US3363700A - Rotary and hammer drill - Google Patents

Rotary and hammer drill Download PDF

Info

Publication number
US3363700A
US3363700A US482246A US48224665A US3363700A US 3363700 A US3363700 A US 3363700A US 482246 A US482246 A US 482246A US 48224665 A US48224665 A US 48224665A US 3363700 A US3363700 A US 3363700A
Authority
US
United States
Prior art keywords
hammer
cam
anvil
rotary
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US482246A
Inventor
Jr Frank C Bogusch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Millers Falls Co
Original Assignee
Millers Falls Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Millers Falls Co filed Critical Millers Falls Co
Priority to US482246A priority Critical patent/US3363700A/en
Application granted granted Critical
Publication of US3363700A publication Critical patent/US3363700A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/06Means for driving the impulse member
    • B25D11/10Means for driving the impulse member comprising a cam mechanism
    • B25D11/102Means for driving the impulse member comprising a cam mechanism the rotating axis of the cam member being coaxial with the axis of the tool
    • B25D11/104Means for driving the impulse member comprising a cam mechanism the rotating axis of the cam member being coaxial with the axis of the tool with rollers or balls as cam surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2211/00Details of portable percussive tools with electromotor or other motor drive
    • B25D2211/06Means for driving the impulse member
    • B25D2211/062Cam-actuated impulse-driving mechanisms
    • B25D2211/065Cam-actuated impulse-driving mechanisms with ball-shaped or roll-shaped followers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2211/00Details of portable percussive tools with electromotor or other motor drive
    • B25D2211/06Means for driving the impulse member
    • B25D2211/062Cam-actuated impulse-driving mechanisms
    • B25D2211/067Cam-actuated impulse-driving mechanisms wherein the cams are involved in a progressive mutual engagement with increasing pressure of the tool to the working surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18024Rotary to reciprocating and rotary

Definitions

  • This invention relates to a combination rotary and hammer drill driven by a rotary motor and generally having the characteristics of a portable hand-held power tool.
  • the principal object of this invention is to provide a combination rotary and hammer drill which is relatively economical, reliable, long lasting and of a compact size.
  • a combination rotary and hammer drill utilizing an axial cam mechanism formed of a pair of interengaging conical cam surfaces and providing a rolling means on one cam surface and a cam means on the other cam surface for engaging the rolling means to thrust the two cam surfaces apart and by providing the cam means with-a greater height than the rolling means to prevent the rolling means from engaging the opposite cam surface during impact, thus protecting the rolling means from transmitting impact loads.
  • This expedient protects the rolling means from wear caused by the transfer of impact loads.
  • FIG. 1 is a fragmentary elevational view with portions cut away of the nose or front end of a combination rotary and hammer drill embodying the present invention
  • FIG. 2 is a section taken on line 22 of FIG. 1;
  • FIG. 3 is a section taken on line 3-3 of FIG. 1;
  • FIG. 4 is a section taken on line 4-4 of FIG. 1;
  • FIG. 5 is a section taken on line 55 of FIG. 1;
  • FIG. 6 is a section similar to FIG. 5 and showing the cam surfaces immediately after impact and while the cam lobes on one surface are disengaged from the rolling means on the other cam surface and are riding on the portions of the cam surface intermediate the rolling means;
  • FIG. 7 is a fragmentary diagrammatic view illustrating a cross section of the conical cam surfaces lying in a plane and showing the position of the cam surfaces immediately prior to engagement between the cam lobes and the rolling means;
  • FIG. 8 is similar to FIG. 7 and shows the cam lobes engaging the rolling means to thrust the hammer away from the anvil;
  • FIG. 9 is similar to FIGS. 7 and 8 and shows the cam lobes disengaged from the rolling means and impacting with the hammer.
  • FIG. 10 is a fragmentary section illustrating an alternative embodiment of impact mechanism.
  • the combination rotary hammer drill 1 is shown fragmentarily in FIG. 1 and includes a casing 2 containing a nose or front end 3.
  • the drill 1 contains a motor (not a drive shaft 4 mounted in bearings 5 disposed in the rear of the nose 3.
  • a spindle 6 carries a suitable chuck 7 and is mounted in a sleeve bearing 8 provided in the front end of the nose 3.
  • the spindle 6 is located forward of and in axial alignment with the drive shaft 4.
  • the nose 3 of the casing 2 can be formed of several parts attached together by means such as the threaded portions shown in FIG. 1.
  • the chuck 7 i arranged to hold a suitable hit (not shown) which can be either a rotary drill bit or a hammer drill bit, such as will be used in drilling masonry.
  • the rear end of the spindle 6 is provided with an en larged shoulder 11 and a reduced diameter stem 12 projecting rearwardly from the shoulder 11.
  • An anvil 13 having an internal axial bore 14 is press-fitted on the reduced stem 12 of the spindle 6 to seat against the rear face of the shoulder 11 in a manner rigidly attaching the anvil 13 to the spindle 6 so that both rotate and move axially as an integral member.
  • the forward end of the drive shaft 4 is provided with splines 15 which project into the axial bore 14 of the anvil 13 at its rear end and slida'bly engage cooperating splines provided in the rear end of the bore 14, thus causing the drive shaft 4 to have a rotary driving engagement with the anvil 13.
  • a spring 17 is located between the rear end of the spindle 6 and the front end of the drive shaft 4 and seats in a pocket 18 provided in the rear end of the spindle 6.
  • the spring 17 provides a relatively small biasing force constantly urging the spindle 6 axially forward away from the drive shaft 4.
  • the spring 17 can be easily overcome during operation of the tool by the operator pressing the tool axially forward against the work.
  • the rear end of the anvil 13 is formed as a conical cam surface 19 which diverges forwardly and outwardly relative to the tool as shown in FIG. 1.
  • the surface of the conical cam surface 19 is located at about 45 to the axis of the spindle 6 and drive shaft 4.
  • a fixed hammer 20 is fixed in the casing nose 3 immediately to the rear of the conical cam surface 19 on the anvil 13.
  • the hammer 20 contains a conical cam surface 21 facing forward and shaped to conform substantially with the conical cam surface 19 on the rear end of the anvil 13.
  • the hammer 20 is termed a hammer because, as will be seen in the description of the operation of the tool, it reciprocates axially with the tool casing 2 during tool operation and delivers a percussive impact to the anvil 13 which in turn transmits such impact to the drill bit (not shown) mounted in the chuck 7.
  • the conical cam surface 21 on the hammer 2t] contains several angularly spaced rollers 22 located on its face and rotatively mounted in roller pockets 23, which hold the rollers 22 loosely enough to permit free rotation.
  • the major portion of each roller 22 is disposed in its pocket 23 while a minor portion of the periphery of the roller 22 extends from the pocket 23 above the conical cam surface 21.
  • the rollers 22 are free to rotate while they are locked within their pockets 23.
  • the walls of each pocket 23 extend around its roller 22 substantially beyond its diametrical center to hold the roller 22 within the pocket.
  • the rollers 22 are inserted axially into the hammer pockets 23 prior to assembly of the casing nose 3.
  • the conical cam surface 19 on the anvil 13 is provided with several cam lobes 25 which extend above the surrounding cam surface 19 and are adapted to engage the rollers 22 on the hammer cam surface 21.
  • the number of cam lobes 25, four are shown in the drawings, is the same as the number of rollers 22 on the hammer cam surface 21, and the cam lobes 25 are angularly spaced so that each cam lobes 25 will engage a corresponding roller 22 simultaneously during the operation of the tool.
  • Each cam lobe 25 is provided with a front-lifting ramp 26 which is located in a plane extending at an angle to the axis intermediate a radial plane and a tangential plane so that the cam lobe 25 will lift the hammer during engagement with a cam roller 22 in a smooth motion, which is substantially less than an abrupt motion, thus eliminating a percussive or impact axial motion.
  • the rear ramp 27 on each cam lobe lies substantially in a radial plane so that the cam lobe 25 will provide a substantially abrupt disengagement between the cam lobe 25 and a roller 22 as the cam lobe rotates by a roller. Abrupt disengagement between a cam lobe 25 and a corresponding roller 22 is required to provide the necessary impact action of the hammer mechanism.
  • each cam lobe 25 above its surrounding anvil cam surface 19 is substantially greater than the height of each roller 22 above its surrounding hammer cam surface 21 so that the rollers 22 do not engage the anvil cam surface 19 when the cam lobes 25 are disengaged from the rollers 22.
  • This arrangement ensures that the rollers 22 on the hammer cam surface 21 do not transmit or provide an impact force to the anvil 13 as the cam lobes 25 drop off of the rollers 22. It is believed to be obvious at this time that the impact force is created after the cam lobes 25 engage corresponding rollers 22 to force the cam surfaces 19 and 21 apart and then drop otf of the rollers 22 so that the cam lobes 25 re-engage the surrounding hammer cam surface 21 thus creating an impact.
  • a thrust bearing 29 is mounted on the spindle 6 immediately forward of the anvil 13 and is held in place against the front end of the anvil 13 by a lock ring 30 engaged around the spindle 6.
  • a control ring 31 is disposed within the casing nose 3 surrounding the anvil 13. It is carried by radial pins 32 extending radially outward through the casing nose 3 and fixed in a control sleeve 33 surrounding the casing nose 3. The control ring 31 is adapted to engage the bearing 29 and prevent the spindle 6 and anvil 13 from moving rearwardly sufiiciently to provide an impact between the anvil 13 and the hammer 20.
  • the anvil 13 and hammer 20 with the conical cam surfaces 19 and 21 enables the reduction of the diameter of the impact mechanism.
  • the height of the rollers 22 above the pockets 23 can be less for a given hammer travel as compared to an impact mechanism having engaging surfaces located at right angles to the axis of the mechanism.
  • the control ring 31 can be moved sufficiently rearward to allow the anvil 13 to impact with the hammer 20 by rotating the control sleeve 33.
  • the pins 32 are located in L-shaped cam slots 34 provided in the casing nose 3, as shown in FIG. 4.
  • the L-shaped slots 34 include a short leg 35 and a long leg 36. The movement of the pins 32 into alternate legs 35 and 36 provides the alternate type of drilling operation, either pure rotary drilling or combined rotary and hammer drilling.
  • the control ring 31 When the pins 32 are disposed in the short legs 35 of the L-shaped slots 34, the control ring 31 is located sufficiently forward to prevent the anvil 13 from engaging the hammer 20. Alternately, when the pins 32 are disposed in the long legs 36 of the slots 34, the control ring 31 is moved sufficiently rearward to allow the anvil 13 to engage and impact with the hammer 20. The pins 32 are located in the alternate legs 35 or 36 merely by turning the control sleeve 33.
  • a spring 38 is located between the interior of the front end of the nose 3 and the control ring 31 to constantly urge the control ring 31 rearwardly thus to hold the radial pins 32 in the ends of either legs 35 or 36 of the L-shaped slots 34.
  • control sleeve 33 is rotated to dispose the pins 32 in the long legs 36 of the slots 34 so as to move the control ring 31 rearward to allow percussive impact between the anvil 13 and the hammer 20.
  • the motor of the tool 1 is rotating the drive shaft 4, as a result, transmitting rotary motion through the anvil 13 to the spindle 6 and driving the chuck 7 which, it is assumed, holds a suitable percussion drill bit.
  • control sleeve 33 is rotated to locate the radial pins 32 in the short legs 35 of the slots 34, thus locating the control ring 31 in a forward position where it engages the bearings 29 and holds the spindle 6 in a forward position where the anvil 13 cannot engage the hammer 20.
  • the drive shaft 4 simply turns the anvil 13 and spindle 6.
  • FIG. 10 illustrates a second embodiment of the tool wherein the rollers 22 are replaced with a pair of ball bearings 40 which serve as the rolling means for thrusting the anvil 13 forward each time the cam lobe 25 of the anvil engages a corresponding pair of ball bearings 40.
  • the drill shown in FIG. 10 is identical to the drill of FIG. 1.
  • a spindle mounted on said frame in axial alignment with said shaft for rotary and axial movement and having means for carrying a drill bit;
  • an anvil carried by said spindle to rotate with it and having a conical cam surface
  • a hammer mounted on said frame rearwardly of said anvil and having a conical cam surface for engaging the conical cam surface on said anvil;
  • rolling means including an elongated roller mounted on one of said conical cam surfaces;
  • said elongated cam being located to simultaneously engage said elongated roller along substantially the full length of said roller.
  • the height of said elongated roller above its conical cam surface is less than the height of said elongated 20 cam above its conical cam surface so that said rolling means is free of engagement between said cam surfaces after said cam means moves off of said roller means.
  • said rolling means is mounted on the cam surface of said hammer.
  • the tool of claim 1 including:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling And Boring (AREA)
  • Percussive Tools And Related Accessories (AREA)

Description

Jan. 16,1968 F. c. BOGUSCH, JR 3,363,700
ROTARY AND HAMMER DRILL Filed Aug. 24, 1965 2 Sheets-Sheet l INVENTOR.
' FRANK 0. soausau, JR. F/GJ BY QM wT-vuw:
ATTORNEY Jan. 16, 1968 c, BOGUSCH, JR 3,363,700
ROTARY AND HAMMER DRILL Filed Aug. 24, 1965 2 Sheets-Sheet 2 INVENTOR FRANK 6. BOGUSCH, JR.
ATTORNEY Q wToLLw:
United States Patent Ofiice ABSTRACT OF THE DISCLOSURE A power hammer that simultaneously impacts and to tates a bit and including an electric motor rotating a slid ably mounted anvil riding against a hammer fixed in the tool casing. The anvil and hammer include cooperating cam surfaces which periodically engage to deliver a series of axial impacts to the tool bit as it rotates.
This invention relates to a combination rotary and hammer drill driven by a rotary motor and generally having the characteristics of a portable hand-held power tool.
The principal object of this invention is to provide a combination rotary and hammer drill which is relatively economical, reliable, long lasting and of a compact size.
Other important objects of this invention are: to provide a combination rotary and hammer drill mechanism driven by a rotary motor having a cam mechanism with good wearing qualities; to provide a combination rotary and hammer drill mechanism having a cam mechanism containing rotary elements which are protected from damage by the impact forces created in the mechanism; to provide a combination rotary and hammer drill mechanism in which the impact force loads are relatively distributed to reduce impact load wear on the mechanism; and to provide a combination rotary and hammer drill mechanism of the axial cam type having a relatively small diameter.
In brief, the foregoing objects are attained in a combination rotary and hammer drill utilizing an axial cam mechanism formed of a pair of interengaging conical cam surfaces and providing a rolling means on one cam surface and a cam means on the other cam surface for engaging the rolling means to thrust the two cam surfaces apart and by providing the cam means with-a greater height than the rolling means to prevent the rolling means from engaging the opposite cam surface during impact, thus protecting the rolling means from transmitting impact loads. This expedient protects the rolling means from wear caused by the transfer of impact loads.
The invention is described in connection with the ac companying drawings wherein:
FIG. 1 is a fragmentary elevational view with portions cut away of the nose or front end of a combination rotary and hammer drill embodying the present invention;
FIG. 2 is a section taken on line 22 of FIG. 1;
FIG. 3 is a section taken on line 3-3 of FIG. 1;
FIG. 4 is a section taken on line 4-4 of FIG. 1;
FIG. 5 is a section taken on line 55 of FIG. 1;
FIG. 6 is a section similar to FIG. 5 and showing the cam surfaces immediately after impact and while the cam lobes on one surface are disengaged from the rolling means on the other cam surface and are riding on the portions of the cam surface intermediate the rolling means;
FIG. 7 is a fragmentary diagrammatic view illustrating a cross section of the conical cam surfaces lying in a plane and showing the position of the cam surfaces immediately prior to engagement between the cam lobes and the rolling means;
FIG. 8 is similar to FIG. 7 and shows the cam lobes engaging the rolling means to thrust the hammer away from the anvil;
FIG. 9 is similar to FIGS. 7 and 8 and shows the cam lobes disengaged from the rolling means and impacting with the hammer; and
FIG. 10 is a fragmentary section illustrating an alternative embodiment of impact mechanism.
The combination rotary hammer drill 1 is shown fragmentarily in FIG. 1 and includes a casing 2 containing a nose or front end 3. The drill 1 contains a motor (not a drive shaft 4 mounted in bearings 5 disposed in the rear of the nose 3. A spindle 6 carries a suitable chuck 7 and is mounted in a sleeve bearing 8 provided in the front end of the nose 3. The spindle 6 is located forward of and in axial alignment with the drive shaft 4. As shown in the drawing, the nose 3 of the casing 2 can be formed of several parts attached together by means such as the threaded portions shown in FIG. 1. The chuck 7 i arranged to hold a suitable hit (not shown) which can be either a rotary drill bit or a hammer drill bit, such as will be used in drilling masonry.
The rear end of the spindle 6 is provided with an en larged shoulder 11 and a reduced diameter stem 12 projecting rearwardly from the shoulder 11. An anvil 13 having an internal axial bore 14 is press-fitted on the reduced stem 12 of the spindle 6 to seat against the rear face of the shoulder 11 in a manner rigidly attaching the anvil 13 to the spindle 6 so that both rotate and move axially as an integral member.
The forward end of the drive shaft 4 is provided with splines 15 which project into the axial bore 14 of the anvil 13 at its rear end and slida'bly engage cooperating splines provided in the rear end of the bore 14, thus causing the drive shaft 4 to have a rotary driving engagement with the anvil 13. A spring 17 is located between the rear end of the spindle 6 and the front end of the drive shaft 4 and seats in a pocket 18 provided in the rear end of the spindle 6. The spring 17 provides a relatively small biasing force constantly urging the spindle 6 axially forward away from the drive shaft 4. The spring 17 can be easily overcome during operation of the tool by the operator pressing the tool axially forward against the work.
The rear end of the anvil 13 is formed as a conical cam surface 19 which diverges forwardly and outwardly relative to the tool as shown in FIG. 1. Generally, the surface of the conical cam surface 19 is located at about 45 to the axis of the spindle 6 and drive shaft 4. A fixed hammer 20 is fixed in the casing nose 3 immediately to the rear of the conical cam surface 19 on the anvil 13. The hammer 20 contains a conical cam surface 21 facing forward and shaped to conform substantially with the conical cam surface 19 on the rear end of the anvil 13. The hammer 20 is termed a hammer because, as will be seen in the description of the operation of the tool, it reciprocates axially with the tool casing 2 during tool operation and delivers a percussive impact to the anvil 13 which in turn transmits such impact to the drill bit (not shown) mounted in the chuck 7.
The conical cam surface 21 on the hammer 2t] contains several angularly spaced rollers 22 located on its face and rotatively mounted in roller pockets 23, which hold the rollers 22 loosely enough to permit free rotation. The major portion of each roller 22 is disposed in its pocket 23 while a minor portion of the periphery of the roller 22 extends from the pocket 23 above the conical cam surface 21. Thus, the rollers 22 are free to rotate while they are locked within their pockets 23. In other words, the walls of each pocket 23 extend around its roller 22 substantially beyond its diametrical center to hold the roller 22 within the pocket. The rollers 22 are inserted axially into the hammer pockets 23 prior to assembly of the casing nose 3.
The conical cam surface 19 on the anvil 13 is provided with several cam lobes 25 which extend above the surrounding cam surface 19 and are adapted to engage the rollers 22 on the hammer cam surface 21. The number of cam lobes 25, four are shown in the drawings, is the same as the number of rollers 22 on the hammer cam surface 21, and the cam lobes 25 are angularly spaced so that each cam lobes 25 will engage a corresponding roller 22 simultaneously during the operation of the tool.
Each cam lobe 25 is provided with a front-lifting ramp 26 which is located in a plane extending at an angle to the axis intermediate a radial plane and a tangential plane so that the cam lobe 25 will lift the hammer during engagement with a cam roller 22 in a smooth motion, which is substantially less than an abrupt motion, thus eliminating a percussive or impact axial motion. The rear ramp 27 on each cam lobe lies substantially in a radial plane so that the cam lobe 25 will provide a substantially abrupt disengagement between the cam lobe 25 and a roller 22 as the cam lobe rotates by a roller. Abrupt disengagement between a cam lobe 25 and a corresponding roller 22 is required to provide the necessary impact action of the hammer mechanism.
The height of each cam lobe 25 above its surrounding anvil cam surface 19 is substantially greater than the height of each roller 22 above its surrounding hammer cam surface 21 so that the rollers 22 do not engage the anvil cam surface 19 when the cam lobes 25 are disengaged from the rollers 22. This arrangement ensures that the rollers 22 on the hammer cam surface 21 do not transmit or provide an impact force to the anvil 13 as the cam lobes 25 drop off of the rollers 22. It is believed to be obvious at this time that the impact force is created after the cam lobes 25 engage corresponding rollers 22 to force the cam surfaces 19 and 21 apart and then drop otf of the rollers 22 so that the cam lobes 25 re-engage the surrounding hammer cam surface 21 thus creating an impact.
Means is shown in FIG. 1, for selectively limiting the drill to a rotary drilling motion, without impact, when desired. A thrust bearing 29 is mounted on the spindle 6 immediately forward of the anvil 13 and is held in place against the front end of the anvil 13 by a lock ring 30 engaged around the spindle 6. A control ring 31 is disposed within the casing nose 3 surrounding the anvil 13. It is carried by radial pins 32 extending radially outward through the casing nose 3 and fixed in a control sleeve 33 surrounding the casing nose 3. The control ring 31 is adapted to engage the bearing 29 and prevent the spindle 6 and anvil 13 from moving rearwardly sufiiciently to provide an impact between the anvil 13 and the hammer 20.
Arranging the impact mechanism so that the rollers 22 do not transmit impact forces protects the rollers 22 from rapid wear. As a result, the impact mechanism has good wearing characteristics.
Providing the anvil 13 and hammer 20 with the conical cam surfaces 19 and 21 enables the reduction of the diameter of the impact mechanism. In addition, the height of the rollers 22 above the pockets 23 can be less for a given hammer travel as compared to an impact mechanism having engaging surfaces located at right angles to the axis of the mechanism.
The control ring 31 can be moved sufficiently rearward to allow the anvil 13 to impact with the hammer 20 by rotating the control sleeve 33. The pins 32 are located in L-shaped cam slots 34 provided in the casing nose 3, as shown in FIG. 4. The L-shaped slots 34 include a short leg 35 and a long leg 36. The movement of the pins 32 into alternate legs 35 and 36 provides the alternate type of drilling operation, either pure rotary drilling or combined rotary and hammer drilling.
When the pins 32 are disposed in the short legs 35 of the L-shaped slots 34, the control ring 31 is located sufficiently forward to prevent the anvil 13 from engaging the hammer 20. Alternately, when the pins 32 are disposed in the long legs 36 of the slots 34, the control ring 31 is moved sufficiently rearward to allow the anvil 13 to engage and impact with the hammer 20. The pins 32 are located in the alternate legs 35 or 36 merely by turning the control sleeve 33. A spring 38 is located between the interior of the front end of the nose 3 and the control ring 31 to constantly urge the control ring 31 rearwardly thus to hold the radial pins 32 in the ends of either legs 35 or 36 of the L-shaped slots 34.
Operation At the start of operation, we assume that the control sleeve 33 is rotated to dispose the pins 32 in the long legs 36 of the slots 34 so as to move the control ring 31 rearward to allow percussive impact between the anvil 13 and the hammer 20. The motor of the tool 1 is rotating the drive shaft 4, as a result, transmitting rotary motion through the anvil 13 to the spindle 6 and driving the chuck 7 which, it is assumed, holds a suitable percussion drill bit. The operator presses downwardly on the tool 1 to force the bit against a work surface and, as a result, compresses the spring 17 to force the anvil 13 against the hammer 20. As the cam lobes 25 on the anvil 13 rotate, the front ramps 26 of each lobe 25 will engage and ride up on a corresponding roller 22 resulting in thrusting the hammer 20 and the tool casing 2 away from the anvil 13. This action is shown in FIGS. 7 and 8. Immediately thereafter, the cam lobe 25 will rotate past the roller 22 and drop off of it abruptly, as shown in FIG. 9, thus allowing the thrusting force applied to the drill by the operator to cause the hammer 20 to move forward against the anvil 13 with an impacting engagement. The impact engagement takes place between the cam lobes 25 and the conical hammer cam surface 21, without the rollers 22 engaging the anvil 13, thus preventing any impact force being transmitted through the rollers 22. The foregoing operation will take place periodically to apply a series of axial impacts to the drill bit held in the chuck 7. Hence, the tool applies a combination rotary and axial hammering motion to the drill bit.
In the case where it is desired to eliminate the axial hammering motion of the tool, the control sleeve 33 is rotated to locate the radial pins 32 in the short legs 35 of the slots 34, thus locating the control ring 31 in a forward position where it engages the bearings 29 and holds the spindle 6 in a forward position where the anvil 13 cannot engage the hammer 20. In this position the drive shaft 4 simply turns the anvil 13 and spindle 6.
FIG. 10 illustrates a second embodiment of the tool wherein the rollers 22 are replaced with a pair of ball bearings 40 which serve as the rolling means for thrusting the anvil 13 forward each time the cam lobe 25 of the anvil engages a corresponding pair of ball bearings 40. Otherwise than for the substitution of the bearings 40 for the rollers 22, the drill shown in FIG. 10 is identical to the drill of FIG. 1.
Although a number of embodiments of the invention are illustrated and described in detail, it will be understood that the invention is not limited simply to the described embodiments, but contemplates other embodiments and variations which are obvious from an understanding of the described embodiments and are embraced within the claims of the invention.
Having described my invention, I claim:
1. A drilling tool comprising:
a frame;
a rotary shaft mounted on said frame;
a spindle mounted on said frame in axial alignment with said shaft for rotary and axial movement and having means for carrying a drill bit;
means interconnecting said shaft and spindle for transmitting torque therebetween and allowing said pindle to move axially relative to said shaft;
an anvil carried by said spindle to rotate with it and having a conical cam surface;
a hammer mounted on said frame rearwardly of said anvil and having a conical cam surface for engaging the conical cam surface on said anvil;
sai-d conical cam surfaces extending at substantially 45 degree angles to the axes of said shaft and spindle;
rolling means including an elongated roller mounted on one of said conical cam surfaces; and
cam means including an elongated cam mounted on the other of said conical cam surfaces for periodically engaging said elongated roller to force said two cam surfaces apart and to periodically drive said drill bit forwardly;
said elongated cam being located to simultaneously engage said elongated roller along substantially the full length of said roller.
2. The tool of claim 1 wherein:
the height of said elongated roller above its conical cam surface is less than the height of said elongated 20 cam above its conical cam surface so that said rolling means is free of engagement between said cam surfaces after said cam means moves off of said roller means.
3. The tool of claim 1 wherein:
said rolling means is mounted on the cam surface of said hammer.
4. The tool of claim 1 including:
selective means for holding said hammer and anvil axially apart to prevent the drill from producing axial impacts.
References Cited UNITED STATES PATENTS 1,044,790 11/1912 Lange 173109 X 2,869,374 1/1959 Morris 74-22 2,942,852 6/1960 Muthmann 173-109 2,974,533 3/1961 Demo 173-123 X 3,119,274 1/1964 Short 17448 X 3,163,237 12/1964 Fulop 173-109 FRED C. MATTERN, JR., Primary Examiner. L. P. KESSLER, Assistant Examiner.
US482246A 1965-08-24 1965-08-24 Rotary and hammer drill Expired - Lifetime US3363700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US482246A US3363700A (en) 1965-08-24 1965-08-24 Rotary and hammer drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US482246A US3363700A (en) 1965-08-24 1965-08-24 Rotary and hammer drill

Publications (1)

Publication Number Publication Date
US3363700A true US3363700A (en) 1968-01-16

Family

ID=23915320

Family Applications (1)

Application Number Title Priority Date Filing Date
US482246A Expired - Lifetime US3363700A (en) 1965-08-24 1965-08-24 Rotary and hammer drill

Country Status (1)

Country Link
US (1) US3363700A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1652685A1 (en) * 1968-02-08 1970-12-10 Hilti Ag Switching device for electro-pneumatic hammer drills
US3835715A (en) * 1972-07-13 1974-09-17 Black & Decker Mfg Co Hammer drill mechanism
EP0499459A2 (en) * 1991-02-13 1992-08-19 John Patrick Manning Powered tool
WO2003028958A1 (en) * 2001-10-01 2003-04-10 Mk-Produkter, Mekanik & Kemi Ab A percussion device
US6684964B2 (en) * 2002-06-17 2004-02-03 Bob B. Ha Hammer drill
US20060016612A1 (en) * 2004-07-09 2006-01-26 Ha Bob B Rolling hammer drill
US20070289760A1 (en) * 2006-06-16 2007-12-20 Exhaust Technologies, Inc. Shock attenuating coupling device and rotary impact tool
US8439133B2 (en) 2010-01-11 2013-05-14 Nighthawk Energy Services Canada Ltd. Down hole apparatus for generating a pusling action
WO2014064047A1 (en) * 2012-10-26 2014-05-01 Atlas Copco Industrial Technique Ab Drilling tool with a flexible spindle feeding
US9488010B2 (en) 2012-03-26 2016-11-08 Ashmin, Lc Hammer drill
US20180080284A1 (en) * 2015-04-08 2018-03-22 Dreco Energy Services Ulc Downhole vibration assembly and method of using same
US10124454B2 (en) 2015-11-16 2018-11-13 Apex Brands, Inc. Oscillating thrust bearing
US10232446B2 (en) 2015-11-16 2019-03-19 Apex Brands, Inc. Adaptive drilling with piezo-electric feed oscillator
US10415314B2 (en) 2015-07-08 2019-09-17 Halliburton Energy Services, Inc. Downhole mechanical percussive hammer drill assembly
US10583538B2 (en) 2015-11-16 2020-03-10 Apex Brands, Inc. Feed oscillation via variable pitch gears
US11060371B2 (en) * 2018-01-19 2021-07-13 Rotojar Innovations Limited Jarring apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1044790A (en) * 1909-02-16 1912-11-19 Paul Lange Rock-drilling machine.
US2869374A (en) * 1956-03-05 1959-01-20 Morris Joseph Mechanical hammer
US2942852A (en) * 1957-01-17 1960-06-28 Muthmann Dieter Electrically driven percussion drill, particularly for drilling rock, earth, and synthetic substances
US2974533A (en) * 1955-01-31 1961-03-14 Joseph Morris Doing Business A Drill hammer
US3119274A (en) * 1961-06-05 1964-01-28 Black & Decker Mfg Co Power-driven tool for drilling or impact-drilling
US3163237A (en) * 1963-10-21 1964-12-29 Fulon Charles Impact drill

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1044790A (en) * 1909-02-16 1912-11-19 Paul Lange Rock-drilling machine.
US2974533A (en) * 1955-01-31 1961-03-14 Joseph Morris Doing Business A Drill hammer
US2869374A (en) * 1956-03-05 1959-01-20 Morris Joseph Mechanical hammer
US2942852A (en) * 1957-01-17 1960-06-28 Muthmann Dieter Electrically driven percussion drill, particularly for drilling rock, earth, and synthetic substances
US3119274A (en) * 1961-06-05 1964-01-28 Black & Decker Mfg Co Power-driven tool for drilling or impact-drilling
US3163237A (en) * 1963-10-21 1964-12-29 Fulon Charles Impact drill

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1652685A1 (en) * 1968-02-08 1970-12-10 Hilti Ag Switching device for electro-pneumatic hammer drills
US3835715A (en) * 1972-07-13 1974-09-17 Black & Decker Mfg Co Hammer drill mechanism
EP0499459A2 (en) * 1991-02-13 1992-08-19 John Patrick Manning Powered tool
EP0499459A3 (en) * 1991-02-13 1993-04-07 John Patrick Manning Powered tool
GB2252745B (en) * 1991-02-13 1995-02-15 John Patrick Manning Powered tool
WO2003028958A1 (en) * 2001-10-01 2003-04-10 Mk-Produkter, Mekanik & Kemi Ab A percussion device
US20040206525A1 (en) * 2001-10-01 2004-10-21 Thomas Rask Percussion device
US7032687B2 (en) 2001-10-01 2006-04-25 Mk-Produkter Mekanik & Kemi Ab Percussion device
US6684964B2 (en) * 2002-06-17 2004-02-03 Bob B. Ha Hammer drill
US20060016612A1 (en) * 2004-07-09 2006-01-26 Ha Bob B Rolling hammer drill
US7191848B2 (en) * 2004-07-09 2007-03-20 Ha Bob H Rolling hammer drill
US20070289760A1 (en) * 2006-06-16 2007-12-20 Exhaust Technologies, Inc. Shock attenuating coupling device and rotary impact tool
US8439133B2 (en) 2010-01-11 2013-05-14 Nighthawk Energy Services Canada Ltd. Down hole apparatus for generating a pusling action
US9488010B2 (en) 2012-03-26 2016-11-08 Ashmin, Lc Hammer drill
WO2014064047A1 (en) * 2012-10-26 2014-05-01 Atlas Copco Industrial Technique Ab Drilling tool with a flexible spindle feeding
CN104755209A (en) * 2012-10-26 2015-07-01 阿特拉斯·科普柯工业技术公司 Drilling tool with flexible spindle feeding
JP2016502613A (en) * 2012-10-26 2016-01-28 アトラス・コプコ・インダストリアル・テクニーク・アクチボラグ Drilling tool with flexible spindle feed
CN104755209B (en) * 2012-10-26 2016-12-14 阿特拉斯·科普柯工业技术公司 There is the boring bar tool of principal axis of compliance feeding
US9687914B2 (en) 2012-10-26 2017-06-27 Atlas Copco Industrial Technique Ab Drilling tool with a flexible spindle feeding
US20180080284A1 (en) * 2015-04-08 2018-03-22 Dreco Energy Services Ulc Downhole vibration assembly and method of using same
US10718164B2 (en) * 2015-04-08 2020-07-21 Dreco Energy Services Ulc Downhole vibration assembly and method of using same
US10415314B2 (en) 2015-07-08 2019-09-17 Halliburton Energy Services, Inc. Downhole mechanical percussive hammer drill assembly
US10124454B2 (en) 2015-11-16 2018-11-13 Apex Brands, Inc. Oscillating thrust bearing
US10232446B2 (en) 2015-11-16 2019-03-19 Apex Brands, Inc. Adaptive drilling with piezo-electric feed oscillator
US10583538B2 (en) 2015-11-16 2020-03-10 Apex Brands, Inc. Feed oscillation via variable pitch gears
US11060371B2 (en) * 2018-01-19 2021-07-13 Rotojar Innovations Limited Jarring apparatus

Similar Documents

Publication Publication Date Title
US3363700A (en) Rotary and hammer drill
US5588496A (en) Slip clutch arrangement for power tool
EP1702723B1 (en) Power tool torque overload clutch
US4280359A (en) Rotary cam drive for impact tool
US7051820B2 (en) Rotary hammer
EP1808272B1 (en) Power tool comprising a torque limiter
EP1413402B1 (en) Hammer
US3774699A (en) Hammer drill with slidable rotation gear and lock
US3161241A (en) Rotary power hammer
US4967888A (en) Safety clutch for motor-operated hand tool
US4431062A (en) Rotating drive for impact hammer
US3789933A (en) Hammer drill
GB2424249A (en) Power tool with overload clutch mounted in cavity in gear-cog
US10328559B2 (en) Drill
US20160193725A1 (en) Drill
US4073348A (en) Impact drilling tool
US3123156A (en) gapstur
EP1375076A1 (en) Percussion hammer
JP2001232579A (en) Hand machine tool
GB2102718A (en) Improvements in or relating to rotary percussive drills
US2753965A (en) Impact tools
US3734205A (en) Rotary power tool with centrifugal coupling means
EP0051923B1 (en) Portable power-operated drill
US3208569A (en) Impact clutch with sliding key in anvil
US3208568A (en) Impact tool