US3343610A - Mechanical blade locks - Google Patents

Mechanical blade locks Download PDF

Info

Publication number
US3343610A
US3343610A US468171A US46817165A US3343610A US 3343610 A US3343610 A US 3343610A US 468171 A US468171 A US 468171A US 46817165 A US46817165 A US 46817165A US 3343610 A US3343610 A US 3343610A
Authority
US
United States
Prior art keywords
blade
gear segment
movement
link
driving gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US468171A
Inventor
Vacca Luigi
Donald L Ferris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US468171A priority Critical patent/US3343610A/en
Application granted granted Critical
Publication of US3343610A publication Critical patent/US3343610A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/473Constructional features
    • B64C27/50Blades foldable to facilitate stowage of aircraft

Definitions

  • FIG. 1 is a plan view of the locking mechanism showing the blade folded and locked
  • FIG. 2 is a plan view of the locking mechanism with the blade folded and the link-lever mechanism in the position of opening;
  • FIG. 3 is a plan view of the locking mechanism with the blade unfolded, in flight position and the locking mechanism inoperative.
  • a helicopter blade 11 has a gear segment 12 mounted thereon. This gear segment is in mesh with another gear segment 13 hereinafter referred to as the driving gear 13. This driving gear 13 is journaled for partial rotation on axis 14 carried by the housing 15. Also carried by the axis 14 is a cam 16 which moves with the driving gear.
  • the housing pivotally supports a crank lever 17 which carries at the end of its short leg 18, a cam follower 19.
  • the long leg 21 of the crank lever is formed at its end with a lateral projection 22 having a fiat face 23 normal to the longitudinal dimension of the long leg 21 of the crank lever.
  • the end of the long leg 21 is fitted with a pin 24 on which is mounted a link member 25.
  • the link member 25, at the crank lever end is formed with a lateral projection 26 similar to the projection 22 and which projection 26 is further formed with a flat face 27 adapted to contact the fiat face 23 of the projection 22 and provide a stop for limiting the movement of the crank link-lever combination.
  • the free end of the link 25 is pivotally attached to the gear segment 12.
  • a spring 28 is attached to the pin 24 to bias the crank link-lever combination to a projection face contacting position, which is the locked position of the folded blade.
  • the driving gear 13 is formed with an enlarged space 29 located between the last tooth 31 and its adjacent tooth 32.
  • the enlargement of this space permits movement of the driving gear through a slight are without movement of the meshed gear segment 12. This extra motion of the driving gear moves the link-crank lever V is accomplished by a hydraulically operated piston, not
  • the folded blade 11 is now securely locked in folded position by a mechanical mechanism which needs no attention and which will secure the blade against movement until rotation of the driving gear releases it.
  • a mechanism for locking the folded blade of a helicopter comprising a gear segment mounted for pivotal movement through a predetermined are, said gear segment being attached to the base of a helicopter blade;
  • crank lever mounted for pivotal movement and formed with a cam follower at the end of its short leg and a projection adjacent the end of its long a cam carried by and rotating with said driving gear segment, said cam being adapted to engage said cam follower during the initial pivotal movement of said driving gear in the unlocking operation;
  • a link pivoted at one endto the long end of said crank lever and being pivotally mounted at the other end to the blade carrying gear segment, said link being 4 formed at its crank lever end with a projection adapted to engage the projection of the crank lever; spring means attached to the juncture of the link and crank lever to bias the movement of the lever and link in one direction, said levers being moved by the combined movement of the driving gear segment and, the blade carrying gear segment to a straight line position; and means integral with the driving gear permitting additional movement of the driving gear without corresponding movement of the blade carrying gear segment to permit movement of the lever and link to a position beyond the straight line position to bring the projections into contact and lock the blade and blade carrying gear segment in blade folded position.
  • a mechanism for locking the folded blade of a helicopter according to claim 1 wherein the projection of the crank lever and the projection of the link are formed with contacting faces adapted to engage one with the other when the crank link-lever combination is in the locking position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transmission Devices (AREA)

Description

P 26, 1967 1.. vAccA ETAL 3,343,610
MECHANI CAL BLADE LOCKS Filed June 29, 1965 2 Sheets-Sheet 1 INVENTORS LU/Gl VAGGA BLADE FOLDED BLADE LOOKED DONALD L. FERR/8 BY MWAW ATTORNEY Sept. 26, 1967 L. VACCA ETAL MECHANICAL BLADE LOCKS 2 Sheets-Sheet 2 Filed June 29, 1965 v RD I 1/ l e United States Patent 3,343,610 MECHANICAL BLADE LOCKS Luigi Vacca, Milford, and Donald L. Ferris, Newton, Conn., assignors, by mesne assignments, to the United States of America as represented by the Secretary of the Navy Filed June 29, 1965, Ser. No. 468,171 3 Claims. (Cl. 170-16012) This invention relates to a mechanism for locking the folded blade of a helicopter in blade folded position.
It has been the custom to maintain the blades of a helicopter rotor in folded position by holding the operating piston in its end position through the hydraulic pressure on the piston. The difiic-ulty in this method has been the necessity of inspection for leaks in the hydraulic system and the possibility of the development of a leak after an inspection which would allow the piston to move from its end position and release the blade from its locked position. The inclusion of a mechanical locking means must be such as not to interfere with the normal operation of the helicopter blade.
It is an object of the present invention to provide a mechanical locking mechanism which will be positive in action and will lock the folded blades of a helicopter without possibility of release until release is desired.
It is a further object of the present invention to provide a pair of gear segments which will move the blade to locking position and when in locking position will lock the folded blade against movement.
It is a still further object of the present invention to provide a mechanical mechanism attached to the folded blades of a helicopter, said mechanism being a gear segment secured to the blade and in mesh with another gear segment and to drive the meshed gear segment to a locking position and when in locking position to lock the gear segments against movement by a lever and link mechanism which is moved to a position beyond a straight line position and locked in that position by the integral construction of one of the gear segments.
Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings wherein:
FIG. 1 is a plan view of the locking mechanism showing the blade folded and locked;
FIG. 2 is a plan view of the locking mechanism with the blade folded and the link-lever mechanism in the position of opening; and
FIG. 3 is a plan view of the locking mechanism with the blade unfolded, in flight position and the locking mechanism inoperative.
Referring to the drawings wherein like numerals refer to like parts throughout the several views, only those parts of the mechanical locking mechanism needed to show the invention are illustrated, the operating piston and the locking pin, not shown.
A helicopter blade 11 has a gear segment 12 mounted thereon. This gear segment is in mesh with another gear segment 13 hereinafter referred to as the driving gear 13. This driving gear 13 is journaled for partial rotation on axis 14 carried by the housing 15. Also carried by the axis 14 is a cam 16 which moves with the driving gear.
The housing pivotally supports a crank lever 17 which carries at the end of its short leg 18, a cam follower 19. The long leg 21 of the crank lever is formed at its end with a lateral projection 22 having a fiat face 23 normal to the longitudinal dimension of the long leg 21 of the crank lever. The end of the long leg 21 is fitted with a pin 24 on which is mounted a link member 25.
3,343,6 l0 Patented Sept. 26, 1967 The link member 25, at the crank lever end is formed with a lateral projection 26 similar to the projection 22 and which projection 26 is further formed with a flat face 27 adapted to contact the fiat face 23 of the projection 22 and provide a stop for limiting the movement of the crank link-lever combination. The free end of the link 25 is pivotally attached to the gear segment 12.
A spring 28 is attached to the pin 24 to bias the crank link-lever combination to a projection face contacting position, which is the locked position of the folded blade.
The driving gear 13 is formed with an enlarged space 29 located between the last tooth 31 and its adjacent tooth 32. The enlargement of this space permits movement of the driving gear through a slight are without movement of the meshed gear segment 12. This extra motion of the driving gear moves the link-crank lever V is accomplished by a hydraulically operated piston, not
shown, but of any usual construction, in a counter-clockwise direction swings the crank link-lever combination to the position shown in FIG. 2, with the cam 16 riding past the cam follower 19, the crank lever-link combination just short of a straight line position and the nextto-last tooth 34 of the blade supported gear segment just leaving the face of the tooth 32 of the driving gear. The next small incremental movement of the driving gear moves the driving gear without moving the driven gear segment 12 by reason of the space 29 between the teeth 31 and 32 of the driving gear. This small movement moves the crank lever-link combination to the straight line position, and beyond, to securely lock the mechanism in locking position (FIG. 3) with the faces of the projections in contact. Driving gear 13 and the tooth 34 of the driven gear segment are also in contact and the crank link-lever combination held in a position beyond the straight line position by the spring 28 as shown in FIG. 1.
The folded blade 11 is now securely locked in folded position by a mechanical mechanism which needs no attention and which will secure the blade against movement until rotation of the driving gear releases it.
The return of the folded blade to operating position is accomplished by rotating the driving gear in the opposite direction. The enlargement of the space between teeth 31 and 32 of the driving gear 13 allows movement of that gear segment independent of the driven gear 12. This first free movement of gear segment 13 provides the means for unlocking the crank link-lever combination which is necessary in order to free gear segment 12. If the crank link-lever combination was not swung into an unlocked position, the gear teeth would mesh, creating a load on the teeth, and the crank link-lever combination would be forced into a further locked position. During the free clockwise rotation of gear segment 13, cam 16, acting on cam follower 19, moves the crank link-lever combination from its 0fl-center position shown in FIG. 1 into and beyond the straight line position as shown in FIG. 2. Further movement of gear segment 13 in a clockwise direction brings the second tooth 32 into contact with the tooth 33 of the gear segment 12 and starts the movement of the gear segment. Further rotation of the driving gear moves the folded blade to operative position shown in FIG. 3. It is the independent movement of the driving gear, accomplished through the enlargement of the space between the last two teeth which permits the crank link-lever combination to move to the locking position and securely lock the gear segment 12 in a position where the teeth are not in mesh with thedriving gear. The unlocking movement may not be accomplished through any movement of the gear segment 12 as it is securely locked until there is that initial movement of the driving gear to bring the teeth back into mesh.
Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
What is claimed is:
1. A mechanism for locking the folded blade of a helicopter comprising a gear segment mounted for pivotal movement through a predetermined are, said gear segment being attached to the base of a helicopter blade;
a driving gear segment in mesh with said blade carrying gear segment, said driving gear segment being mounted for limited pivotal movement;
a crank lever mounted for pivotal movement and formed with a cam follower at the end of its short leg and a projection adjacent the end of its long a cam carried by and rotating with said driving gear segment, said cam being adapted to engage said cam follower during the initial pivotal movement of said driving gear in the unlocking operation;
a link pivoted at one endto the long end of said crank lever and being pivotally mounted at the other end to the blade carrying gear segment, said link being 4 formed at its crank lever end with a projection adapted to engage the projection of the crank lever; spring means attached to the juncture of the link and crank lever to bias the movement of the lever and link in one direction, said levers being moved by the combined movement of the driving gear segment and, the blade carrying gear segment to a straight line position; and means integral with the driving gear permitting additional movement of the driving gear without corresponding movement of the blade carrying gear segment to permit movement of the lever and link to a position beyond the straight line position to bring the projections into contact and lock the blade and blade carrying gear segment in blade folded position.
2. A mechanism for locking the folded blade of a helicopter according to claim 1 wherein the projection of the crank lever and the projection of the link are formed with contacting faces adapted to engage one with the other when the crank link-lever combination is in the locking position.
3. A mechanism for locking the folded blade of a helicopter according to claim 1 wherein the means integral with the driving gear is an increased distance between the last tooth and its adjacent tooth on the driving gear.
No references cited.
MARTIN P. SCHWADRON, Primary Examiner.
E. A. POWELL, JR., Assistant Examiner.

Claims (1)

1. A MECHANISM FOR LOCKING THE FOLDED BLADE OF A HELICOPTER COMPRISING A GEAR SEGMENT MOUNTED FOR PIVOTAL MOVEMENT THROUGH A PREDETERMINED ARC, SAID GEAR SEGMENT BEING ATTACHED TO THE BASE OF A HELICOPTER BLADE; A DRIVING GEAR SEGMENT IN MESH WITH SAID BLADE CARRYING GEAR SEGMENT, SAID DRIVING GEAR SEGMENT BEING MOUNTED FOR LIMITED PIVOTAL MOVEMENT; A CRANK LEVER MOUNTED FOR PIVOTAL MOVEMENT AND FORMED WITH A CAM FOLLOWER AT THE END OF ITS SHORT LEG AND A PROJECTION ADJACENT THE END OF ITS LONG LEG; A CAM CARRIED BY AND ROTATING WITH SAID DRIVING CAM SEGMENT, SAID CAM BEING ADAPTED TO ENGAGE SAID CAM FOLLOWER DURING THE INITIAL PIVOTAL MOVEMENT OF SAID DRIVING GEAR IN THE UNLOCKING OPERATION; A LINK PIVOTED AT ONE END TO THE LONG END OF SAID CRANK LEVER AND BEING PIVOTALLY MOUNTED AT THE OTHER END TO THE BLADE CARRYING GEAR SEGMENT, SAID LINK BEING FORMED AT ITS CRANK LEVER END WITH A PROJECTION ADAPTED TO ENGAGE THE PROJECTION OF THE CRANK LEVER; SPRING MEANS ATTACHED TO THE JUNCTURE OF THE LINK AND CRANK LEVER TO BIAS THE MOVEMENT OF THE LEVER AND LINK IN ONE DIRECTION, SAID LEVERS BEING MOVED BY THE COMBINED MOVEMENT OF THE DRIVING GEAR SEGMENT AND THE BLADE CARRYING GEAR SEGMENT TO A STRAIGHT LINE POSITION; AND MEANS INTEGRAL WITH THE DRIVING GEAR PERMITTING ADDITIONAL MOVEMENT OF THE DRIVING GEAR WITHOUT CORRESPONDING MOVEMENT OF THE BLADE CARRYING GEAR SEGMENT TO PERMIT MOVEMENT OF THE LEVER AND LINK TO A POSITION BEYOND THE STRAIGHT LINE POSITION TO BRING THE PROJECTIONS INTO CONTACT AND LOCK THE BLADE AND BLADE CARRYING GEAR SEGMENT IN BLADE FOLDED POSITION.
US468171A 1965-06-29 1965-06-29 Mechanical blade locks Expired - Lifetime US3343610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US468171A US3343610A (en) 1965-06-29 1965-06-29 Mechanical blade locks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US468171A US3343610A (en) 1965-06-29 1965-06-29 Mechanical blade locks

Publications (1)

Publication Number Publication Date
US3343610A true US3343610A (en) 1967-09-26

Family

ID=23858693

Family Applications (1)

Application Number Title Priority Date Filing Date
US468171A Expired - Lifetime US3343610A (en) 1965-06-29 1965-06-29 Mechanical blade locks

Country Status (1)

Country Link
US (1) US3343610A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2253026A1 (en) * 1971-11-02 1973-05-03 United Aircraft Corp DEVICE FOR SWIVELING A ROTOR BLADE OF A HELICOPTER RELATIVE TO THE ROTOR HUB
US4466775A (en) * 1981-11-19 1984-08-21 Westland Plc Helicopter rotors
US5211538A (en) * 1991-11-27 1993-05-18 Bell Helicopter Textron Inc. Method for folding helicopter main rotor blades
US5951251A (en) * 1996-07-12 1999-09-14 Eurocopter Device for locking the blades of a rotor, at least in terms of pitch
US20170334543A1 (en) * 2016-05-20 2017-11-23 Airbus Operations Limited Folding wing tip and rotating locking member
US20230249812A1 (en) * 2020-06-16 2023-08-10 Safran Helicopter Engines Propulsion unit with foldable propeller blades and method for folding the blades
US12097947B2 (en) * 2020-06-16 2024-09-24 Safran Helicopter Engines Propulsion unit with foldable propeller blades and method for folding the blades

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2253026A1 (en) * 1971-11-02 1973-05-03 United Aircraft Corp DEVICE FOR SWIVELING A ROTOR BLADE OF A HELICOPTER RELATIVE TO THE ROTOR HUB
US3743441A (en) * 1971-11-02 1973-07-03 United Aircraft Corp Helicopter blade folding and locking mechanism
US4466775A (en) * 1981-11-19 1984-08-21 Westland Plc Helicopter rotors
US5211538A (en) * 1991-11-27 1993-05-18 Bell Helicopter Textron Inc. Method for folding helicopter main rotor blades
US5951251A (en) * 1996-07-12 1999-09-14 Eurocopter Device for locking the blades of a rotor, at least in terms of pitch
US20170334543A1 (en) * 2016-05-20 2017-11-23 Airbus Operations Limited Folding wing tip and rotating locking member
US10759514B2 (en) * 2016-05-20 2020-09-01 Airbus Operations Limited Folding wing tip and rotating locking member
US20230249812A1 (en) * 2020-06-16 2023-08-10 Safran Helicopter Engines Propulsion unit with foldable propeller blades and method for folding the blades
US12097947B2 (en) * 2020-06-16 2024-09-24 Safran Helicopter Engines Propulsion unit with foldable propeller blades and method for folding the blades

Similar Documents

Publication Publication Date Title
US3269199A (en) Motion converting mechanism
US646287A (en) Step-by-step-motion mechanism.
US3343610A (en) Mechanical blade locks
US3536415A (en) Cyclic pitch actuator
US2688232A (en) Synchronized locking actuator
US3498187A (en) Hydraulically operated rack and pinion actuator
US2951380A (en) Device for reversing the blades of a turbine
US3005355A (en) Rotary motor actuated stepping drive for rotary switch
US2168863A (en) Hydraulic power-transmitting device
US4842109A (en) Bidirectional drive with a unidirectional irreversibility mechanism
US2882975A (en) Propeller mechanical pitch lock and low pitch stop assembly
US2615315A (en) Antibacklash device
US3356155A (en) Blade fold adjustment and lock
US2975767A (en) Servo actuator
US2720122A (en) Rotation control unit
US2965725A (en) Rotary motor driven rotary switch
US1654441A (en) gebmany
US3550477A (en) Drive mechanism
US2339154A (en) Transmission mechanism
US2940527A (en) Propeller pitch lock disabling and feather lock mechanism
US1625571A (en) Stop for rotating parts
US2741232A (en) Opposed free piston engine
US1641463A (en) Means to prevent reverse rotation of rotary members
US3357261A (en) Switching drum catch and trip device
US1947502A (en) Stop for rotating parts