims description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 28
- 239000007787 solid Substances 0.000 description 25
- 239000011787 zinc oxide Substances 0.000 description 14
- 229960001296 zinc oxide Drugs 0.000 description 14
- 239000002245 particle Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 239000011347 resin Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 238000001704 evaporation Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 239000000975 dye Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 230000009965 odorless effect Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- AJDIZQLSFPQPEY-UHFFFAOYSA-N 1,1,2-Trichlorotrifluoroethane Chemical compound FC(F)(Cl)C(F)(Cl)Cl AJDIZQLSFPQPEY-UHFFFAOYSA-N 0.000 description 1
- UOFGSWVZMUXXIY-UHFFFAOYSA-N 1,5-Diphenyl-3-thiocarbazone Chemical compound C=1C=CC=CC=1N=NC(=S)NNC1=CC=CC=C1 UOFGSWVZMUXXIY-UHFFFAOYSA-N 0.000 description 1
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- -1 carbazone compound Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 238000010099 solid forming Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000012905 visible particle Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/022—Layers for surface-deformation imaging, e.g. frost imaging
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G13/00—Electrographic processes using a charge pattern
- G03G13/26—Electrographic processes using a charge pattern for the production of printing plates for non-xerographic printing processes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/16—Developers not provided for in groups G03G9/06 - G03G9/135, e.g. solutions, aerosols
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/16—Developers not provided for in groups G03G9/06 - G03G9/135, e.g. solutions, aerosols
- G03G9/18—Differentially wetting liquid developers
Definitions
- This invention relates to Xerography and particularly to a method or developing an electrostatic image.
- a photoconductive surface may be charged and then exposed to light which causes the charge to leak away in the exposed areas.
- the present invention is not concerned with the manner in which the electrostatic image is formed. In general, it is not concerned with the type of surface carrying the electrostatic image.
- the present invention is directed to the method of toning or developing this image.
- Xerographic processes commonly tone the image by applying toner particles, i.e. solids, to the imagewise charged surface in the form of a powder cloud, or as a dispersion in an electrostatically inert liquid or as a mixture of toner particles and larger inert particles which are brushed or cascaded across the surface. It should be noted that even in the liquid development process, the actual toner is a solid dispersed and not dissolved in the liquid. All of these processes have in common the exposure of the image-bearing surface to an assemblage of fine, highly colored particles and this leads to a number of detrimental aspects common to all such processes.
- toner particles i.e. solids
- Such prior toning may be considered a dirty operation.
- the powder cloud and carrier particle development by their very nature, are prone to produce dust or aerosols which tend to contaminate the developing machine and the surroundings.
- the ink-type liquid of the dispersion processes similarly produce objectionable contamination in the development machine.
- One object on the present invention is to eliminate dirt completely.
- a second object of the present invention is to eliminate all problems of graininess and nonuniformity of particle size.
- the present invention uses a clear, and in a preferred embodiment colorless, solution for toning. There is no dirt associated with it nor are there any problems involving ag lomeration of particles.
- development of the electrostatic image is effected by simple immersion of the image-bearing surface into, and removal from, a solution as described below or by simple swabbing of the surface with such a solution.
- the solution consists of a solvent which is electrically insulating even with the solute in it and of a solute, but there is no solid matter present in the solution when it is applied as a layer on the electrostatic image.
- Development is instantaneous with contact of the surface with the solution. No fixing is required, aside from evaporation of the solvent of the solution leaving the solute as a solid formed with image-wise distribution which may be either fringe distribution or solid area distribution as discussed further below.
- the electrostatic image is usually formed on an organic photoconductor or on selenium or on Zinc oxide in resin.
- the zinc oxide in resin may be rendered hydrophilic and a hydrophobic solute can be used in the developer solution; the end result is a litho printing master as described in copending patent application Ser. No. 45,949, filed July 28, 1%0, and now U.S. Patent 3,152,969, by Donald R. Eastman.
- the present invention may employ any of the photoconductors used in xerography.
- the phenomenon on which this method of development is based is that a latent electrostatic image when coated with an insulated liquid induces a bas-relief (thick or thin) image into this coating.
- the solute forms a solid which constitutes the image. If the solute is a dye, the image is visible; if the solute is a polymer the image is a relief image which may be dyed or used for lithographic printing or reacted with a separate reagent or with the photoconductor itself to form a visible image.
- FIGS. 1, 2 and 3 illustrate schematically a flow chart of one process according to the invention.
- FIGS. 4 and 5 similarly illustrate alternative steps in the process.
- FIG. 6 illustrates a subsequent step employed in some embodiments of the invention.
- FIG. 1 a photoconductive layer 19, consisting for example of zinc oxide in resin, is coated on a conducting support 11 such as paper.
- the front surface of the photoconductor carries an electrostatic image indicated as negative charges 12 image-wise distributed.
- an electrically insulating solution 15 is applied to the charged surface of the layer 10. This solution is applied by dipping the sheet into the solution and removing it, or by swabbing the surface with the solution.
- the solution immediately forms a relief distribution having high areas 16 adjacent to the edges of the electrostatic image, i.e., adjacent to the edges of the charged areas. Practically no solution stays in the uncharged or discharged areas, although for clarity a thin layer 17 is indicated in these areas.
- This fringe development i.e. the changes in thickness of the developing liquid which occur only in areas near which there is a change in the surface charge, is similar to the fringe development well known in xerographic processes employing toner particles carried by plastic or glass beads.
- the solvent of the solution is evaporated leaving the solute as a solid 20 on the electrostatically charged surface of the photoconductor it).
- the solution 15 contains as its solute either colored compounds (dyes) or clear or colored polymeric compounds. All such compounds remain as solids when the solvent is evaporated. Various examples are given below.
- dyes the image is immediately visible or can be further intensified.
- polymers these may be rendered visible by applying a suitable dye which is absorbed by the polymer and rejected by the zinc oxide or vice versa.
- An alternative process employs as the clear liquid for development one which is a liquid at a temperature above room temperature, although still below the temperature at which an electrostatic image would be destroyed. Mere cooling of the liquid to room temperature then forms the solid such as 20, on the charged surface.
- the polymer relief image may be viewed directly as a black-and-white image using Schlieren optics which are well-known and which, by optical interference, render relief images visible as blackand-whi e.
- Schlieren optics which are well-known and which, by optical interference, render relief images visible as blackand-whi e.
- Schlieren optics can be made to give color images.
- FIG. 4 it will be noticed that the only difference between this FIG. 4 and FIG. 2 is the presence of a conducting metallic sheet 26 adjacent to the image being developed or toned.
- a conducting metallic sheet 26 adjacent to the image being developed or toned.
- the solution 25 tends to congregate in and throughout each charged area as indicated in 27 rather than just on the fringes of the charged areas.
- solid image development is obtained.
- the relative merits of solid images and fringe images are known in ordinary xerographic processes.
- FIG. 5 the evaporation of the solvent from the solution leaves a solid image 28 on the surface of the photoconductor.
- the present invention is not con cerned with the chemical nature of the surface on which the electrostatic images exist, except in those cases in which the formed solid 2% or 28 is reacted with the surface material itself.
- the usual forms of xerography have a photoconductor surface and hence the drawings illustrate embodiments of the invention in which the electrostatic image 12 is on a photoconductive surface 10.
- the image or 28 may be hydrophilic on a hydrophobic surface and used for lithoprinting or the images 26 or 28 may be hydrophobic and the photoconductor it) rendered hydrophilic by known methods.
- hydrophilic solutes care must be exercised to be sure that the solution is not rendered sufficiently conducting to destroy the electrostatic image, due to the conductivity induced by the water attracted thereby. In practice, this is not too difficult since the absorption of water by such solutions is slow and evaporation is rapid.
- a relief image 28 may be dyed by a dye, or reacted with a reagent, carried in a brush 29, to form a visible image.
- All such embodiments have the advantages of the present invention; namely the complete elimination of solids from the toning solution as it is applied to the electrostatic image. The solids are formed in situ on the surface after the clear solution has been applied.
- solvents can be used. The requirements are simply that the solution shall have a specific resistance of at least 10 ohm-cm. and a dielectric constant less than 3.
- Suitable solvents are hydrocarbons such as hexanes, heptane, iso-octane, paint thinner, kerosene, medicinal grade mineral oil, toluene, xylene or halogenated hydrocarbons such as carbon tetrachloride, Freon 113, Freon BF, or Fluorolube FS-S.
- Example 1 A xerographic latent image was prepared by imagewise exposure of a charged coating of a zinc oxide in resin photoconductor. This is a standard method of preparing an electrostatic image. The surface was swabbed with a polymer solution containing 5 g. of poly-n-butyl methacrylate in 95 g. of cyclohexane. The image was allowed to air dry. A has-relief image of solid was thus formed on the photoconductor. It was immediately visible by reflected light. It was highly contrasty when viewed through Schlieren optics.
- Example 2 The zinc-oxide resin photoconductor of Example 1 is replaced by a photoconductor consisting of poly-N-vinyl carbazole which is known as an organic photoconductor.
- the same solution as used in Example 1 is applied to an electrostatic image on the surface of this organic photoconductor. When dried down, a has-relief image is formed which is visible when viewed by reflected light or when viewed through Schlieren optics, since the organic photoconductor itself is transparent.
- Example 3 The electrostatic image on a Zinc oxide resin photoconductor as described in Example 1 was swabbed with a solution consisting of a 0.5% solution of A20 Oil Blue Black B (National Aniline Division of Allied Chemical) in toluene further diluted 1 to l with cyclohexane. The direct swabbing of the surface produced a color image.
- A20 Oil Blue Black B National Aniline Division of Allied Chemical
- Example 4 An electrostatic image on the zinc oxide resin photoconductor of Example 1 was swabbed with a 0.2% solution of diphenyl thiocarbazone diluted 1 to 1 with cyclohexane. The carbazone compound reacted with the Zinc oxide and produced a permanent visible pink image.
- Example 5 An electrostatic image on the zinc oxide resin photoconductor of Example 1 was swabbed with a solution consisting of 0.5% of Sudan Black BR (General Dyestuffs) in an odorless paint thinner. The swabbing produced a color image.
- Sudan Black BR General Dyestuffs
- Example 6 An electrostatic image on the zinc oxide resin photoconductor of Example 1 was swabbed with a solution consisting of 0.5% of Hipol Black B (Patent Chemical Co.) in a 1:3 mixture of paint thinner and toluene. The swabbing produced a color image.
- Hipol Black B Patent Chemical Co.
- Example 7 An electrostatic image on the zinc oxide resin photoconductor of Example 1 was swabbed with a solution containing 0.5% of A20 Oil Black (National Aniline) in odorless paint thinner. The swabbing produced a color image.
- A20 Oil Black National Aniline
- said solution being free of solid state matter and consisting of a volatile solvent and a solute that forms a solid when said solvent evaporates, and evaporating said solvent to leave said solute as a solid that is distributed on said surface in accordance with said electrostatic charge image.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Liquid Developers In Electrophotography (AREA)
- Developing Agents For Electrophotography (AREA)
- Photoreceptors In Electrophotography (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US26609063A | 1963-03-18 | 1963-03-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3365324A true US3365324A (en) | 1968-01-23 |
Family
ID=23013139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US266090A Expired - Lifetime US3365324A (en) | 1963-03-18 | Solution development of xerographic latent images |
Country Status (5)
Country | Link |
---|---|
US (1) | US3365324A (en)van) |
BE (1) | BE645287A (en)van) |
DE (1) | DE1472930A1 (en)van) |
FR (1) | FR1383644A (en)van) |
GB (1) | GB1022792A (en)van) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3836384A (en) * | 1968-10-01 | 1974-09-17 | Fuji Photo Film Co Ltd | Imaging systems |
FR2519778A1 (fr) * | 1982-01-11 | 1983-07-18 | Savin Corp | Procede et composition de developpement d'images electrostatiques latentes |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2053494A (en) * | 1934-02-10 | 1936-09-08 | Raymakers Syndicate Ltd | Process and apparatus for surfacing sheet material with pigments, varnishes, lacquers, waterproofing solutions or the like |
US3005726A (en) * | 1958-05-01 | 1961-10-24 | Xerox Corp | Process of developing electrostatic images |
US3010842A (en) * | 1955-08-29 | 1961-11-28 | Xerox Corp | Development of electrostatic images |
US3038073A (en) * | 1959-03-13 | 1962-06-05 | Rca Corp | Electrostatic charging |
US3053179A (en) * | 1960-07-28 | 1962-09-11 | Eastman Kodak Co | Photoconductolithography employing magnesium salts |
US3068115A (en) * | 1961-02-06 | 1962-12-11 | Xerox Corp | Electrostatic emulsion development |
US3076722A (en) * | 1959-04-29 | 1963-02-05 | Rca Corp | Electrostatic printing |
US3083117A (en) * | 1957-06-14 | 1963-03-26 | Schmiedel Ulrich | Process of developing electrostatic images |
US3084043A (en) * | 1959-05-07 | 1963-04-02 | Xerox Corp | Liquid development of electrostatic latent images |
US3096198A (en) * | 1958-12-22 | 1963-07-02 | Ibm | Method for developing latent field images with liquid inks |
US3107169A (en) * | 1958-12-18 | 1963-10-15 | Bruning Charles Co Inc | Processes of producing lithographic electrostatic printing plates |
US3155531A (en) * | 1958-09-23 | 1964-11-03 | Harris Intertype Corp | Meagnetic liquid developer and method for electrostatic images |
US3196009A (en) * | 1962-05-08 | 1965-07-20 | Xerox Co | Electrostatic image liquid deformation development |
US3196011A (en) * | 1962-05-08 | 1965-07-20 | Xerox Corp | Electrostatic frosting |
US3196013A (en) * | 1962-06-07 | 1965-07-20 | Xerox Corp | Xerographic induction recording with mechanically deformable image formation in a deformable layer |
US3241957A (en) * | 1961-06-08 | 1966-03-22 | Harris Intertype Corp | Method of developing electrostatic images and liquid developer |
-
0
- US US266090A patent/US3365324A/en not_active Expired - Lifetime
-
1964
- 1964-02-21 DE DE19641472930 patent/DE1472930A1/de active Pending
- 1964-03-04 FR FR966015A patent/FR1383644A/fr not_active Expired
- 1964-03-13 GB GB10642/64A patent/GB1022792A/en not_active Expired
- 1964-03-16 BE BE645287A patent/BE645287A/xx unknown
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2053494A (en) * | 1934-02-10 | 1936-09-08 | Raymakers Syndicate Ltd | Process and apparatus for surfacing sheet material with pigments, varnishes, lacquers, waterproofing solutions or the like |
US3010842A (en) * | 1955-08-29 | 1961-11-28 | Xerox Corp | Development of electrostatic images |
US3083117A (en) * | 1957-06-14 | 1963-03-26 | Schmiedel Ulrich | Process of developing electrostatic images |
US3005726A (en) * | 1958-05-01 | 1961-10-24 | Xerox Corp | Process of developing electrostatic images |
US3155531A (en) * | 1958-09-23 | 1964-11-03 | Harris Intertype Corp | Meagnetic liquid developer and method for electrostatic images |
US3107169A (en) * | 1958-12-18 | 1963-10-15 | Bruning Charles Co Inc | Processes of producing lithographic electrostatic printing plates |
US3096198A (en) * | 1958-12-22 | 1963-07-02 | Ibm | Method for developing latent field images with liquid inks |
US3038073A (en) * | 1959-03-13 | 1962-06-05 | Rca Corp | Electrostatic charging |
US3076722A (en) * | 1959-04-29 | 1963-02-05 | Rca Corp | Electrostatic printing |
US3084043A (en) * | 1959-05-07 | 1963-04-02 | Xerox Corp | Liquid development of electrostatic latent images |
US3053179A (en) * | 1960-07-28 | 1962-09-11 | Eastman Kodak Co | Photoconductolithography employing magnesium salts |
US3068115A (en) * | 1961-02-06 | 1962-12-11 | Xerox Corp | Electrostatic emulsion development |
US3241957A (en) * | 1961-06-08 | 1966-03-22 | Harris Intertype Corp | Method of developing electrostatic images and liquid developer |
US3196009A (en) * | 1962-05-08 | 1965-07-20 | Xerox Co | Electrostatic image liquid deformation development |
US3196011A (en) * | 1962-05-08 | 1965-07-20 | Xerox Corp | Electrostatic frosting |
US3196013A (en) * | 1962-06-07 | 1965-07-20 | Xerox Corp | Xerographic induction recording with mechanically deformable image formation in a deformable layer |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3836384A (en) * | 1968-10-01 | 1974-09-17 | Fuji Photo Film Co Ltd | Imaging systems |
FR2519778A1 (fr) * | 1982-01-11 | 1983-07-18 | Savin Corp | Procede et composition de developpement d'images electrostatiques latentes |
Also Published As
Publication number | Publication date |
---|---|
DE1472930A1 (de) | 1969-08-07 |
GB1022792A (en) | 1966-03-16 |
BE645287A (en)van) | 1964-07-16 |
FR1383644A (fr) | 1964-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2839400A (en) | Electrostatic printing | |
US2993787A (en) | Electrostatic printing | |
US2862815A (en) | Electrophotographic member | |
US2917385A (en) | Reflex xerography | |
US3547627A (en) | Lithographic printing master and method employing a crystalline photoconductive imaging layer | |
US3776630A (en) | Electrostatic printing method and apparatus | |
US3394001A (en) | Electrophotographic sensitive material containing electron-donor dye layers | |
US3556781A (en) | Migration imaging process | |
US4199356A (en) | Electrophotographic process, of transferring a magnetic toner to a copy member having at least 3×1013 ohm-cm resistance | |
US2913353A (en) | Method and apparatus for developing electrostatic image | |
US3077398A (en) | Xerographic plate made by cast coating | |
US3795011A (en) | Electrostatic printing device | |
US3311490A (en) | Developing electrostatic charge image with a liquid developer of two immiscible phases | |
US4013462A (en) | Migration imaging system | |
US3271146A (en) | Xeroprinting with photoconductors exhibiting charge-storage asymmetry | |
US4065307A (en) | Imaged agglomerable element and process of imaging | |
US3901698A (en) | Method of reversal development using two electrostatic developers | |
US3884684A (en) | Electrostatic developing process employing a porous photoconductive member | |
US3758327A (en) | Transfer of liquid developed electrographic images | |
US3365324A (en) | Solution development of xerographic latent images | |
US3723110A (en) | Electrophotographic process | |
US4101321A (en) | Imaging system | |
US3677750A (en) | Photoelectrosolographic imaging process | |
US3256197A (en) | Liquid developer for electrostatic charge images | |
US3414409A (en) | Particle transfer |