US3352680A - Sensitizing and filter dyes for photographic elements - Google Patents

Sensitizing and filter dyes for photographic elements Download PDF

Info

Publication number
US3352680A
US3352680A US364451A US36445164A US3352680A US 3352680 A US3352680 A US 3352680A US 364451 A US364451 A US 364451A US 36445164 A US36445164 A US 36445164A US 3352680 A US3352680 A US 3352680A
Authority
US
United States
Prior art keywords
group
dyes
dye
rhodanine
hydrophilic colloid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US364451A
Inventor
Robert C Taber
Leslie G S Brooker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Priority to US364451A priority Critical patent/US3352680A/en
Priority to DE19651472826 priority patent/DE1472826A1/en
Priority to BE663378A priority patent/BE663378A/xx
Priority to GB18455/65A priority patent/GB1112417A/en
Priority to FR15647A priority patent/FR1444772A/en
Priority to US643097A priority patent/US3497502A/en
Application granted granted Critical
Publication of US3352680A publication Critical patent/US3352680A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/36Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0091Methine or polymethine dyes, e.g. cyanine dyes having only one heterocyclic ring at one end of the methine chain, e.g. hemicyamines, hemioxonol
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/04Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups one >CH- group, e.g. cyanines, isocyanines, pseudocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/06Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups three >CH- groups, e.g. carbocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/08Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups more than three >CH- groups, e.g. polycarbocyanines
    • C09B23/083Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups more than three >CH- groups, e.g. polycarbocyanines five >CH- groups

Definitions

  • This invention relates to dyes and more particularly to oxonol, hemioxonol, benzylidene and cinnamylidene dyes containing at least one secondary amino substituted alkyl group attached to the acidic nucleus, and to photographic elements containing said dyes in a hydrophilic colloid layer.
  • Certain dyes are known to alter the sensitivity of photographic silver halide emulsions.
  • Such light-filtering layers may be coated over the light-sensitive layer, between two differently sensitized light-sensitive layers, between a lightsensitive layer and the support or on the side of the support opposite to the side bearing a light-sensitive layer.
  • Dyes useful for filter layers must not only absorb light of the desired wavelengths but must be readily bleachable and/or removable during the normal photographic processing operations.
  • dyes be useful in photographic elements they should not only either sensitize silver halide to light in the desired range of wavelengths or absorb light in the desired part of the spectrum if the dye is to be used in a light filtering layer, but the dye must be easy to incorporate in the photographic element, be firmly held in the photographic element but completely bleached or removed by the normal processing solutions. Dyes available for use do not always have all these properties in the desired degree. New sensitizing and/or light-filtering dyes are desired for use in photographic elements.
  • Another object is to provide a synthesis for preparing our new dyes which have desirable sensitizing and/0r light absorbing characteristics as well as good solubility in aqueous solutions.
  • Another object is to provide photographic silver halide emulsions containing our dyes.
  • Still another object is to provide photographic elements comprising a support, at least one hydrophilic colloid layer containing light-sensitive silver halide and at least one hydrophilic layer containing at least one of our dyes.
  • Z represents the nonmetallic atoms required to complete a 5- to 6 membered heterocyclic nucleus such as those of the 2-pyrazolin-5-one series (e.g., 3-methyl-1- phenyl-2-pyrazolin-5-one, 1-phenyl-2-pyrazolin-S-one, 1- (2 benzothiazolyl) 3-methyl-2-pyrazolin-S-one, etc.), those of the 2-isoXazolin-5-one series (e.g., 3-phenyl-2- isoxazolin-S-one, 3-methyl-2-isoXazolin-5-one, etc.), those of the 2-indolinone series, (e.g., l-alkyl-2-indolinone, etc.), those of the barbituric acid and 2-thiobarbituric acid series as well as their l-alkyl (e.g., l-methyl, l-ethyl, l-prop
  • n represents an integer of from 1 to 3;
  • Q and Q each represent the same or diiferent group, such as,
  • R represents any of the groups used on the 3-position of 2-pyrazolin-5-ones, e.g., hydrogen, alkyl (e.g., methyl, isopropyl, tertiary butyl, hexyl, etc.), aryl (e.g., phenyl, tolyl, halophenyl, etc.), amino (e.g., methylamino, diethylamino, phenylamino, etc.), carbonamido (e.g., ethylcarbonamido, phenylcarbonamido, etc.), sulfonarnido (e.g., butylsulfonamido, phenylsulfonamido, etc.), sulfamoyl (e.g., propylsulfamoyl, phenylsulfamoyl, etc.), carbamoyl (e.g., ethyl,
  • R R and R each represents an alkyl group (e.g., methyl, propyl, butyl, hexyl, etc.);
  • m represents an integer of from 1 to 2;
  • D represents a group selected from the class consisting of a group, a 4-(N-pyrrolidinyl)phenyl group, a 4-(N-morpholino)phenyl group, a 4-(N-piperidino)phenyl group, a
  • R and R each represents an alkyl group (e.g., methyl, 2-hydroxyethyl, 2-chloroethyl, benzyl, butyl, hexyl, etc.), an aryl group (e.g., phenyl, tolyl, chlorophenyl, etc.), etc.;
  • R represents an alkyl group (e.g., methyl, ethyl, butyl, etc.);
  • E represents a group, such as a group, a
  • R represents an alkyl group (e.g., methyl, ethyl, butyl, etc.), an aryl group (e.g., phenyl, tolyl, etc.), etc.;
  • R represents a group such as, hydroxyl, halo (e.g., chloro, bromo, etc.), alkyl (e.g., methyl, ethyl, butyl, etc.), alkoxy (e.g., methoxy, propoxy, butoxy, etc.), etc.; and
  • j represents an integer of from 0 to 1.
  • Our dyes are used to advantage in photographic elements comprising a support, at least one hydrophilic colloid layer containing a light-sensitive silver halide emulsion, and at least one hydrophilic colloid layer containing one or more of our dyes. Certain of our dyes are used to advantage as sensitizers in the colloid layer containing the silver halide emulsion, While our other dyes are used to advantage as light filtering dyes in hydrophilic colloid layers of photographic elements.
  • n1 CH'III-Cal 5 Z Rm wherein Z and n are as defined previously and R represents the hydrogen atom or a o H -U-Ru group in which R represents an alkyl group (e.g., methyl, ethyl, butyl, etc.), With a compound having the formula:
  • reaction is carried out advantageously by heating the reactants in an inert solvent in the presence of a basic condensing agent at a temperature between room temperature and the reflux temperature of the reaction mixture.
  • inert solvents used to advantage include pyridine, ethanol, butanol, dimethylformamide, etd.
  • Basic condensing agents used to advantage include the trialkylamines (e.g., triethylamine, tributylamine, etc.), the dialkylanilines (e.g., N,N-dimethylaniline, N,N-diethylaniline, etc.), heterocyclic tertiary amines (e.g., pyridine, quinoline, N-alkylpiperidines, etc.), alkali metal alcoholates (e.g., sodium methylate, sodium ethylate, etc.), etc.
  • trialkylamines e.g., triethylamine, tributylamine, etc.
  • dialkylanilines e.g., N,N-dimethylaniline, N,N-diethylaniline, etc.
  • heterocyclic tertiary amines e.g., pyridine, quinoline, N-alkylpiperidines, etc.
  • alkali metal alcoholates e
  • the dyes of Formula II in which Q and Q represent the same groups are advantageously prepared by heating a compound of Formula V with ethylorthoformate, 18- ethoxyacroleinacetal or glutaconic aldehyde dianilide HCl to prepare the dye in which n is 1, 2 or 3, respectively.
  • the dyes of Formula III in which is the integer are prepared advantageously by heating a compound of Formula V with an intermediate, such as, diphenylformamidine followed by reaction with acetic anhydride, piperidine, pyrrolidine, morpholine, etc.
  • an intermediate such as, diphenylformamidine followed by reaction with acetic anhydride, piperidine, pyrrolidine, morpholine, etc.
  • the reaction with diphenylformamidine can be accomplished by heating the reactants to form a melt.
  • Inert solvents may be used to advantage in the other reactions.
  • the dyes of Formula III in which i is the integer 1 are advantageously prepared by heating a compound of Formula V with an intermediate having the formula wherein D and m are as defined previously. This reaction is conducted in an inert solvent, in the presence of a basic condensing agent preferably by heating to a temperature ture between room temperature and the reflex temperature.
  • the solution was filtered, the filtrate concentrated to a volume of 150 ml. and passed through a column containing 400 g. of neutral alumina.
  • the product was diluted with methanol and the methanolic solution concentrated to a heavy resinous orange oil (yield 40%) which was used to prepare dye without any further purification.
  • 3-(Z-dimethylaminoethyl)rhodanine hydroperchlorate 22.6 g. (1 mol.) of bis(carboxymethyl)trithiocarbonate was dissolved in a solution containing 11.1 g. of sodium carbonate and 250 ml. of water. The resulting solution was treated with 13.2 g. (1 mol.+50%) of N,N-dimethylethylenediamine and heated on the steam bath for 1% hours. The solution was then made strongly acid with concentrated hydrochloric acid and heated on the steam bath for /2 hour. A solution of 18.3 g. of sodium perchlorate in 50 ml. of water was added to the reaction mixture and the solution chilled. The product was collected on a filter and obtained (yield 74%) as pinkish orange crystals of M.P. 166-168 with decomposition.
  • reaction of a compound of Formula V with diphenylformamidine is advantageously conducted in the presence of a petroleum fraction, e.g., kerosene, while the corresponding reaction with compounds, such as, B-anilinoacrolein anil or glutaconic aldehyde or their hydrochlorides (or other salts) are advantageously conducted by heating in the presence of a strong tertiary organic base, such as, have been described herein previously.
  • the new dyes of the invention are advantageously incorporated in the finished silver halide emulsion and should be uniformly distributed throughout the emulsion.
  • the methods for incorporating dyes in emulsions are relatively simple and well known in the art of emulsion making. For example, it is convenient to add the dyes from aqueous solution preferably in the presence of an equivalent of an acid, such as, acetic acid. Methanol, ethanol, isopropanol and other solvents having no deleterious efl'ect on the ultimate light-sensitive materials may also be used but are not usually needed.
  • Our dyes are used advantageously to sensitize silver halides, e.g., silver chloride, silver bromide, silver iodide,
  • hydrophilic colloids used to advantage include natural materials, e.g., gelatin, albumin, agaragar, gum arabic, alginic acid, etc., and synthetic hydrophilie resins, e.g., polyvinyl alcohol, polyvinyl pyrrolidone, cellulose ethers, partially hydrolyzed cellulose acetate, etc. Certain of our dyes are also used to advantage in filter layers in which any of the hydrophilic colloids listed can be used as the carrier.
  • our emulsions and filter layers are coated to advantage on any of the materials used for photographic elements, e.g., paper, glass, cellulose acetate, cellulose nitrate, synthetic film forming resins, e.g., the polyesters, the polyamides, polystyrenes, etc.
  • materials used for photographic elements e.g., paper, glass, cellulose acetate, cellulose nitrate, synthetic film forming resins, e.g., the polyesters, the polyamides, polystyrenes, etc.
  • Photographic silver halide emulsions such as those listed above, containing the sensitizing dyes of our invention can also contain such addenda as chemical sensitizers, e.g., sulfur sensitizers (e.g., allyl thiocarbamide, thiourea, allyl-isothiocyanate, cystine, etc.), various gold compounds (e.g., potassium chloroaurate, auric tric-hloride, etc.) (see US. Patents 2,540,085; 2,597,856 and 2,597,- 915), various palladium compounds, such as palladium chloride (US. 2,540,086), potassium chloropall-adate (US.
  • chemical sensitizers e.g., sulfur sensitizers (e.g., allyl thiocarbamide, thiourea, allyl-isothiocyanate, cystine, etc.)
  • gold compounds e.g., potassium chloroaurate, auric
  • antifoggants such as ammonium chloroplatinate (US. 2,566,245), ammonium chloroplatinite (US. 2,566,263), benzotriazole, nitrobenzimidazole, S-nitroindazole, benzidine, mercaptans, etc. (see Mees The Theory of the Photographic Process, Macmillan pub., page 460), or mixtures thereof: hardeners, such as formaldehyde (US. 1,763,533), chrome alum (U.S. 1,763,533), glyoxal (US. 1,870,354), dibromacrolein (Br.
  • color couplers such as those described in US. Patent 2,423,730, Spence and Carroll US. application 771,380, filed Aug. 29, 1947 (now US. Patent 2,640,776), etc.; or mixtures of such addenda.
  • Dispersing agents for color couplers such as those set forth in US. Patents 2,322,027 and 2,304,940, can also be employed in the above-described emulsions.
  • the dyes in each of the coatings were bleached effectively in an alkaline developer solution, such as Kodak Developer D-19.
  • dyes of our invention can be used to advantage in bleachable light filter layers for photographic elements. These and other dyes of our invention are valuable for use in light filtering layers because of the ease with which they can be incorporated during manufacture of the photographic element and the ease with which they are removed from the element during photographic development.
  • FIGS. 1, 2 and 3 illustrate enlarged cross sectional views of photographic elements containing our filter layers.
  • FIG. 1 shows support coated with filter layer 11 comprising a hydrophilic colloid and our dye S-anilino- 10 methylene 3 (2 dimethylaminoethyl)rhodanine, over which is coated gelatino-silver halide layer 12.
  • FIG. 2 shows support 10 coated with gelatino-silver halide layer 13 over which is coated filter layer 14 comprising a hydrophilic colloid and 5-anilinomethylene-3- (Z-dimethylarninoethyl)rhodanine.
  • FIG. 3 shows support 10 coated on one side with antihalation backing layer 15 comprising a hydrophilic colloid and 5- anilinomethylene-3-(Z-dimethylaminoethyl) rhodanine, and coated on the other side with gelatinosilver halide emulsion layer 16.
  • a photographic element comprising a support, at least one layer containing light-sensitive silver halide grains and at least one hydrophilic colloid layer containing a dye selected from those having the formulas:
  • Z represents the nonmetallie atoms required to complete a 5- to G-Inembered heterocyclic nucleus selected from the class consisting of a 2-pyrazolin-5-one nucleus, a 2-isoxazolin-5-one nucleus, a 2-indolinone nucleus, a barbituric acid nucleus, a thiobarbituric acid nucleus, a rhodanine nucleus, a 3I-I-irnidazo[l,2-a]pyri din-2-one nucleus, a 5,7-dioxo-6,7-dihydro-5H-thiazolo [3,2-a]pyrimidine nucleus, a 2-thio-2,4-oxazo1idinedione nucleus, a thianaphthenone nucleus, a 2-thio-2,5-thiaz0lidinedione nucleus, a 2,4-thiazolidinedione nucleus,
  • R Hz)qN group, the 4-(N-pyrrolidinyl)phenyl group, the 4-(N- morpholino)phenyl group, a
  • R and R each represent a grou selected from the class consisting of an alkyl group and an aryl group; R represents an alkyl group; j represents an integer of from 0 to 1; E represents a member selected from the class consisting of a Ill) group, a
  • R represents a member selected from the class consisting of the hydroxyl group, a halogen atom, an alkoxy group, and an alkyl group; and R represents a group selected from the class consisting of an alkyl group, and an aryl group.
  • a photographic element comprising a support and at least one hydrophilic colloid layer containing silver halide grains sensitized with bis[3-(2-diethylaminoethyl)- 5-rhodanine]trimethineoxonol.
  • a photographic element comprising a support and at least one hydrophilic colloid layer containing silver halide grains sensitized with bis[3-(2-dimethylaminoethyl)-5-rhodanine]methineoxonol hydroperchlorate.
  • a photographic element comprising a support and at least one hydrophilic colloid layer containing silver halide grains sensitized with 3-(2-diethylaminoethyl)-5- p-dimethylaminocinnamylidenerhodanine.
  • a photographic element comprising a support and at least one hydrophilic colloid layer containing silver halide grains sensitized with 3-(3-dimethylaminopropyl)- S-p-dimethylaminobenzylidenerhodanine.
  • a photographic element comprising a support, at least one hydrophilic colloid layer containing light-sensitive silver halide and at least one hydrophilic colloid layer containing 5-anilinomethylene-3-(Z-dimethylaminoethyl)rhodanine.
  • a photographic element comprising a support, at least one hydrophilic colloid layer containing light-sensitive silver halide and at least one hydrophilic colloid layer containing 3 (2 dimethylaminoethyl) 5 piperidinomethylenerhodanine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Description

Nov. 14, 1967 R. c. TABER ET AL 3,352,680
SENSITIZING AND FILTER DYES FOR PHOTOGHAPHIC ELEMENTS Filed May 4, 1964 F I6 I -GELATINOSILVER HAL/DE EMULSION I2 HYDROPHILIC COLLOID 5-ANILINOMETHYL ENE -3 IZ-DIMETHYLA M/NOETHYL) RHODANINE SUPPORT F! 2 HYDROPHILIC COLLOID+5-ANILINOMETHYLENE (-3-IZ-DIMETHYLAMINOETHYL) RHODANINE PAGELATINO- SILVER HALIDE EMULSION I O FSUPPOR T GEL ATINO SILVER HAL/DE EMULSION SUPPORT 3- Z-DIME THYLAMINOE TH YL I RHODANINE ROBERT 0- TA BER LESLIE G" S BROOKER TORS INVE /202% BY I fi vkfiq FlA/kbwvm ATTORNEY AND AGENT HYDROPHILIC COLLOID 5-ANILINOMETHYLENE.
United States Patent 3,352,680 SENSITIZING AND FILTER DYES FOR PHOTOGRAPHIC ELEMENTS Robert C. Taber and Leslie G. S. Brooker, Rochester,
N.Y., assignors t0 Eastman Kodak Company, Rochester, N.Y., a corporation of New Jersey Filed May 4, 1964, Ser. No. 364,451 9 Claims. ((31. 96-84) This invention relates to dyes and more particularly to oxonol, hemioxonol, benzylidene and cinnamylidene dyes containing at least one secondary amino substituted alkyl group attached to the acidic nucleus, and to photographic elements containing said dyes in a hydrophilic colloid layer.
Certain dyes are known to alter the sensitivity of photographic silver halide emulsions.
It is also known to use certain bleachable dyes in lightfiltering hydrophilic colloid layers in light-sensitive photographic elements. Such light-filtering layers may be coated over the light-sensitive layer, between two differently sensitized light-sensitive layers, between a lightsensitive layer and the support or on the side of the support opposite to the side bearing a light-sensitive layer. Dyes useful for filter layers must not only absorb light of the desired wavelengths but must be readily bleachable and/or removable during the normal photographic processing operations.
In order that dyes be useful in photographic elements they should not only either sensitize silver halide to light in the desired range of wavelengths or absorb light in the desired part of the spectrum if the dye is to be used in a light filtering layer, but the dye must be easy to incorporate in the photographic element, be firmly held in the photographic element but completely bleached or removed by the normal processing solutions. Dyes available for use do not always have all these properties in the desired degree. New sensitizing and/or light-filtering dyes are desired for use in photographic elements.
It is therefore an object of our invention to provide a new class of oxonol, hemioxonol, benzylidene and cinnamylidene dyes containing at least one secondary amino substituted alkyl group attached to the acidic nucleus or nuclei in the dye, and which are valuable for use in making photographic elements.
Another object is to provide a synthesis for preparing our new dyes which have desirable sensitizing and/0r light absorbing characteristics as well as good solubility in aqueous solutions.
Another object is to provide photographic silver halide emulsions containing our dyes.
Still another object is to provide photographic elements comprising a support, at least one hydrophilic colloid layer containing light-sensitive silver halide and at least one hydrophilic layer containing at least one of our dyes.
Still other objects will become apparent from a consideration of the following specification and claims.
These and other objects are accomplished according to our invention by providing and using dyes included in the formulas:
3,352,680 Patented Nov. 14, 1967 wherein Z represents the nonmetallic atoms required to complete a 5- to 6 membered heterocyclic nucleus such as those of the 2-pyrazolin-5-one series (e.g., 3-methyl-1- phenyl-2-pyrazolin-5-one, 1-phenyl-2-pyrazolin-S-one, 1- (2 benzothiazolyl) 3-methyl-2-pyrazolin-S-one, etc.), those of the 2-isoXazolin-5-one series (e.g., 3-phenyl-2- isoxazolin-S-one, 3-methyl-2-isoXazolin-5-one, etc.), those of the 2-indolinone series, (e.g., l-alkyl-2-indolinone, etc.), those of the barbituric acid and 2-thiobarbituric acid series as well as their l-alkyl (e.g., l-methyl, l-ethyl, l-propyl, l-heptyl, etc.), or 1,3-dialkyl (e.g., 1,3-dimethyl, 1,3-diethyl, 1,3-di-n-propyl, 1,3-diisopropyl, 1,3-dicyclohexyl, 1,3-di({3-methoxyethyl), etc.), or 1,3-diaryl (e.g., 1,3-diphenyl, 1,3 di(p-chlorophenyl), 1,3-di(pethoxycarbonylphenyl), etc.), or l-aryl (e.g., l-phenyl, l-p-chl-orophenyl, l-p-ethoxycarbonylphenyl, etc.) or 1- alkyl-3-aryl (e.g., 1-ethyl-3-phenyl, l-n-heptyl-Z-phenyl, etc.) derivatives, those of the rhodanine series (i.e., 2- thio-2,4-thiazolidinedione, series), such as rhodanine, 3- alkylrhodanines (e.g., 3-ethylrhodanine, 3-ally1rhodanine, etc.) or 3-arylrhodanines (e.g., 3-phenylrhodanine, etc.), etc., those of the 3H-imidazo[l,2-a]pyridin-2-one series, those of the 5,7-dioxo-6,7-dihydro-SH-thiazolo[3,2-a] pyrimidine series (e.g., 5,7-dioxo-3-phenyl-6,7-dihydro-5- thiazolo[3,2-a1pyrimidine, etc.), those of the 2-thio-2,4- oxazolidinedione series (i.e., those of the 2-thio-2,4(3H, 5H)-oxazoledione series) (e.g., 3-ethyl-2-tbio-2,4-oxazolidinedione, etc.), those of the thianaphthenone series (e.g., 3-(2H)-thianaphthenone, etc.), those of the 2-tbio- 2,5 thiazolidinedione series (i.e., the 2 thio 2,5 (3H, 4H)-thiazoledione series) (e.g., 3ethyl-2-thio-2,5-thiazolidinedione, etc.), those of the 2,4-thiazolidinedione series (e.g., 2,4-thiazolidinedione, 3-ethyl-2,4 -1thiazolidinedione, 3 phenyl-2,4-thiazolidinedione, 3-u-naphthyl- 2,4-thiazolidinedione, etc.), those of the..thiazolidinone series (e.g., 4-thiazolidinone, 3-ethyl-4-thiazolidinone, 3- phenyl 4 thiazolidinone, 3- x-naphthyl-4-thiazolidinone, etc.), those of the thiazolin-4-one, series (e.g., 2-ethylthiothiazolin-4-one, 2-alkylphenylaminothiazolin-4-ones, Z-diphenylaminothiazolin-4-one, etc.), those of the 2- imino 2,4 oxazolidinedione (i.e., pseudohydantoin) series, those of the hydantoin series (e.g., hydantoin, 3-ethylhydantoin, 3 phenylhydantoin, Tia-naphthylhydantoin, 1,3-diethylhydantoin, 1-ethyl-3-phenylhydantoin, l-ethyl- 3 0c naphthylhydantoin, 1,3 diphenylhydantoin, etc.), those of the thiohydantoin series (e.g., 2-thiohydantoin, 3 ethylthiohydantoin, 3 phenyl 2 thiohydantoin, 3-txnaphthyl-Z-thiohydantoin, 1,3-diethyl-Z-thiohydantoin, 1-
ethyl-3-phenyl-2-thiohydantoin, 1-ethyl-3a-naphthyl 2- thiohydantoin, 1,3-diphenyl-2-thiohydantoin, etc.), those of the 2-imidazolin-5-one series (e.g., 2-propylthio-2-imidaz01in-5-one, etc.), etc., (especially a heterocyclic nucleus containing 5 atoms in the heterocyclic ring, 3 of said atoms being carbon atoms, 1 of said atoms being a nitrogen atom, and l of said atoms being selected from the group consisting of a nitrogen atom, an oxygen atom, a selenium atom and a sulfur atom); n represents an integer of from 1 to 3; Q and Q each represent the same or diiferent group, such as,
etc.; R represents any of the groups used on the 3-position of 2-pyrazolin-5-ones, e.g., hydrogen, alkyl (e.g., methyl, isopropyl, tertiary butyl, hexyl, etc.), aryl (e.g., phenyl, tolyl, halophenyl, etc.), amino (e.g., methylamino, diethylamino, phenylamino, etc.), carbonamido (e.g., ethylcarbonamido, phenylcarbonamido, etc.), sulfonarnido (e.g., butylsulfonamido, phenylsulfonamido, etc.), sulfamoyl (e.g., propylsulfamoyl, phenylsulfamoyl, etc.), carbamoyl (e.g., ethylcarbamoyl, phenylcarbarnoyl, etc.); W represents the sulfur atom, the selenium atom or the oxygen atom; Y and Y each represent a group selected from the class consisting of the hydrogen atom, an alkyl group (e.g., methyl, ethyl, butyl, etc.), an aryl group (e.g., phenyl, tolyl, etc.), a
group, such that at least one of the groups Y and Y contains a group with a tertiary nitrogen atom; q represents an integer of from 2 to 4; R R and R each represents an alkyl group (e.g., methyl, propyl, butyl, hexyl, etc.); m represents an integer of from 1 to 2; D represents a group selected from the class consisting of a group, a 4-(N-pyrrolidinyl)phenyl group, a 4-(N-morpholino)phenyl group, a 4-(N-piperidino)phenyl group, a
group, the
group, the
group, etc.; R and R each represents an alkyl group (e.g., methyl, 2-hydroxyethyl, 2-chloroethyl, benzyl, butyl, hexyl, etc.), an aryl group (e.g., phenyl, tolyl, chlorophenyl, etc.), etc.; R represents an alkyl group (e.g., methyl, ethyl, butyl, etc.); E represents a group, such as a group, a
4 group, a N-pyrrolidinyl group, a N-morpholino group, a N-piperidino group, and a CI'IQ-CHZ N N-R1 group; R represents an alkyl group (e.g., methyl, ethyl, butyl, etc.), an aryl group (e.g., phenyl, tolyl, etc.), etc.; R represents a group such as, hydroxyl, halo (e.g., chloro, bromo, etc.), alkyl (e.g., methyl, ethyl, butyl, etc.), alkoxy (e.g., methoxy, propoxy, butoxy, etc.), etc.; and j represents an integer of from 0 to 1.
Our dyes are used to advantage in photographic elements comprising a support, at least one hydrophilic colloid layer containing a light-sensitive silver halide emulsion, and at least one hydrophilic colloid layer containing one or more of our dyes. Certain of our dyes are used to advantage as sensitizers in the colloid layer containing the silver halide emulsion, While our other dyes are used to advantage as light filtering dyes in hydrophilic colloid layers of photographic elements.
The dyes of Formula I can be prepared to advantage by condensing a compound having the formula:
IV o
0 =0 11-011 n1=CH'III-Cal 5 Z Rm wherein Z and n are as defined previously and R represents the hydrogen atom or a o H -U-Ru group in which R represents an alkyl group (e.g., methyl, ethyl, butyl, etc.), With a compound having the formula:
wherein Y and Q are as defined previously. The reaction is carried out advantageously by heating the reactants in an inert solvent in the presence of a basic condensing agent at a temperature between room temperature and the reflux temperature of the reaction mixture. Inert solvents used to advantage include pyridine, ethanol, butanol, dimethylformamide, etd. Basic condensing agents used to advantage include the trialkylamines (e.g., triethylamine, tributylamine, etc.), the dialkylanilines (e.g., N,N-dimethylaniline, N,N-diethylaniline, etc.), heterocyclic tertiary amines (e.g., pyridine, quinoline, N-alkylpiperidines, etc.), alkali metal alcoholates (e.g., sodium methylate, sodium ethylate, etc.), etc.
The dyes of Formula II in which Q and Q are different are prepared advantageously by condensing a compound having the formula:
v1 0 Y-N( i wherein Y, Q, n and R are as defined previously with a compound of Formula V in an inert solvent in the presence of a basic condensing agent and preferably at a temperature between room temperature and the reflux temperature. Suitable solvents and basic condensing agents have been listed herein previously.
The dyes of Formula II in which Q and Q represent the same groups are advantageously prepared by heating a compound of Formula V with ethylorthoformate, 18- ethoxyacroleinacetal or glutaconic aldehyde dianilide HCl to prepare the dye in which n is 1, 2 or 3, respectively.
The dyes of Formula III in which is the integer are prepared advantageously by heating a compound of Formula V with an intermediate, such as, diphenylformamidine followed by reaction with acetic anhydride, piperidine, pyrrolidine, morpholine, etc. The reaction with diphenylformamidine can be accomplished by heating the reactants to form a melt. Inert solvents may be used to advantage in the other reactions.
The dyes of Formula III in which i is the integer 1 are advantageously prepared by heating a compound of Formula V with an intermediate having the formula wherein D and m are as defined previously. This reaction is conducted in an inert solvent, in the presence of a basic condensing agent preferably by heating to a temperature ture between room temperature and the reflex temperature.
The following typical dyes will serve to illustrate our invention.
DYE 1 Bis[3-(Z-diethylaminoethyl)-5-rhodarzine] trimethineoxonol 8.8 g. (2 mol.) of 3 (2 diethylaminoethyl)rhodanine and 2.6 g. (1 mol.) of triethoxypropene were added to 40 ml. of dimethylformamide, 5.6 ml. of triethylamine added, and the resultant solution heated at reflux for 45 minutes. The reaction mixture was filtered and the filtrate treated with 40 ml. of water and chilled. The crystalline dye was collected and twice recrystallized by dissolving in dimethylformamide and precipitating with water. The dye was obtained (yield 2%) as dark green crystals M.P. 160163 C. with decomposition.
DYE 2 Bis [3 (Z-dimethylaminoelhyl -5 -rh0danine] methineoxonol hydroperchlorate 3.05 g. (2 mol.) of 3 (2 dimethylaminoethyl) rhodanine hydroperchlorate and 0.81 g. (1 mol.) of diethoxymethylacetate were added to ml. of pyridine and the solution heated at reflux for 30 minutes. The reaction mixture was treated with 50 ml. of water, the solution chilled and the dye collected on a filter. The dye was twice recrystallized by dissolving in pyridine and precipitating with water. The dye was obtained (yield 11%) as red crystals with green reflex of M.P. 239-241 with decomposition.
DYE 3 Bis [3- (3-dimethylamin0pr0pyl) -5-rh0dam'ne] methineoxonol hydroperchlorate 3.19 g. (2 mol.) of 3 (3 dimethylaminopropyl) rhodanine hydroperchlorate and 0.81 g. (1 mol.) of diethoxymethylacetate were added to 10 ml. of dimethylformamide, 1.4 ml. of triethylamine added, and the solution heated at reflux for 10 minutes. The reaction mixture was treated with 50 ml. of water, the solution chilled and the dye collected on a filter. The dye was twice recrystallized by dissolving in dimethylformamide and precipating with methanol. The dye was obtained (yield 21%) as red crystals with green reflex of M.P. 241-243 C. with decomposition.
6 DYE 4 5 -anilinomethylene-3-(Z-dimethylaminoethyl rhodanine (OH3)2NCH2CH.1N C=O S=(J C=CHNHCBH5 3.05 g. (1 mol.) of 3 (2 dimethylaminoethyl) rhodanine hydroperchlorate and 1.96 g. (1 mol.) of diphenylformamidine were fused and held in a molten state for 5 minutes. The melt was dissolved in methanol, made basic with piperidine, precipitated with water and the dye collected on a filter. The dye was recrystallized three times by dissolving in ethanol and precipitating with water. The dye was obtained (yield 57%) as yellow crystals of M.P. 92-94 with decomposition.
DYE 5 5-acetanilidomethylene-3- (Z-dimethylaminoethyl) rhodanine 0.70 g. of 5 acetanilidomethylene 3 (2 dimethylaminoethyl)rhodanine and 5 ml. of piperidine were added to 10 ml. of acetone and the solution heated under reflux for 1 hour. The solution was treated with water until precipitation began, chilled and the dye collected on a filter. The dye was recrystallized by dissolving in methanol and precipitating with water. The dye was obtained (yield 37%) as pale yellow crystals of M.P. 123- 125 .with decomposition.
DYE 7 3-(2-diethylamin0ethyl) -5-p-dimethylaminocinnamylidenerhodanine 8.8 g. (1 mol.) of 3 (2 diethylaminoethyl)rhodanine and 7.0 g. (1 mol.) of p dimethylaminocinnamaldehyde were added to ml. of ethanol, 5.6 m1. of triethylamine added, and the solution heated under reflux for 30 minutes. The reaction mixture was filtered and the filtrate chilled. The dye separated and was recrystallized by dissolving in pyridine and precipitating with ethanol. The dye was obtained (yield 4%) as red needles M.P. 157- 15 9 C. with decomposition.
DYE 8 3-(Z-dimethylaminoethyl)-5-p-dimethylamin0- benzylidenerhodanine 1.50 g. (1 mol.) of 3 (2 dimethylaminoethyl),
rhodanine hydroperchlorate and 0.75 g. (1 mol.) of pdimethylaminobenzaldehyde were added to 7 ml. of
7 acetic acid and 3 ml. of acetic anhydride. The reaction mixture was heated at reflux for 3 minutes, the solution chilled and the dye collected on a filter. The dye was dissolved in ethanol, made basic with piperidine, chilled and collected. The dye was recrystallized from ethanol and obtained (yield 32%) as scarlet needles of M.P. 141-143 with decomposition.
DYE 9 3-(3-dimcthylamirzopropyl) --p-dimethylaminobenzylidenerhodanine (CH3)zNCH2CHzCH2N- C 0 1.60 g. (1 mol.) of 3-(3-dimethylaminopropyl)rhodanine hydroperchlorate and 0.75 g. 1 mol.) of p-dimethylaminobenzaldehyde were added to 7 ml. of acetic acid and 3 ml. of acetic anhydride and the reaction mixture refluxed for 3 minutes. The solution was chilled and the dye collected on a filter. The dye was dissolved in ethanol, made basic with piperidine, chilled and collected. The dye was recrystallized from ethanol and obtained (yield 22%) as light orange crystals of M.P. 136138 with decomposition.
Intermediates of Formula IV are well known in the art.
The preparation of typical intermediates of Formula V will still further illustrate the preparation of our dyes.
3-(2-diethylaminoethyl)rhodanine o C-N-CH2CH2N (Cindi 112( C=S s 45.2 g. (1 mol.) of bis(carboxymethyl)trithiocarbonate and 23.2 g. (1 mol.) of N,N-diethylethylenediamine were added to 250 ml. of water. 21.2 g. (1 mol.) of sodium carbonate was added to the mixture in small portions with vigorous stirring and the resulting solution was heated on a steam bath for 2 hours. The solution was made acid with concentrated hydrochloric acid and heated on the steam bath for 1 hour. The reaction mixture was then concentrated to a heavy oil, taken up in 200 ml. of methanol and chilled overnight. The solution was filtered, the filtrate concentrated to a volume of 150 ml. and passed through a column containing 400 g. of neutral alumina. The product was diluted with methanol and the methanolic solution concentrated to a heavy resinous orange oil (yield 40%) which was used to prepare dye without any further purification.
3-(Z-dimethylaminoethyl)rhodanine hydroperchlorate 22.6 g. (1 mol.) of bis(carboxymethyl)trithiocarbonate was dissolved in a solution containing 11.1 g. of sodium carbonate and 250 ml. of water. The resulting solution was treated with 13.2 g. (1 mol.+50%) of N,N-dimethylethylenediamine and heated on the steam bath for 1% hours. The solution was then made strongly acid with concentrated hydrochloric acid and heated on the steam bath for /2 hour. A solution of 18.3 g. of sodium perchlorate in 50 ml. of water was added to the reaction mixture and the solution chilled. The product was collected on a filter and obtained (yield 74%) as pinkish orange crystals of M.P. 166-168 with decomposition.
3- (3-dimethylaminopropyl) rhodanine hydroperchlorate 22.6 g. (1 mol.) of bis(carboxymethyl)trithiocarbonate was dissolved in a solution containing 11.1 g. of sodium carbonate and 150 ml. of water. The resulting solution was treated with 15.3 g. (1 mol.+100%) of N,N-dimethyl-l,3-propanediamine and heated on a steam bath for 1% hours. The solution was then made strongly acid with concentrated hydrochloric acid, heated on the steam bath for /2 hour and then concentrated to a heavy yellow oil on a rotary evaporator. The oil was redissolved in 50 ml. of water, treated with a solution containing 18.3 g. of sodium perchlorate in 50 ml. of water and chilled. The product was collected on a filter and obtained (yield 81%) as yellow crystals of M.P. 128-130 with decomposition.
Intermediates of Formula VI are advantageously prepared from compounds of Formula V by condensing them with a compound having the formula:
and their hydrochloride salts, wherein R is as defined previously. The reaction of a compound of Formula V with diphenylformamidine is advantageously conducted in the presence of a petroleum fraction, e.g., kerosene, while the corresponding reaction with compounds, such as, B-anilinoacrolein anil or glutaconic aldehyde or their hydrochlorides (or other salts) are advantageously conducted by heating in the presence of a strong tertiary organic base, such as, have been described herein previously.
In the preparation of photographic emulsions, the new dyes of the invention are advantageously incorporated in the finished silver halide emulsion and should be uniformly distributed throughout the emulsion. The methods for incorporating dyes in emulsions are relatively simple and well known in the art of emulsion making. For example, it is convenient to add the dyes from aqueous solution preferably in the presence of an equivalent of an acid, such as, acetic acid. Methanol, ethanol, isopropanol and other solvents having no deleterious efl'ect on the ultimate light-sensitive materials may also be used but are not usually needed.
Our dyes are used advantageously to sensitize silver halides, e.g., silver chloride, silver bromide, silver iodide,
' silver chlorobromide, silver bromoiodide, silver chlorobromoiodide, etc. The silver halide may be deposited as a film by evaporation under vacuum and then coated with a protective hydrophilic colloid layer or dispersed in a hydrophilic colloid. Hydrophilic colloids used to advantage include natural materials, e.g., gelatin, albumin, agaragar, gum arabic, alginic acid, etc., and synthetic hydrophilie resins, e.g., polyvinyl alcohol, polyvinyl pyrrolidone, cellulose ethers, partially hydrolyzed cellulose acetate, etc. Certain of our dyes are also used to advantage in filter layers in which any of the hydrophilic colloids listed can be used as the carrier.
Our dyes are used over a wide range of concentrations in hydrophilic colloid layers with or without silver halide. The optimum concentrations will depend upon the particular photographic element and the effect desired, and can be determined readily by methods well known in the art.
Our emulsions and filter layers are coated to advantage on any of the materials used for photographic elements, e.g., paper, glass, cellulose acetate, cellulose nitrate, synthetic film forming resins, e.g., the polyesters, the polyamides, polystyrenes, etc.
Photographic silver halide emulsions, such as those listed above, containing the sensitizing dyes of our invention can also contain such addenda as chemical sensitizers, e.g., sulfur sensitizers (e.g., allyl thiocarbamide, thiourea, allyl-isothiocyanate, cystine, etc.), various gold compounds (e.g., potassium chloroaurate, auric tric-hloride, etc.) (see US. Patents 2,540,085; 2,597,856 and 2,597,- 915), various palladium compounds, such as palladium chloride (US. 2,540,086), potassium chloropall-adate (US. 2,598,079), etc., or mixtures of such sensitizers; antifoggants, such as ammonium chloroplatinate (US. 2,566,245), ammonium chloroplatinite (US. 2,566,263), benzotriazole, nitrobenzimidazole, S-nitroindazole, benzidine, mercaptans, etc. (see Mees The Theory of the Photographic Process, Macmillan pub., page 460), or mixtures thereof: hardeners, such as formaldehyde (US. 1,763,533), chrome alum (U.S. 1,763,533), glyoxal (US. 1,870,354), dibromacrolein (Br. 406,750), etc.; color couplers, such as those described in US. Patent 2,423,730, Spence and Carroll US. application 771,380, filed Aug. 29, 1947 (now US. Patent 2,640,776), etc.; or mixtures of such addenda. Dispersing agents for color couplers, such as those set forth in US. Patents 2,322,027 and 2,304,940, can also be employed in the above-described emulsions.
The following examples will still further illustrate our invention.
EXAMPLE I Portions of a gelatino-silver chlorobromide emulsion containing 40 mole percent bromide of the type described by Trivelli and Smith, Photo. Journal, 79, 330 (1939) were sensitized with representative dyes indicated in Table l. Aqueous solutions of the dyes were added to the emulsions. The sensitized emulsions were coated at a coverage of 432 mg. of silver per square foot on a cellulose acetate film support. A sample of each coating was exposed on an Eastman 1B Sensitorneter and on a wedge spectrograph, processed for 3 minutes in Kodak Developer D-l9, fixed in a conventional sodium thiosulfate fixing bath, washed and dried. The spectral sensitivity data obtained are summarized in Table 1.
TABLE 1 Spectral Sensitization Dye Number xMax. (m Range (m EXAMPLE I1 Coatings were made of portions of a gelatin solution containing the indicated amount of representative hemioxonol dyes on pieces of glass plate. After drying, absorption measurements were made and listed in Table 2.
TABLE 2 Dye Number Concentration Dmu x. Wavelength,
ofDye, ing/112. mp
The dyes in each of the coatings were bleached effectively in an alkaline developer solution, such as Kodak Developer D-19.
Similarly it can be shown that other dyes of our invention can be used to advantage in bleachable light filter layers for photographic elements. These and other dyes of our invention are valuable for use in light filtering layers because of the ease with which they can be incorporated during manufacture of the photographic element and the ease with which they are removed from the element during photographic development.
The accompanying drawings FIGS. 1, 2 and 3 illustrate enlarged cross sectional views of photographic elements containing our filter layers.
FIG. 1 shows support coated with filter layer 11 comprising a hydrophilic colloid and our dye S-anilino- 10 methylene 3 (2 dimethylaminoethyl)rhodanine, over which is coated gelatino-silver halide layer 12.
FIG. 2 shows support 10 coated with gelatino-silver halide layer 13 over which is coated filter layer 14 comprising a hydrophilic colloid and 5-anilinomethylene-3- (Z-dimethylarninoethyl)rhodanine.
FIG. 3 shows support 10 coated on one side with antihalation backing layer 15 comprising a hydrophilic colloid and 5- anilinomethylene-3-(Z-dimethylaminoethyl) rhodanine, and coated on the other side with gelatinosilver halide emulsion layer 16.
The invention has been described in detail with particular reference to preferred embodiments thereof but it will be understood that variations and modifications can be elfected within the spirit and scope of the invention as described hereinabove and as defined in the appended claims.
We claim:
1. A photographic element comprising a support, at least one layer containing light-sensitive silver halide grains and at least one hydrophilic colloid layer containing a dye selected from those having the formulas:
wherein Z represents the nonmetallie atoms required to complete a 5- to G-Inembered heterocyclic nucleus selected from the class consisting of a 2-pyrazolin-5-one nucleus, a 2-isoxazolin-5-one nucleus, a 2-indolinone nucleus, a barbituric acid nucleus, a thiobarbituric acid nucleus, a rhodanine nucleus, a 3I-I-irnidazo[l,2-a]pyri din-2-one nucleus, a 5,7-dioxo-6,7-dihydro-5H-thiazolo [3,2-a]pyrimidine nucleus, a 2-thio-2,4-oxazo1idinedione nucleus, a thianaphthenone nucleus, a 2-thio-2,5-thiaz0lidinedione nucleus, a 2,4-thiazolidinedione nucleus, at thiazolidinone nucleus, a thiazolin-4-one nucleus, a 2-imino2,4-oxazolidinedione nucleus, a hydantoin nucleus, a thiohydantoin nucleus, and a Z-imidazolin-S-one nucleus; n represents an integer of from 1 to 3; Q'and Q each represent a group selected from the class consisting of a group and a --C-NC H l ii Y1 S group; R represents a group selected from the class consisting of the hydrogen atom, an alkyl group, an aryl group, an amino group, a carbonamido group, a sulfonamido group, a sulfamoyl group, and a carbamoyl group; W represents an atom selected from the class consisting of sulfur, selenium and oxygen; Y and Y each represent a group selected from the class consisting of the hydrogen atom, an alkyl group, an aryl group, a
R: Hz)qN group, the 4-(N-pyrrolidinyl)phenyl group, the 4-(N- morpholino)phenyl group, a
/cuz-crn N N n,
cut-4:11,
group, the
(CH2); N
group and the (CIIzla group; R and R each represent a grou selected from the class consisting of an alkyl group and an aryl group; R represents an alkyl group; j represents an integer of from 0 to 1; E represents a member selected from the class consisting of a Ill) group, a
CHz-CHz N-Ra CHZCHQ group; R represents a member selected from the class consisting of the hydroxyl group, a halogen atom, an alkoxy group, and an alkyl group; and R represents a group selected from the class consisting of an alkyl group, and an aryl group.
2. A photographic element of claim 1 in which the dye is contiguous with the silver halide grains.
3. A photographic element of claim 1 in which the dye is in a hydrophilic colloid layer adjacent to the layer containing the silver halide grains.
4. A photographic element comprising a support and at least one hydrophilic colloid layer containing silver halide grains sensitized with bis[3-(2-diethylaminoethyl)- 5-rhodanine]trimethineoxonol.
5.A photographic element comprising a support and at least one hydrophilic colloid layer containing silver halide grains sensitized with bis[3-(2-dimethylaminoethyl)-5-rhodanine]methineoxonol hydroperchlorate.
6. A photographic element comprising a support and at least one hydrophilic colloid layer containing silver halide grains sensitized with 3-(2-diethylaminoethyl)-5- p-dimethylaminocinnamylidenerhodanine.
7. A photographic element comprising a support and at least one hydrophilic colloid layer containing silver halide grains sensitized with 3-(3-dimethylaminopropyl)- S-p-dimethylaminobenzylidenerhodanine.
8. A photographic element comprising a support, at least one hydrophilic colloid layer containing light-sensitive silver halide and at least one hydrophilic colloid layer containing 5-anilinomethylene-3-(Z-dimethylaminoethyl)rhodanine.
9. A photographic element comprising a support, at least one hydrophilic colloid layer containing light-sensitive silver halide and at least one hydrophilic colloid layer containing 3 (2 dimethylaminoethyl) 5 piperidinomethylenerhodanine.
OTHER REFERENCES Banno: Chem. Abst., vol. 52, col. l6469f (1958), Abstract of Kanko Shikiso 34, 1-22 (1955).
NORMAN G. TORCHIN, Primary Examiner.
A. L. LIBERMAN, R. H. SMITH, Assistant Examiners.

Claims (1)

1. A PHOTOGRAPHIC ELEMENT COMPRISING A SUPPORT, AT LEAST ONE LAYER CONTAINING LIGHT-SENSITIVE SILVER HALIDE GRAINS AND AT LEAST ONE HYDROPHILIC COLLOID LAYER CONTAINING A DYE SELECTED FROM THOSE HAVING THE FORMULAS:
US364451A 1964-05-04 1964-05-04 Sensitizing and filter dyes for photographic elements Expired - Lifetime US3352680A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US364451A US3352680A (en) 1964-05-04 1964-05-04 Sensitizing and filter dyes for photographic elements
DE19651472826 DE1472826A1 (en) 1964-05-04 1965-04-21 Photographic material
BE663378A BE663378A (en) 1964-05-04 1965-05-03
GB18455/65A GB1112417A (en) 1964-05-04 1965-05-03 Dyes and photographic elements containing them
FR15647A FR1444772A (en) 1964-05-04 1965-05-04 New dyes and photographic products containing them
US643097A US3497502A (en) 1964-05-04 1967-06-02 Photographic elements containing a light sensitive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US364451A US3352680A (en) 1964-05-04 1964-05-04 Sensitizing and filter dyes for photographic elements

Publications (1)

Publication Number Publication Date
US3352680A true US3352680A (en) 1967-11-14

Family

ID=23434579

Family Applications (1)

Application Number Title Priority Date Filing Date
US364451A Expired - Lifetime US3352680A (en) 1964-05-04 1964-05-04 Sensitizing and filter dyes for photographic elements

Country Status (4)

Country Link
US (1) US3352680A (en)
BE (1) BE663378A (en)
DE (1) DE1472826A1 (en)
GB (1) GB1112417A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2621125A (en) * 1946-11-22 1952-12-09 Gevaert Photo Prod Nv Light-sensitive photographic element having a light-absorbing layer
US2622980A (en) * 1950-11-18 1952-12-23 Gen Aniline & Film Corp Photographic filter and antihalation layers containing 3-(benzylidene)-sulfo-oxindoles
US2916487A (en) * 1955-08-22 1959-12-08 Sperry Rand Corp New thiazole base and cyanine dyes prepared therefrom
US2916488A (en) * 1956-06-27 1959-12-08 Sperry Rand Corp Sensitizing dyes containing the spiro (4.4) nonano (1, 2d) thiazole nucleus
US3094418A (en) * 1960-03-10 1963-06-18 Eastman Kodak Co Silver halide meulsions containing cationic oxonol and benzylidene dyes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2621125A (en) * 1946-11-22 1952-12-09 Gevaert Photo Prod Nv Light-sensitive photographic element having a light-absorbing layer
US2622980A (en) * 1950-11-18 1952-12-23 Gen Aniline & Film Corp Photographic filter and antihalation layers containing 3-(benzylidene)-sulfo-oxindoles
US2916487A (en) * 1955-08-22 1959-12-08 Sperry Rand Corp New thiazole base and cyanine dyes prepared therefrom
US2916488A (en) * 1956-06-27 1959-12-08 Sperry Rand Corp Sensitizing dyes containing the spiro (4.4) nonano (1, 2d) thiazole nucleus
US3094418A (en) * 1960-03-10 1963-06-18 Eastman Kodak Co Silver halide meulsions containing cationic oxonol and benzylidene dyes

Also Published As

Publication number Publication date
BE663378A (en) 1965-09-01
GB1112417A (en) 1968-05-08
DE1472826A1 (en) 1969-03-27

Similar Documents

Publication Publication Date Title
US3988154A (en) Photographic supports and elements utilizing photobleachable omicron-nitroarylidene dyes
US4524128A (en) Spectrally sensitized silver halide photothermographic material
US3482978A (en) Carbocyanine filter dyes and sensitizers for silver halide emulsions
US3666480A (en) Spectrally sensitized silver halide photographic emulsion
JPS61251842A (en) Optical response material
US3384486A (en) Merocyanine dyes for photographic elements containing an extracyclic tertiary amino group
US3326688A (en) Photographic sensitizing dyes
US3623881A (en) Silver halide emulsions sensitized with tricarbocyanine dyes containing a 1-piperazinyl group
EP0136847A2 (en) Photographically useful chalcogenazolylidene and chalcogenazolium dyes and methods for their preparation
US3379533A (en) Dyes derived from 1, 2-disubstituted-3, 5-pyrazolidinediones and photographic elements containing such dyes
US3652284A (en) Photographic silver halide emulsion containing a methine dye
US3337540A (en) Methine dyes
US3352680A (en) Sensitizing and filter dyes for photographic elements
US3698910A (en) Light-sensitive silver halide photographic material
US3497502A (en) Photographic elements containing a light sensitive layer
US3743638A (en) Polymethine dyes
US3557101A (en) Trinuclear dyes having an acid nucleus substituted with a secondary amino substituted alkyl group useful as spectral sensitizers for photographic silver halide emulsions
US3335010A (en) Trinuclear dyes for photographic elements
US3725398A (en) Process for preparing 9-aryloxycarbocyanine compounds
US3687674A (en) Direct positive fogged silver halide emulsion sensitized with a cyclo-heptatriene cyanine dye
US3758465A (en) Trinuclear complex merocyanine dyes
US3718476A (en) Silver halide element containing merocyanine dyes with a 3-pyrrolinylalkyl group
US3786046A (en) Novel cyanine dyes with enamines containing two fused carbocyclic rings
USRE28208E (en) Chs cha
US3758461A (en) Dyes and photographic materials