US3359322A - Sulfonium ylids - Google Patents

Sulfonium ylids Download PDF

Info

Publication number
US3359322A
US3359322A US549166A US54916666A US3359322A US 3359322 A US3359322 A US 3359322A US 549166 A US549166 A US 549166A US 54916666 A US54916666 A US 54916666A US 3359322 A US3359322 A US 3359322A
Authority
US
United States
Prior art keywords
dimethylsulfonium
sulfonium
parts
phenacylide
ylids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US549166A
Inventor
Ratts Kenneth Wayne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Co
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Co filed Critical Monsanto Co
Priority to US549166A priority Critical patent/US3359322A/en
Application granted granted Critical
Publication of US3359322A publication Critical patent/US3359322A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • C07C381/12Sulfonium compounds

Definitions

  • the sulfonium ylids of the present invention are prepared by a process which comprises reacting a sulfonium salt of the formula RCHz O wherein R, R and Z are as defined above and X is halogen (Cl, Br, F and I), with a substantially equimolar amount of an alkaline material in the presence of an inert liquid media.
  • the inorganic alkaline materials with the exception of the hydride are usually employed in the presence of aqueous media.
  • the hydrides and the organic alkaline materials are used in the presence of inert organic media.
  • Halogenation is carried out with substantially equimolar amounts of reactants at about room temperature in the presence of inert organic media such as an aromatic hydrocarbon.
  • R and R are each selected from the group consisting of hydrogen, alkyl of not more than 12 carbon atoms and haloalkyl of not more than 12 carbon atoms containing from 1 to 3 halogen atoms, and Z is selected from the group consisting of naphthyl and 5 wherein R is selected from the group consisting of halogen and alkyl of not more than 4 carbon atoms, R is selected from the group consisting of N0 and alkoxy of not more than 4 carbon atoms, R is phenyl, a is an integer from 0 to 5 inclusive, b is an integer from 0 to 2 inclusive, and c is an integer from 0 to 1 inclusive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

United States 3,359,322 SULFONDUM YLIDS Kenneth Wayne Ratts, Creve Coeur, Mm,
Monsanto Company, St. Louis, Mo, Delaware No Drawing. Filed May 11, 1966, Ser. No. 549,166 11 Claims. (Cl. 260-592) assignor to a corporation of ABSTRACT OF THE DISCLOSURE Compounds of the formula RCHz (I) S=CHCZ wherein R and R are each selected from the group consisting of hydrogen, alkyl of not more than 12 carbon atoms and haloalkyl of not more than 12 carbon atoms containing 1, 2 or 3 halogen atoms, and Z is selected from the group consisting of naphthyl and This invention relates to sulfonium ylids. The sulfonium ylids of this invention are represented by the formula wherein R and R are each selected from the group consisting of hydrogen, alkyl of not more than 12 carbon atoms and haloalkyl of not more than 12 carbon atoms containing 1, 2 or 3 halogen atoms, and Z is selected from the group consisting of naphthyl and R h R wherein R is selected from the group consisting of halogen (Cl, Br, F and I) and alkyl of not more than 4 carbon atoms, R is selected from the group consisting of N and alkoxy of no more than 4 carbon atoms, R is phenyl, a is an integer from 0 to 5 inclusive, b is an integer from O to 2 inclusive and c is an integer from 0 to 1.
In the above formula R and R can be hydrogen, alkyl such as methyl, ethyl, n-propyl, isopropyl, n-butyl, secbutyl, isobutyl, tert-butyl, amyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl and the various homologues and isomers of alkyl having from 1 to 12 carbon atoms and haloalkyl such as chloromethyl, iodomethyl, bromomethyl, fluoromethyl, chloroethyl, iodoethyl, bromoethyl, fiuoroethyl, trichloromethyl, triiodomethyl, tribromomethyl, trifluoromethyl, dichloroethyl, chloro-n-propl, bromo-n-propyl, iodoisopropyl, bromo-n-butyl, bromo-tert-butyl, 1,3,3-trichlorobutyl, 1,3,3-tribromobutyl, chloropentyl, bromopentyl, 2,3-dichloropentyl, 3,3-dibromopentyl, chlorohexyl, bromohexyl, 2,4-dichlorohexyl, 1,3-dibromohexyl,
atent 1,3,4-trichlorohexyl, chloroheptyl, bromoheptyl, fluoroheptyl, 1,3-dichloroheptyl, 1,4,4-trichloroheptyl, 2,4-di (chloromethyl)-heptyl, chlorooctyl, bromooctyl, iodooctyl, 2,4-di(chloromethyl)hexyl, 2,4-dichlorooctyl, 2,4,4- tri (chloroinethyl) pentyl, 1,3,5 -tribromooctyl and the halogenated straight and branched chain nonyl, decyl, undecyl and dodecyl.
Representative R alkyl for the above formula include the alkyl listed above for R and R for not more than 4 carbon atoms. Representative R alkoxy for the above formula include for example methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy and isobutoxy.
The sulfonium ylids of the present invention are prepared by a process which comprises reacting a sulfonium salt of the formula RCHz O wherein R, R and Z are as defined above and X is halogen (Cl, Br, F and I), with a substantially equimolar amount of an alkaline material in the presence of an inert liquid media.
Temperature of reaction is critical but only in regard to the upper limit. The process must be carried out at a temperature below the decomposition or rearrangement temperature of the sulfonium ylid product. For example, if the process of this invention is carried out for substantial periods with sulfonium salt reactants wherein one or more of R and R in the above formula is hydrogen in the presence of aqueous or alcoholic media at temperatures above about 50 C., thermal rearrangement of the product sulfonium ylids proceeds according to the following representative synthesis wherein R and Z are as defined above. The process of this invention is generally carried out at a temperature below about 50 C. and preferably at a temperature of about 15 C. to above 30 C.
Pressure is not a critical factor in the process of this invention. Pressure both above and below atmospheric pressure can be employed although atmospheric pressure is preferred for convenience.
Alkaline materials suitable for use in the process of this invention include inorganic bases, for example, alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide and cesium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide and barium hydroxide; alkali metal hydrides such as sodium hydride, potassium hydride and lithium hydride; metallic oxides such as calcium oxide, magnesium oxide, silver oxide and barium oxide; alkali metal and alkaline earth metal carbonates such as sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate and barium carbonate, and ammonia and ammonia producing compounds such as ammonium hydroxide and ammonium carbonate; and organic bases, for example, aliphatic and aromatic alkoxides such as sodium methoxide, potassium methoxide, lithium methoxide, sodium ethoxide, potassium ethoxide, lithium butoxide, sodium butoxide, sodium phenoxide, lithium phenoxide and potassium phenoxide; primary, secondary and tertiary amines such as methylamine, ethylamine, propylamine, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, di-n-amylamine, diisoamylamine, dihexylamine, diheptylamine, dioctylamine, N-
methyl-N-ethylamine, N-methyl-N-isopropylamine, trimethylamine, triethylamine, tri n propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, trisec-butylamine, tri-n-arnylamine, triisoarnylamine, trihexylamine, triheptylamine and trioctylamine; other amines such as pyridine and morpholine, and mercaptides such as sodium methylmercaptide, sodium ethylmercaptide, potassium methylmercaptide and potassium phenylmercaptide.
Inert liquid media which can be used in the process of this invention include aqueous media which can optionally contain a water-miscible alcohol such as methyl alcohol, ethyl alcohol and the like; and organic media for example, alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and the like, tetrahydrofuran and ethers such as diglyme, diethyl ether, and the like. An excess of amine reactant also serves an inert liquid media.
The inorganic alkaline materials with the exception of the hydride are usually employed in the presence of aqueous media. The hydrides and the organic alkaline materials are used in the presence of inert organic media.
The separation of the product from the reaction mixture is readily accomplished. For example the salt, such as an alkali metal halogen salt formed during the reaction can be removed by filtration and the solvent can be removed by stripping or distillation, preferably low temperature vacuum distillation. The product can be purified if necessary by any of the conventional means well known in the art, e.g. selective extraction, recrystallization, elution or any suitable combination of these methods.
The sulfonium ylids of this invention are crystalline solid materials which are insoluble in water but somewhat soluble in many organic solvents, for example alcohols, ketones, hydrocarbons such as benzene, toluene, xylene and the like and chlorohydrocarbons such as chlorobenzene, carbon tetrachloride and the like.
The following examples illustrate the invention. In the following examples as well as in the specification and appended claims, parts and percent are by weight unless otherwise indicated.
Example I A suitable reaction vessel is charged with about 13.06 parts of dimethyl (phenacyl) sulfonium bromide and 250 parts of tetrahydrofuran and then 2.3 parts of sodium hydride are added with stirring at room temperature (about 25 C.). After a substantially equimolar amount of hydrogen evolves, the sodium bromide is removed by filtration and the reaction mixture is concentrated by evaporation to give a yellow oil which solidifies upon addition of petroleum ether. The solid is removed by filtration to give 8.95 parts of dimethylsulfonium phenacylide having a M.P. of 5457 C. The ylid is confirmed by nuclear magnetic resonance (NMR) and infrared spectra analysis.
Example 2 A suitable reaction vessel is charged with about 30 parts dimethyl (phenacyl) sulfonium bromide and 700 parts of water and then 45 parts of sodium hydroxide are added with stirring at room temperature (about 25 C.). The sodium bromide is removed by filtration and the water by evaporation to give 22 parts of dimethylsulfonium phenacylide. NMR and infrared spectra analysis confirm the product ylid.
Example 3 A suitable reaction vessel is charged with about 11.58 parts of silver oxide and 150 parts of Water and then a solution of dimethyl (phenacyl) sulfonium bromide in 400 parts water is added slowly with stirring at about 25 C. The precipitate which forms is removed by filtration and the filtrate is concentrated by evaporation. The concentrate is washed with trichloromethane and then the A}, trichloromethane is removed by evaporation to give 7.5 parts of dimethylsulfonium phenacylide. NMR and infrared analysis confirm the product ylid. The product ylid is recrystallized several times from petroleum ether and then dried over phosphorous pentoxide. Elemental analysis of the purified ylid gives the following:
Calcd for C H OS: C, 66.62; H, 6.71; S, 17.79. Found: C, 66.35; H, 6.91; S, 17.53.
Example 4 A suitable reaction vessel is charged with about 10 parts methyl alcohol and 0.46 part of sodium and then 2.7 parts of dimethyl (phenacyl) sulfonium bromide are added with stirring at about 25 C. The reaction mixture is concentrated by evaporation and then extracted with dichloromethane to give 1.6 parts of dimethylsulfonium phenacylide. Infrared spectrum analysis confirms the product ylid.
Example 5 A suitable reaction vessel is charged with about 15.5 parts of dimethyl (l-naphthyl) sulfonium bromide and about 250 parts of tetrahydrofuran and then 2.3 parts of sodium hydride are added with stirring at room temperature (about 25 0.). After an equirnolar amount of hydrogen evolves, the sodium bromide is removed by filtration and the tetrahydrofuran by evaporation under reduced pressure to give an orange oil which solidifies. The solid is Washed with ethyl ether to give 6.2 parts of dimethylsulfonium l-naphthacylide having a M.P. of 7275 C. The product ylid is confirmed by NMR and infrared spectra analysis.
Following substantially the same procedure as in the foregoing example the following compounds of this invention are prepared:
Example 6 dimethylsulfonium 2'-chlorophenacylide 7 dimethylsulfonium 2,5'-dichlorophenacylide 8 dimethylsulfonium 4'-chlorophenacylide 9 dimethylsulfonium 2',4-dichlorophenacylide 10 dimethylsulfonium 2',4,6'-trichlorophenacy1ide 11 dimethylsulfonium 4'-methylphenacylide 12 dimethylsulfonium 4'-tert-butylphenacylide 13 dimethylsulfonium 2',4-dimethy1phenacylide 14 dimethylsulfonium 2,4',6-trimethylphenacylide 15 dimethylsulfonium 2,5 -diethylphenacylide 16 dimethylsulfonium 2',6-di(tert-butyl)phenacylide 17 dimethylsulfonium 4-bromophenacylide 18 dimethylsulfonium 3',5-dibromophenacy1ide 19 dimethylsulfonium 2iodophenacylide 2O dimethylsulfonium 2',6-difluorophenacylide 21 dimethylsulfonium 2,5'-dimethylphenacylide 22 dimethylsulfonium 3',5'-dimethylphenacylide 23 dimethylsulfonium 2,3,4,5',6 pentachlorophenacylide 24 dimethylsulfonium 4'-nitrophenacylide 25 dimethylsulfonium 2,4'-dinitrophenacylide 26 dimethylsulfonium 4'-methoxyphenacylide 27 dimethylsulfonium 2,4-dimethoxyphenacylide 28 dimethylsulfonium 2',5-dimethoxyphenacylide 29 dimethylsulfonium 4-n-butoxyphenacylide 30 dimethylsulfonium 4'-phenylphenacylide 31 dimethylsulfonium 2'-:methyl-4-nitrophenacylide 32 dimethylsulfonium 2'-methoxy-4'-chlorophenacylide 33 dimethylsulfonium 2-methyl-4-methoxyphenacylide 34 diethylsulfonium phenacylide 35 di(n-buty1)sulfonium phenacylide 36 di(n-octyl)sulfonium phenacylide 37 di(2-chloroethyl)sulfonium phenacylide 38 di(3-chlorobutyl)sulfonium phenacylide 39 di(n-dodecyl)sulfonium phenacylide 40 di(4,4 diehloropentyl)sulfonium 4 5 chlorophenacylide 41 di(2,2,4-tribromobutyl)sulfonium phenacylide 42 di(Z-fluoropentyl)sulfonium phenacylide 43 di(2-iodoethyl)sulfonium phenacylide 44 diethylsulfonium 2',4'-dirnethylphenacylide 45 di(n-propyl)sulfonium phenacylide The sulfonium ylids of this invention are useful per se for various purposes such as fire retardants, rust inhibitors, rust removers and tanning agents, and as chemical intermediates for petroleum additives and agricultural chemicals. For example, a-hEIlOSlllfOIllllIn salts having fungicidal activity are prepared by halogenation of sulfonium ylids in accordance with the following representative synthesis:
wherein R, R R R R X, a, b, and c are as defined above. Halogenation is carried out with substantially equimolar amounts of reactants at about room temperature in the presence of inert organic media such as an aromatic hydrocarbon.
a-Halosulfoniurn ylids having fungicidal activity are prepared by a process which comprises reacting an ahalosulfonium salt of the formula wherein R, R R R R X, a, b and c are as defined above with a substantially equi-molar amount of an alkali metal hydride such as sodium hydride under substantially anhydrous conditions in the presence of an inert organic media such as tetrahydrofuran until a substantially equimolar amount of hydrogen has evolved. The above e-halosulfonium ylids and a-halosulfoniurn salts as well as more detailed processes for their preparation are disclosed and claimed in application, Serial No. 549,162 filed of even date herewith.
The sulfonium ylids of this invention are also useful in the preparation of vinyl aromatic compounds having fungicidal and nematocidal activity. The fungicidal and nematocidal vinyl aromatic compounds and processes for making them are disclosed and claimed in application, Ser. No. 549,168 filed of even data herewith.
The sulfonium salts used as starting materials in the preparation of the sulfonium ylids of this invention can be prepared by the process disclosed and claimed in application, Ser. No. 467,750, filed June 28, 1965. Said process comprises reacting a sulfide of the formula RCH SCH R wherein R and R are as defined above with a substantially equimolar amount of a compound of the formula XCHN EZ wherein Z is is defined above and X is halogen in the presence of an inert liquid medium at a temperature below the decomposition temperature of the sulfide employed.
The invention is set forth above with respect to specific examples. It is not intended that the details thereof shall be limitations on the scope of the invention except as set forth in the following claims.
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A compound of the formula wherein R and R are each selected from the group consisting of hydrogen, alkyl of not more than 12 carbon atoms and haloalkyl of not more than 12 carbon atoms containing from 1 to 3 halogen atoms, and Z is selected from the group consisting of naphthyl and 5 wherein R is selected from the group consisting of halogen and alkyl of not more than 4 carbon atoms, R is selected from the group consisting of N0 and alkoxy of not more than 4 carbon atoms, R is phenyl, a is an integer from 0 to 5 inclusive, b is an integer from 0 to 2 inclusive, and c is an integer from 0 to 1 inclusive.
2. A compound of claim 1 wherein R and R are hydrogen.
Compound of claim 1 wherein Z is phenyl. Dimethylsulfonium phenacylide. Dimethylsulfonium 2'-chlorophenacylide. Dimethylsulfonium 4'-tert-butylphenacylide. Dimethylsulfonium 3',5'-dibromophenacylide. Dimethylsulfoniurn 4-nitrophenacylide. 9. Di(n-dodecyl)su1fonium phenacylide. 10. Dimethylsulfonium 4-phenylacylide. 11. Dimethylsulfonium l-naphthacylide.
References Cited Speziale et al., J. Am. Chem. Soc., 87, 3460-3462 (1965).
DANIEL D. HORWITZ, Primary Examiner.

Claims (1)

1. A COMPOUND OF THE FORMULA
US549166A 1966-05-11 1966-05-11 Sulfonium ylids Expired - Lifetime US3359322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US549166A US3359322A (en) 1966-05-11 1966-05-11 Sulfonium ylids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US549166A US3359322A (en) 1966-05-11 1966-05-11 Sulfonium ylids

Publications (1)

Publication Number Publication Date
US3359322A true US3359322A (en) 1967-12-19

Family

ID=24191930

Family Applications (1)

Application Number Title Priority Date Filing Date
US549166A Expired - Lifetime US3359322A (en) 1966-05-11 1966-05-11 Sulfonium ylids

Country Status (1)

Country Link
US (1) US3359322A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415883A (en) * 1966-05-11 1968-12-10 Monsanto Co alpha-halosulfonium ylids and alpha-halosulfonium salts
US3538229A (en) * 1966-05-11 1970-11-03 Monsanto Co Fungicidal composition and method containing alpha-halosulfonium ylids and alpha-halosulfonium salts
US3723534A (en) * 1971-05-28 1973-03-27 Monsanto Co Aryl methyl phenacyl sulfonium tetrafluoroborates
US4053329A (en) * 1976-04-02 1977-10-11 Ppg Industries, Inc. Method of improving corrosion resistance of metal substrates by passivating with an onium salt-containing material
US5191124A (en) * 1987-07-01 1993-03-02 Basf Aktiengesellschaft Sulfonium salts having acid-labile groups

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415883A (en) * 1966-05-11 1968-12-10 Monsanto Co alpha-halosulfonium ylids and alpha-halosulfonium salts
US3538229A (en) * 1966-05-11 1970-11-03 Monsanto Co Fungicidal composition and method containing alpha-halosulfonium ylids and alpha-halosulfonium salts
US3723534A (en) * 1971-05-28 1973-03-27 Monsanto Co Aryl methyl phenacyl sulfonium tetrafluoroborates
US4053329A (en) * 1976-04-02 1977-10-11 Ppg Industries, Inc. Method of improving corrosion resistance of metal substrates by passivating with an onium salt-containing material
US5191124A (en) * 1987-07-01 1993-03-02 Basf Aktiengesellschaft Sulfonium salts having acid-labile groups

Similar Documents

Publication Publication Date Title
CA1210398A (en) Process for producing sulfonylureas having a herbicidal action and an action regulating plant growth
US3359322A (en) Sulfonium ylids
PL77068B1 (en)
CA1077045A (en) Process for the manufacture of 5-amino-1,2,3-thiadiazole
PL176613B1 (en) Method of obtaining derivatives of mercaptocarboxylic acids
US3830862A (en) Reactions involving carbon tetrahalides with sulfones
US2657231A (en) Process for producing alkylene-bis-dithio-alkylene and -arylene-dicarboxylic acids
US2729645A (en) 1-[2-(dithiocarboxyamino)polymethylene] quaternary ammonium inner salts
US2806036A (en) Process for preparation of
CA1055509A (en) Process for the preparation of 2-(2-thienyl)-ethylamine and derivatives thereof
US3256298A (en) Novel thietanes and their preparation
US5248811A (en) Process for producing sulfoalkyl-substituted hydroxylamines
US3291795A (en) Hydroxylamine salts of dithiocarbamic acids
US3655773A (en) Method for making thioethers
US2254191A (en) P-azidobenzene compounds
US2477869A (en) Nitro sulfonates from beta-nitro alkanols
US3525767A (en) Acetamides
US2698329A (en) Trimethylenedioxybenzene and certain derivatives thereof
US4264770A (en) Process for preparing 1,4-bis-piperonylpiperazine and similar compounds
US4056568A (en) 2,6-Dialkyl-4-hydroxysulfenyl chlorides
US2656386A (en) Aminoethylhydrocarbonoxycyclohexenes
US3022300A (en) Method of preparing sulfenamides
US2733260A (en) Atpha
SK45395A3 (en) Method of production of dimethylaminborane
US2677691A (en) Bibenzothiazole compounds x