US3344367A - Low-frequency tuning-fork electromechanical filter - Google Patents

Low-frequency tuning-fork electromechanical filter Download PDF

Info

Publication number
US3344367A
US3344367A US514518A US51451865A US3344367A US 3344367 A US3344367 A US 3344367A US 514518 A US514518 A US 514518A US 51451865 A US51451865 A US 51451865A US 3344367 A US3344367 A US 3344367A
Authority
US
United States
Prior art keywords
resonators
filter
fork
tuning
couplers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US514518A
Inventor
Takahashi Kenji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Application granted granted Critical
Publication of US3344367A publication Critical patent/US3344367A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters

Definitions

  • ABSTRACT OF THE DISCLOSURE A multiple tuning-fork electromechanical filter with bifurcated couplers serially coupling the tuning-fork resonators, the legs of the resonators and couplers being in parallel to avoid torsional moments therebetween during transmission of mechanical vibrations.
  • This invention relates to electromechanical wave filters and more particularly to improvements in or relating to electromechanical filters for low frequencies.
  • tuning forks or tuning bars are used as mechanical resonators for low frequencies. It is well known that a low-frequency electromechanical filter is composed of these mechanical resonators and transducers, electrostrictive ceramics secured to the resonators at the two ends, and couplers intercoupling the mechanical resonators.
  • Another object of the invention is to facilitate the variation of bandwidth of the mechanical filters.
  • a further object of the invention is to facilitate the fabrication of the mechanical filters.
  • a low-frequency electromechanical filter having tuning forks or tuning bars as resonators, characterised in that the resonators are intercoupled by bifurcated couplers.
  • FIGURE 1 is a schematic diagram indicating the essential composition and arrangement of the embodiment of the invention.
  • FIGURE 2 is an enlarged perspective view showing an essential part of the filter according to the invention.
  • the filter diagrammatically illustrated therein is provided with input and output terminals 1 and 2 provided with matching coils 3, which are inserted for conjugate matching for the purpose of accomplishing electromechanical transduction by means of electrostrictive ceramic elements.
  • the filter further comprises tuning fork resonators 4, transducer resonators 5 in successive arrangement electrostrictive ceramic eleice ments 6 secured to the end transducer resonators 5 and couplers 7 intercoupling adjacent resonators 4 and 5.
  • each coupler has a bifurcated shape, which is of U-shape or the shape of a tuning fork in the example illustrated, so as to undergo tuning fork vibration (or bending vibration).
  • conventional couplers are of bar shape, and, while their longitudinal or torsional vibrating coupling affords intercoupling of the resonators, the use of bar-shaped couplers in the case of low frequencies of the order of 400 c./ s. to 3 k-c./s. necessitates very long couplers in order to obtain the desired bandwidth. Consequently, bar-shaped couplers are disadvantageous for low frequencies in that the filter unavoidably becomes large in size.
  • the coupler When the coupler is provided with a bifurcated shape, its physical size becomes a fraction of that of the resonators, and the gap between its opposed vibration prongs can be made substantially small without greatly affecting the vibration characteristics. Accordingly, the coupler can be made small and compact.
  • a U-shaped coupler is advantageous in that its length can be increased without increasing the length of the entire filter.
  • the couplers In attaching the couplers to the resonators, the couplers may be held in aligned position and secured to the resonators at points 8 as shown in FIGURE 2 by welding, soldering, brazing, or like method, which attachment process is extremely simple.
  • a low-frequency electromechanical filter comprising, a plurality of tuning-fork resonators, a plurality of bifurcated mechanical couplers serially, continuously coupling next adjacent ones of said resonators, said couplers each comprising a bifurcated resonator having legs each continuously, mechanically connected to a respective leg of a pair of the next adjacent tuning-fork resonators, said couplers being disposed for transmitting in operation mechanical vibrations serially through said tuning-fork resonators, means comprising electromechanical transducers coupled to opposite end tuning-fork resonators of said filter for receiving at one end of said filter an electrical input to be filtered and converting into mechanical vibrations and converting said mechanical vibrations for taking out at an opposite end of said filter a filtered electrical output.
  • a low-frequency electromechanical filter according to claim 1 in which the legs of said resonators and the legs of the respective couplers are disposed parallel thereby to avoid torsional moments therebetween during propagation of said mechanical vibration-s.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

p 26, 1967 KENJI TAKAHASHI 3,344,367
LOW-FREQUENCY TUNING-FORK ELECTROMECHANI CAL FILTER Filed Dec. 17. 19.65
United States Patent 3,344,367 LOW-FREQUENCY TUNING-FORK ELECTROMECHANICAL FILTER Kenji Takahashi, Tokyo-t0, Japan, assignor to Kokusai Denki Kabushiki Kaisha (also known as Kokusai Electric Co., Ltd.), Tokyo-to, Japan, a joint-stock company of Japan Filed Dec. 17, 1965, Ser. No. 514,518 Claims'priority, application Japan, Dec. 30, 1964, 39/ 74,501 3 Claims. (Cl. 333-71) ABSTRACT OF THE DISCLOSURE A multiple tuning-fork electromechanical filter with bifurcated couplers serially coupling the tuning-fork resonators, the legs of the resonators and couplers being in parallel to avoid torsional moments therebetween during transmission of mechanical vibrations.
This invention relates to electromechanical wave filters and more particularly to improvements in or relating to electromechanical filters for low frequencies.
In general, tuning forks or tuning bars are used as mechanical resonators for low frequencies. It is well known that a low-frequency electromechanical filter is composed of these mechanical resonators and transducers, electrostrictive ceramics secured to the resonators at the two ends, and couplers intercoupling the mechanical resonators.
It is an object of the present invention to afford miniaturization of filters of the instant type by improving the mechanical couplers intercoupling the mechanical resonators.
Another object of the invention is to facilitate the variation of bandwidth of the mechanical filters.
A further object of the invention is to facilitate the fabrication of the mechanical filters.
According to the present invention, briefly stated, there is provided a low-frequency electromechanical filter having tuning forks or tuning bars as resonators, characterised in that the resonators are intercoupled by bifurcated couplers.
The nature, principle, and the details of the invention will be more clearly apparent from the following detailed description with respect to a preferred embodiment of the invention, when read in conjunction with the accompanying drawing in which like parts are designated by like reference numerals, and in which:
FIGURE 1 is a schematic diagram indicating the essential composition and arrangement of the embodiment of the invention; and
FIGURE 2 is an enlarged perspective view showing an essential part of the filter according to the invention.
Referring to FIGURE 1, the filter diagrammatically illustrated therein is provided with input and output terminals 1 and 2 provided with matching coils 3, which are inserted for conjugate matching for the purpose of accomplishing electromechanical transduction by means of electrostrictive ceramic elements. The filter further comprises tuning fork resonators 4, transducer resonators 5 in successive arrangement electrostrictive ceramic eleice ments 6 secured to the end transducer resonators 5 and couplers 7 intercoupling adjacent resonators 4 and 5.
According to the present invention, each coupler has a bifurcated shape, which is of U-shape or the shape of a tuning fork in the example illustrated, so as to undergo tuning fork vibration (or bending vibration). In contrast, conventional couplers are of bar shape, and, while their longitudinal or torsional vibrating coupling affords intercoupling of the resonators, the use of bar-shaped couplers in the case of low frequencies of the order of 400 c./ s. to 3 k-c./s. necessitates very long couplers in order to obtain the desired bandwidth. Consequently, bar-shaped couplers are disadvantageous for low frequencies in that the filter unavoidably becomes large in size.
When the coupler is provided with a bifurcated shape, its physical size becomes a fraction of that of the resonators, and the gap between its opposed vibration prongs can be made substantially small without greatly affecting the vibration characteristics. Accordingly, the coupler can be made small and compact.
Furthermore, by attaching the couplers in the direction of propagation of the bending vibration energy, that is, parallelly to the resonators as shown in the drawing, coupling due to torsional moment is eliminated, and the coupling becomes that due to only bending vibration. Accordingly, the design and fabrication of the filter are greatly facilitated.
In addition, since the filter bandwidth is related to the mass of the resonators, the dimensions of the couplers, and the vibration amplitude at the coupling points, fractional bandwidths can be readily varied from 0.1 to 20 percent, of course, by changing the thickness and length of each coupler and the points of coupling to the resonators. In this respect, a U-shaped coupler is advantageous in that its length can be increased without increasing the length of the entire filter.
In attaching the couplers to the resonators, the couplers may be held in aligned position and secured to the resonators at points 8 as shown in FIGURE 2 by welding, soldering, brazing, or like method, which attachment process is extremely simple.
While the above description and drawing relate particularly to a U-shaped coupler, similar desirable results can, of course, be obtained by the use of a modification of the U-shape such as, for example, a V-shape.
Accordingly, it should be understood that the foregoing disclosure relates to only a preferred embodiment of the invention and that it is intended to cover all changes and modifications of the example of the invention herein chosen for the purposes of the disclosure which do not constitute departures from the spirit and scope of the invention as set forth in the appended claims.
What I claim is:
1. A low-frequency electromechanical filter comprising, a plurality of tuning-fork resonators, a plurality of bifurcated mechanical couplers serially, continuously coupling next adjacent ones of said resonators, said couplers each comprising a bifurcated resonator having legs each continuously, mechanically connected to a respective leg of a pair of the next adjacent tuning-fork resonators, said couplers being disposed for transmitting in operation mechanical vibrations serially through said tuning-fork resonators, means comprising electromechanical transducers coupled to opposite end tuning-fork resonators of said filter for receiving at one end of said filter an electrical input to be filtered and converting into mechanical vibrations and converting said mechanical vibrations for taking out at an opposite end of said filter a filtered electrical output.
2. A low-frequency electromechanical filter according to claim 1, in which the legs of said resonators and the legs of the respective couplers are disposed parallel thereby to avoid torsional moments therebetween during propagation of said mechanical vibration-s.
3. A low-frequency electromechanical filter according 4 to claim 1, in which the legs of said couplers and the legs of the resonators coupled thereby are relatively disposed to effectively avoid torsional moments therebetween during propagation of said mechanical vibrations.
References Cited UNITED STATES PATENTS 2,152,955 4/1939 Coyne 33371 10 ROY LAKE, Primary Examiner.
DARWIN R. HOSTETTER, Examiner.

Claims (1)

1. A LOW-FREQUENCY ELECTROMECHANICAL FILTER COMPRISING, A PLURALITY OF TUNING-FORK RESONATORS, A PLURALITY OF BIFURCATED MECHANICAL COUPLERS SERIALLY, CONTINUOUSLY COUPLING NEXT ADJACENT ONES OF SAID RESONATORS, SAID COUPLERS EACH COMPRISING A BIFURCATED RESONATOR HAVING LEGS EACH CONTINUOUSLY, MECHANICALLY CONNECTED TO A RESPECTIVE LEG OF A PAIR OF THE NEXT ADJACENT TUNING-FORK RESONATORS, SAID COUPLERS BEING DISPOSED FOR TRANSMITTING IN OPERATION MECHANICAL VIBRATIONS SERIALLY THROUGH SAID TUNING-FORK RESSONATORS, MEANS COMPRISING ELECTROMECHANICAL TRANSDUCERS COUPLED TO OPPOSITE END TUNING-FORK RESONATORS OF SAID FILTER FOR RECEIVING AT ONE END OF SAID FILTER AN ELECTRICAL INPUT TO BE FILTERED AND CONVERTING INTO MECHANICAL VIBRATIONS AND CONVERTING SAID MECHANICAL VIBRATIONS FOR TAKING OUT AT AN OPPOSITE END OF SAID FILTER A FILTERED ELECTRICAL OUTPUT.
US514518A 1964-12-30 1965-12-17 Low-frequency tuning-fork electromechanical filter Expired - Lifetime US3344367A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7450164 1964-12-30

Publications (1)

Publication Number Publication Date
US3344367A true US3344367A (en) 1967-09-26

Family

ID=13549106

Family Applications (1)

Application Number Title Priority Date Filing Date
US514518A Expired - Lifetime US3344367A (en) 1964-12-30 1965-12-17 Low-frequency tuning-fork electromechanical filter

Country Status (3)

Country Link
US (1) US3344367A (en)
FR (1) FR1490487A (en)
GB (1) GB1083420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3513415A (en) * 1967-05-09 1970-05-19 Bulova Watch Co Inc Tuning fork filters having broadened band-pass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2152955A (en) * 1937-01-08 1939-04-04 Coyne Albert Edward Electrically maintained vibrating body and system emboyding same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2152955A (en) * 1937-01-08 1939-04-04 Coyne Albert Edward Electrically maintained vibrating body and system emboyding same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3513415A (en) * 1967-05-09 1970-05-19 Bulova Watch Co Inc Tuning fork filters having broadened band-pass

Also Published As

Publication number Publication date
FR1490487A (en) 1967-08-04
GB1083420A (en) 1967-09-13

Similar Documents

Publication Publication Date Title
US3015789A (en) Mechanical filter
US3064213A (en) Electromechanical wave transmission systems
US5592040A (en) Acoustic wave resonator filter
US3185943A (en) One-piece mechanical filter having portions forming plural resonators and coupling means
US2345491A (en) Wave transmission network
US4281298A (en) Flexural transducer
US2081405A (en) Wave filter
US2814785A (en) Electromechanical filter
US2955267A (en) Electromechanical torsional band pass wave filter
US2810888A (en) Electromechanical filter
US2856588A (en) Mechanical filter
US3344367A (en) Low-frequency tuning-fork electromechanical filter
US3013228A (en) Mechanical frequency filter
US3078427A (en) Electromechanical filter with piezoelectric drive
US3142027A (en) Electromechanical wave filter having resonant bars coupled to each other by torsion wires which also support bars
US3376521A (en) Mechanical vibrator with electrostrictive excitation
US2667621A (en) Torsional filter
US2647948A (en) Electromechanical filter
US3146415A (en) Electromechanical filter
US3577180A (en) Electromechanical filter
US4100506A (en) Electromechanical filter
US3389351A (en) Unsymmetrical electromechanical filters
GB1074292A (en) Improvements in or relating to electromechanical filters
US3028564A (en) Mechanical filter
GB822536A (en) Improved mechanical filter having mechanical resonators coupled by means employing poisson's effect